|
import functools |
|
from math import sqrt |
|
|
|
import torch |
|
import torch.distributed as distributed |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from einops import rearrange |
|
|
|
|
|
def default(val, d): |
|
return val if val is not None else d |
|
|
|
|
|
def eval_decorator(fn): |
|
def inner(model, *args, **kwargs): |
|
was_training = model.training |
|
model.eval() |
|
out = fn(model, *args, **kwargs) |
|
model.train(was_training) |
|
return out |
|
return inner |
|
|
|
|
|
|
|
|
|
class Quantize(nn.Module): |
|
def __init__(self, dim, n_embed, decay=0.99, eps=1e-5, balancing_heuristic=False, new_return_order=False): |
|
super().__init__() |
|
|
|
self.dim = dim |
|
self.n_embed = n_embed |
|
self.decay = decay |
|
self.eps = eps |
|
|
|
self.balancing_heuristic = balancing_heuristic |
|
self.codes = None |
|
self.max_codes = 64000 |
|
self.codes_full = False |
|
self.new_return_order = new_return_order |
|
|
|
embed = torch.randn(dim, n_embed) |
|
self.register_buffer("embed", embed) |
|
self.register_buffer("cluster_size", torch.zeros(n_embed)) |
|
self.register_buffer("embed_avg", embed.clone()) |
|
|
|
def forward(self, input, return_soft_codes=False): |
|
if self.balancing_heuristic and self.codes_full: |
|
h = torch.histc(self.codes, bins=self.n_embed, min=0, max=self.n_embed) / len(self.codes) |
|
mask = torch.logical_or(h > .9, h < .01).unsqueeze(1) |
|
ep = self.embed.permute(1,0) |
|
ea = self.embed_avg.permute(1,0) |
|
rand_embed = torch.randn_like(ep) * mask |
|
self.embed = (ep * ~mask + rand_embed).permute(1,0) |
|
self.embed_avg = (ea * ~mask + rand_embed).permute(1,0) |
|
self.cluster_size = self.cluster_size * ~mask.squeeze() |
|
if torch.any(mask): |
|
print(f"Reset {torch.sum(mask)} embedding codes.") |
|
self.codes = None |
|
self.codes_full = False |
|
|
|
flatten = input.reshape(-1, self.dim) |
|
dist = ( |
|
flatten.pow(2).sum(1, keepdim=True) |
|
- 2 * flatten @ self.embed |
|
+ self.embed.pow(2).sum(0, keepdim=True) |
|
) |
|
soft_codes = -dist |
|
_, embed_ind = soft_codes.max(1) |
|
embed_onehot = F.one_hot(embed_ind, self.n_embed).type(flatten.dtype) |
|
embed_ind = embed_ind.view(*input.shape[:-1]) |
|
quantize = self.embed_code(embed_ind) |
|
|
|
if self.balancing_heuristic: |
|
if self.codes is None: |
|
self.codes = embed_ind.flatten() |
|
else: |
|
self.codes = torch.cat([self.codes, embed_ind.flatten()]) |
|
if len(self.codes) > self.max_codes: |
|
self.codes = self.codes[-self.max_codes:] |
|
self.codes_full = True |
|
|
|
if self.training: |
|
embed_onehot_sum = embed_onehot.sum(0) |
|
embed_sum = flatten.transpose(0, 1) @ embed_onehot |
|
|
|
if distributed.is_initialized() and distributed.get_world_size() > 1: |
|
distributed.all_reduce(embed_onehot_sum) |
|
distributed.all_reduce(embed_sum) |
|
|
|
self.cluster_size.data.mul_(self.decay).add_( |
|
embed_onehot_sum, alpha=1 - self.decay |
|
) |
|
self.embed_avg.data.mul_(self.decay).add_(embed_sum, alpha=1 - self.decay) |
|
n = self.cluster_size.sum() |
|
cluster_size = ( |
|
(self.cluster_size + self.eps) / (n + self.n_embed * self.eps) * n |
|
) |
|
embed_normalized = self.embed_avg / cluster_size.unsqueeze(0) |
|
self.embed.data.copy_(embed_normalized) |
|
|
|
diff = (quantize.detach() - input).pow(2).mean() |
|
quantize = input + (quantize - input).detach() |
|
|
|
if return_soft_codes: |
|
