|
""" |
|
BSD 3-Clause License |
|
|
|
Copyright (c) 2017, Prem Seetharaman |
|
All rights reserved. |
|
|
|
* Redistribution and use in source and binary forms, with or without |
|
modification, are permitted provided that the following conditions are met: |
|
|
|
* Redistributions of source code must retain the above copyright notice, |
|
this list of conditions and the following disclaimer. |
|
|
|
* Redistributions in binary form must reproduce the above copyright notice, this |
|
list of conditions and the following disclaimer in the |
|
documentation and/or other materials provided with the distribution. |
|
|
|
* Neither the name of the copyright holder nor the names of its |
|
contributors may be used to endorse or promote products derived from this |
|
software without specific prior written permission. |
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND |
|
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
|
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
|
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR |
|
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
|
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON |
|
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
|
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
""" |
|
|
|
import torch |
|
import numpy as np |
|
import torch.nn.functional as F |
|
from torch.autograd import Variable |
|
from scipy.signal import get_window |
|
from librosa.util import pad_center, tiny |
|
import librosa.util as librosa_util |
|
|
|
|
|
def window_sumsquare(window, n_frames, hop_length=200, win_length=800, |
|
n_fft=800, dtype=np.float32, norm=None): |
|
""" |
|
# from librosa 0.6 |
|
Compute the sum-square envelope of a window function at a given hop length. |
|
|
|
This is used to estimate modulation effects induced by windowing |
|
observations in short-time fourier transforms. |
|
|
|
Parameters |
|
---------- |
|
window : string, tuple, number, callable, or list-like |
|
Window specification, as in `get_window` |
|
|
|
n_frames : int > 0 |
|
The number of analysis frames |
|
|
|
hop_length : int > 0 |
|
The number of samples to advance between frames |
|
|
|
win_length : [optional] |
|
The length of the window function. By default, this matches `n_fft`. |
|
|
|
n_fft : int > 0 |
|
The length of each analysis frame. |
|
|
|
dtype : np.dtype |
|
The data type of the output |
|
|
|
Returns |
|
------- |
|
wss : np.ndarray, shape=`(n_fft + hop_length * (n_frames - 1))` |
|
The sum-squared envelope of the window function |
|
""" |
|
if win_length is None: |
|
win_length = n_fft |
|
|
|
n = n_fft + hop_length * (n_frames - 1) |
|
x = np.zeros(n, dtype=dtype) |
|
|
|
|
|
win_sq = get_window(window, win_length, fftbins=True) |
|
win_sq = librosa_util.normalize(win_sq, norm=norm)**2 |
|
win_sq = librosa_util.pad_center(win_sq, n_fft) |
|
|
|
|
|
for i in range(n_frames): |
|
sample = i * hop_length |
|
x[sample:min(n, sample + n_fft)] += win_sq[:max(0, min(n_fft, n - sample))] |
|
return x |
|
|
|
|
|
class STFT(torch.nn.Module): |
|
"""adapted from Prem Seetharaman's https://github.com/pseeth/pytorch-stft""" |
|
def __init__(self, filter_length=800, hop_length=200, win_length=800, |
|
window='hann'): |
|
super(STFT, self).__init__() |
|
self.filter_length = filter_length |
|
self.hop_length = hop_length |
|
self.win_length = win_length |
|
self.window = window |
|
self.forward_transform = None |
|
scale = self.filter_length / self.hop_length |
|
fourier_basis = np.fft.fft(np.eye(self.filter_length)) |
|
|
|
cutoff = int((self.filter_length / 2 + 1)) |
|
fourier_basis = np.vstack([np.real(fourier_basis[:cutoff, :]), |
|
np.imag(fourier_basis[:cutoff, :])]) |
|
|
|
forward_basis = torch.FloatTensor(fourier_basis[:, None, :]) |
|
inverse_basis = torch.FloatTensor( |
|
np.linalg.pinv(scale * fourier_basis).T[:, None, :]) |
|
|
|
if window is not None: |
|
assert(filter_length >= win_length) |
|
|
|
fft_window = get_window(window, win_length, fftbins=True) |
|
fft_window = pad_center(fft_window, size=filter_length) |
|
fft_window = torch.from_numpy(fft_window).float() |
|
|
|
|
|
forward_basis *= fft_window |
|
inverse_basis *= fft_window |
|
|
|
self.register_buffer('forward_basis', forward_basis.float()) |
|
self.register_buffer('inverse_basis', inverse_basis.float()) |
|
|
|
def transform(self, input_data): |
|
num_batches = input_data.size(0) |
|
num_samples = input_data.size(1) |
|
|
|
self.num_samples = num_samples |
|
|
|
|
|
input_data = input_data.view(num_batches, 1, num_samples) |
|
input_data = F.pad( |
|
input_data.unsqueeze(1), |
|
(int(self.filter_length / 2), int(self.filter_length / 2), 0, 0), |
|
mode='reflect') |
|
input_data = input_data.squeeze(1) |
|
|
|
forward_transform = F.conv1d( |
|
input_data, |
|
Variable(self.forward_basis, requires_grad=False), |
|
stride=self.hop_length, |
|
padding=0) |
|
|
|
cutoff = int((self.filter_length / 2) + 1) |
|
real_part = forward_transform[:, :cutoff, :] |
|
imag_part = forward_transform[:, cutoff:, :] |
|
|
|
magnitude = torch.sqrt(real_part**2 + imag_part**2) |
|
phase = torch.autograd.Variable( |
|
torch.atan2(imag_part.data, real_part.data)) |
|
|
|
return magnitude, phase |
|
|
|
def inverse(self, magnitude, phase): |
|
recombine_magnitude_phase = torch.cat( |
|
[magnitude*torch.cos(phase), magnitude*torch.sin(phase)], dim=1) |
|
|
|
inverse_transform = F.conv_transpose1d( |
|
recombine_magnitude_phase, |
|
Variable(self.inverse_basis, requires_grad=False), |
|
stride=self.hop_length, |
|
padding=0) |
|
|
|
if self.window is not None: |
|
window_sum = window_sumsquare( |
|
self.window, magnitude.size(-1), hop_length=self.hop_length, |
|
win_length=self.win_length, n_fft=self.filter_length, |
|
dtype=np.float32) |
|
|
|
approx_nonzero_indices = torch.from_numpy( |
|
np.where(window_sum > tiny(window_sum))[0]) |
|
window_sum = torch.autograd.Variable( |
|
torch.from_numpy(window_sum), requires_grad=False) |
|
window_sum = window_sum.cuda() if magnitude.is_cuda else window_sum |
|
inverse_transform[:, :, approx_nonzero_indices] /= window_sum[approx_nonzero_indices] |
|
|
|
|
|
inverse_transform *= float(self.filter_length) / self.hop_length |
|
|
|
inverse_transform = inverse_transform[:, :, int(self.filter_length/2):] |
|
inverse_transform = inverse_transform[:, :, :-int(self.filter_length/2):] |
|
|
|
return inverse_transform |
|
|
|
def forward(self, input_data): |
|
self.magnitude, self.phase = self.transform(input_data) |
|
reconstruction = self.inverse(self.magnitude, self.phase) |
|
return reconstruction |