|
import argparse |
|
import os |
|
|
|
import torch |
|
import torchaudio |
|
|
|
from api import TextToSpeech |
|
from tortoise.utils.audio import load_audio, get_voices, load_voices |
|
|
|
|
|
def split_and_recombine_text(texts, desired_length=200, max_len=300): |
|
|
|
texts = [s.strip() + "." for s in texts.split('.')] |
|
|
|
i = 0 |
|
while i < len(texts): |
|
ltxt = texts[i] |
|
if len(ltxt) >= desired_length or i == len(texts)-1: |
|
i += 1 |
|
continue |
|
if len(ltxt) + len(texts[i+1]) > max_len: |
|
i += 1 |
|
continue |
|
texts[i] = f'{ltxt} {texts[i+1]}' |
|
texts.pop(i+1) |
|
return texts |
|
|
|
|
|
if __name__ == '__main__': |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--textfile', type=str, help='A file containing the text to read.', default="tortoise/data/riding_hood.txt") |
|
parser.add_argument('--voice', type=str, help='Selects the voice to use for generation. See options in voices/ directory (and add your own!) ' |
|
'Use the & character to join two voices together. Use a comma to perform inference on multiple voices.', default='pat') |
|
parser.add_argument('--output_path', type=str, help='Where to store outputs.', default='../results/longform/') |
|
parser.add_argument('--preset', type=str, help='Which voice preset to use.', default='standard') |
|
parser.add_argument('--regenerate', type=str, help='Comma-separated list of clip numbers to re-generate, or nothing.', default=None) |
|
parser.add_argument('--voice_diversity_intelligibility_slider', type=float, |
|
help='How to balance vocal diversity with the quality/intelligibility of the spoken text. 0 means highly diverse voice (not recommended), 1 means maximize intellibility', |
|
default=.5) |
|
parser.add_argument('--model_dir', type=str, help='Where to find pretrained model checkpoints. Tortoise automatically downloads these to .models, so this' |
|
'should only be specified if you have custom checkpoints.', default='.models') |
|
args = parser.parse_args() |
|
tts = TextToSpeech(models_dir=args.model_dir) |
|
|
|
outpath = args.output_path |
|
selected_voices = args.voice.split(',') |
|
regenerate = args.regenerate |
|
if regenerate is not None: |
|
regenerate = [int(e) for e in regenerate.split(',')] |
|
|
|
for selected_voice in selected_voices: |
|
voice_outpath = os.path.join(outpath, selected_voice) |
|
os.makedirs(voice_outpath, exist_ok=True) |
|
|
|
with open(args.textfile, 'r', encoding='utf-8') as f: |
|
text = ''.join([l for l in f.readlines()]) |
|
texts = split_and_recombine_text(text) |
|
|
|
if '&' in selected_voice: |
|
voice_sel = selected_voice.split('&') |
|
else: |
|
voice_sel = [selected_voice] |
|
|
|
voice_samples, conditioning_latents = load_voices(voice_sel) |
|
all_parts = [] |
|
for j, text in enumerate(texts): |
|
if regenerate is not None and j not in regenerate: |
|
all_parts.append(load_audio(os.path.join(voice_outpath, f'{j}.wav'), 24000)) |
|
continue |
|
gen = tts.tts_with_preset(text, voice_samples=voice_samples, conditioning_latents=conditioning_latents, |
|
preset=args.preset, clvp_cvvp_slider=args.voice_diversity_intelligibility_slider) |
|
gen = gen.squeeze(0).cpu() |
|
torchaudio.save(os.path.join(voice_outpath, f'{j}.wav'), gen, 24000) |
|
all_parts.append(gen) |
|
full_audio = torch.cat(all_parts, dim=-1) |
|
torchaudio.save(os.path.join(voice_outpath, 'combined.wav'), full_audio, 24000) |
|
|
|
|