return quantize, diff, embed_ind, soft_codes.view(input.shape[:-1] + (-1,)) |
|
elif self.new_return_order: |
|
return quantize, embed_ind, diff |
|
else: |
|
return quantize, diff, embed_ind |
|
|
|
def embed_code(self, embed_id): |
|
return F.embedding(embed_id, self.embed.transpose(0, 1)) |
|
|
|
|
|
|
|
|
|
|
|
class DiscretizationLoss(nn.Module): |
|
def __init__(self, discrete_bins, dim, expected_variance, store_past=0): |
|
super().__init__() |
|
self.discrete_bins = discrete_bins |
|
self.dim = dim |
|
self.dist = torch.distributions.Normal(0, scale=expected_variance) |
|
if store_past > 0: |
|
self.record_past = True |
|
self.register_buffer("accumulator_index", torch.zeros(1, dtype=torch.long, device='cpu')) |
|
self.register_buffer("accumulator_filled", torch.zeros(1, dtype=torch.long, device='cpu')) |
|
self.register_buffer("accumulator", torch.zeros(store_past, discrete_bins)) |
|
else: |
|
self.record_past = False |
|
|
|
def forward(self, x): |
|
other_dims = set(range(len(x.shape)))-set([self.dim]) |
|
averaged = x.sum(dim=tuple(other_dims)) / x.sum() |
|
averaged = averaged - averaged.mean() |
|
|
|
if self.record_past: |
|
acc_count = self.accumulator.shape[0] |
|
avg = averaged.detach().clone() |
|
if self.accumulator_filled > 0: |
|
averaged = torch.mean(self.accumulator, dim=0) * (acc_count-1) / acc_count + \ |
|
averaged / acc_count |
|
|
|
|
|
self.accumulator[self.accumulator_index] = avg |
|
self.accumulator_index += 1 |
|
if self.accumulator_index >= acc_count: |
|
self.accumulator_index *= 0 |
|
if self.accumulator_filled <= 0: |
|
self.accumulator_filled += 1 |
|
|
|
return torch.sum(-self.dist.log_prob(averaged)) |
|
|
|
|
|
class ResBlock(nn.Module): |
|
def __init__(self, chan, conv, activation): |
|
super().__init__() |
|
self.net = nn.Sequential( |
|
conv(chan, chan, 3, padding = 1), |
|
activation(), |
|
conv(chan, chan, 3, padding = 1), |
|
activation(), |
|
conv(chan, chan, 1) |
|
) |
|
|
|
def forward(self, x): |
|
return self.net(x) + x |
|
|
|
|
|
class UpsampledConv(nn.Module): |
|
def __init__(self, conv, *args, **kwargs): |
|
super().__init__() |
|
assert 'stride' in kwargs.keys() |
|
self.stride = kwargs['stride'] |
|
del kwargs['stride'] |
|
self.conv = conv(*args, **kwargs) |
|
|
|
def forward(self, x): |
|
up = nn.functional.interpolate(x, scale_factor=self.stride, mode='nearest') |
|
return self.conv(up) |
|
|
|
|
|
|
|
|
|
class DiscreteVAE(nn.Module): |
|
def __init__( |
|
self, |
|
positional_dims=2, |
|
num_tokens = 512, |
|
codebook_dim = 512, |
|
num_layers = 3, |
|
num_resnet_blocks = 0, |
|
hidden_dim = 64, |
|
channels = 3, |
|
stride = 2, |
|
kernel_size = 4, |
|
use_transposed_convs = True, |
|
encoder_norm = False, |
|
activation = 'relu', |
|
smooth_l1_loss = False, |
|
straight_through = False, |
|
normalization = None, |
|
record_codes = False, |
|
discretization_loss_averaging_steps = 100, |
|
lr_quantizer_args = {}, |
|
): |
|
super().__init__() |
|
has_resblocks = num_resnet_blocks > 0 |
|
|
|
self.num_tokens = num_tokens |
|
self.num_layers = num_layers |
|
self.straight_through = straight_through |
|
self.positional_dims = positional_dims |
|
self.discrete_loss = DiscretizationLoss(num_tokens, 2, 1 / (num_tokens*2), discretization_loss_averaging_steps) |
|
|
|
assert positional_dims > 0 and positional_dims < 3 |
|
if positional_dims == 2: |
|
conv = nn.Conv2d |
|
conv_transpose = nn.ConvTranspose2d |
|
