aurelio-rnn / handler.py
jed-tiotuico's picture
fixed arg error
a49ac49
raw
history blame
7.34 kB
import os.path
from tokenizers import ByteLevelBPETokenizer, Tokenizer
from typing import Dict, List, Any
from transformers import pipeline, PretrainedConfig
import numpy as np
import torch
import torch.nn as nn
from huggingface_hub import PyTorchModelHubMixin
device = "cpu"
embedding_dim = 128
rnn_units = 256
vocab_size = 8000
def clean_text_line(line):
line = line.strip() # Remove leading and trailing whitespace
line = line.lower() # Lowercase the text if your model expects lowercase input
line = line.replace("'", "")
line = line.replace('"', "")
line = line.replace(",", "")
line = line.replace(".", "")
line = line.replace("?", "")
line = line.replace("!", "")
line = line.replace(":", "")
line = line.replace(";", "")
line = line.replace("(", "")
line = line.replace(")", "")
return line
def clean_text(text_lines):
if isinstance(text_lines, list):
cleaned_lines = []
for line in text_lines:
# Example cleaning steps, adjust these based on your specific needs
line = clean_text_line(line)
cleaned_lines.append(line)
return cleaned_lines
else:
return clean_text_line(text_lines)
def spelling_error_rate(text_generated, vocabulary):
# remove double quotes
words = text_generated.split()
words = clean_text(words)
total_words = len(words)
misspelled_words = [word for word in words if word.lower() not in vocabulary]
if total_words == 0:
return 0
error_rate = len(misspelled_words) / total_words
return error_rate
def generate_text_bpe(
model,
start_string,
generation_length=1000,
top_k=20,
temperature=1.0,
vocabulary=None,
tokenizer=None,
):
# Encode the start string to token IDs
input_ids = tokenizer.encode(start_string).ids
input_eval = torch.tensor([input_ids], device=device)
# Empty string to store the results
text_generated = []
# Initialize hidden state
state_h, state_c = model.init_state(1)
model.eval() # Evaluation mode
with torch.no_grad():
for i in range(generation_length):
output, (state_h, state_c) = model(input_eval, (state_h, state_c))
# Apply temperature scaling
logits = output[0, -1] / temperature
probabilities = torch.nn.functional.softmax(logits, dim=0).cpu().numpy()
# Apply top-k sampling
sorted_indices = np.argsort(probabilities)[-top_k:]
top_probabilities = probabilities[sorted_indices]
top_probabilities /= np.sum(top_probabilities) # Normalize probabilities
predicted_id = np.random.choice(sorted_indices, p=top_probabilities)
# Pass the predicted token ID as the next input to the model
input_eval = torch.tensor([[predicted_id]], device=device)
# Decode the predicted token ID to text
predicted_text = tokenizer.decode([predicted_id])
# Append the predicted text to the generated text
text_generated.append(predicted_text)
generated_text = start_string + "".join(text_generated)
error_rate = spelling_error_rate(generated_text, vocabulary)
return error_rate, generated_text
def load_vocabulary_from_file(file_path):
vocabulary = set()
with open(file_path, "r", encoding="utf-8") as file:
for line in file:
word = line.strip() # Remove any leading/trailing whitespace
if word: # Ensure the line is not empty
vocabulary.add(
word.lower()
) # Add the word in lowercase to ensure consistency
return vocabulary
def get_model():
class AurelioRNN(nn.Module, PyTorchModelHubMixin):
def __init__(self, config: dict):
super().__init__()
self.config = PretrainedConfig()
self.config.vocab_size = config.get("vocab_size")
self.config.embedding_dim = config.get("embedding_dim")
self.config.rnn_units = config.get("rnn_units")
self.embedding = nn.Embedding(vocab_size, embedding_dim)
self.lstm = nn.LSTM(embedding_dim, rnn_units, batch_first=True)
self.fc = nn.Linear(rnn_units, vocab_size)
def forward(self, x, state):
x = self.embedding(x)
x, state = self.lstm(x, state)
x = self.fc(x)
return x, state
def init_state(self, batch_size):
return (
torch.zeros(1, batch_size, rnn_units).to("cpu"),
torch.zeros(1, batch_size, rnn_units).to("cpu"),
)
return AurelioRNN
class EndpointHandler:
def __init__(self, path=""):
# load the optimized model
lstm = get_model()
config = {
"vocab_size": vocab_size,
"embedding_dim": embedding_dim,
"rnn_units": rnn_units,
}
self.model = lstm.from_pretrained("jed-tiotuico/aurelio-rnn", config=config)
dir_path = os.path.abspath(os.path.dirname(__file__))
self.tokenizer = ByteLevelBPETokenizer(
os.path.join(dir_path, "aurelio_bpe-vocab.json"),
os.path.join(dir_path, "aurelio_bpe-merges.txt"),
)
# create inference pipeline
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
"""
Args:
data (:obj:):
includes the input data and the parameters for the inference.
Return:
A :obj:`list`:. The object returned should be a list of one list like [[{"label": 0.9939950108528137}]] containing :
- "label": A string representing what the label/class is. There can be multiple labels.
- "score": A score between 0 and 1 describing how confident the model is for this label/class.
"""
print("data", data)
inputs = data.pop("inputs", data)
start_string = inputs[0]
config = {
"vocab_size": vocab_size,
"embedding_dim": embedding_dim,
"rnn_units": rnn_units,
}
# load_from_hub
lstm = get_model()
model = lstm.from_pretrained("jed-tiotuico/aurelio-rnn", config=config)
model.eval() # Set the model to evaluation mode
dir_path = os.path.abspath(os.path.dirname(__file__))
# Load the Kapampangan vocabulary
kapampangan_vocabulary = load_vocabulary_from_file(os.path.join(dir_path, "kapampangan.txt"))
# Define the source and destination paths
seq_length = 64
tokenizer = ByteLevelBPETokenizer(
os.path.join(dir_path, "aurelio_bpe-vocab.json"),
os.path.join(dir_path, "aurelio_bpe-merges.txt"),
)
predictions = []
# Generate 10 samples
for i in range(10):
error_rate, generated_text = generate_text_bpe(
model,
start_string=start_string,
generation_length=seq_length,
temperature=1.2,
top_k=20,
vocabulary=kapampangan_vocabulary,
tokenizer=tokenizer,
)
predictions.append(generated_text)
# return preductions as concated string
return predictions