else: |
|
conv = nn.Conv1d |
|
conv_transpose = nn.ConvTranspose1d |
|
if not use_transposed_convs: |
|
conv_transpose = functools.partial(UpsampledConv, conv) |
|
|
|
if activation == 'relu': |
|
act = nn.ReLU |
|
elif activation == 'silu': |
|
act = nn.SiLU |
|
else: |
|
assert NotImplementedError() |
|
|
|
|
|
enc_layers = [] |
|
dec_layers = [] |
|
|
|
if num_layers > 0: |
|
enc_chans = [hidden_dim * 2 ** i for i in range(num_layers)] |
|
dec_chans = list(reversed(enc_chans)) |
|
|
|
enc_chans = [channels, *enc_chans] |
|
|
|
dec_init_chan = codebook_dim if not has_resblocks else dec_chans[0] |
|
dec_chans = [dec_init_chan, *dec_chans] |
|
|
|
enc_chans_io, dec_chans_io = map(lambda t: list(zip(t[:-1], t[1:])), (enc_chans, dec_chans)) |
|
|
|
pad = (kernel_size - 1) // 2 |
|
for (enc_in, enc_out), (dec_in, dec_out) in zip(enc_chans_io, dec_chans_io): |
|
enc_layers.append(nn.Sequential(conv(enc_in, enc_out, kernel_size, stride = stride, padding = pad), act())) |
|
if encoder_norm: |
|
enc_layers.append(nn.GroupNorm(8, enc_out)) |
|
dec_layers.append(nn.Sequential(conv_transpose(dec_in, dec_out, kernel_size, stride = stride, padding = pad), act())) |
|
dec_out_chans = dec_chans[-1] |
|
innermost_dim = dec_chans[0] |
|
else: |
|
enc_layers.append(nn.Sequential(conv(channels, hidden_dim, 1), act())) |
|
dec_out_chans = hidden_dim |
|
innermost_dim = hidden_dim |
|
|
|
for _ in range(num_resnet_blocks): |
|
dec_layers.insert(0, ResBlock(innermost_dim, conv, act)) |
|
enc_layers.append(ResBlock(innermost_dim, conv, act)) |
|
|
|
if num_resnet_blocks > 0: |
|
dec_layers.insert(0, conv(codebook_dim, innermost_dim, 1)) |
|
|
|
|
|
enc_layers.append(conv(innermost_dim, codebook_dim, 1)) |
|
dec_layers.append(conv(dec_out_chans, channels, 1)) |
|
|
|
self.encoder = nn.Sequential(*enc_layers) |
|
self.decoder = nn.Sequential(*dec_layers) |
|
|
|
self.loss_fn = F.smooth_l1_loss if smooth_l1_loss else F.mse_loss |
|
self.codebook = Quantize(codebook_dim, num_tokens, new_return_order=True) |
|
|
|
|
|
self.normalization = normalization |
|
self.record_codes = record_codes |
|
if record_codes: |
|
self.codes = torch.zeros((1228800,), dtype=torch.long) |
|
self.code_ind = 0 |
|
self.total_codes = 0 |
|
self.internal_step = 0 |
|
|
|
def norm(self, images): |
|
if not self.normalization is not None: |
|
return images |
|
|
|
means, stds = map(lambda t: torch.as_tensor(t).to(images), self.normalization) |
|
arrange = 'c -> () c () ()' if self.positional_dims == 2 else 'c -> () c ()' |
|
means, stds = map(lambda t: rearrange(t, arrange), (means, stds)) |
|
images = images.clone() |
|
images.sub_(means).div_(stds) |
|
return images |
|
|
|
def get_debug_values(self, step, __): |
|
if self.record_codes and self.total_codes > 0: |
|
|
|
return {'histogram_codes': self.codes[:self.total_codes]} |
|
else: |
|
return {} |
|
|
|
@torch.no_grad() |
|
@eval_decorator |
|
def get_codebook_indices(self, images): |
|
img = self.norm(images) |
|
logits = self.encoder(img).permute((0,2,3,1) if len(img.shape) == 4 else (0,2,1)) |
|
sampled, codes, _ = self.codebook(logits) |
|
self.log_codes(codes) |
|
return codes |
|
|
|
def decode( |
|
self, |
|
img_seq |
|
): |
|
self.log_codes(img_seq) |
|
if hasattr(self.codebook, 'embed_code'): |
|
image_embeds = self.codebook.embed_code(img_seq) |
|
else: |
|
image_embeds = F.embedding(img_seq, self.codebook.codebook) |
|
b, n, d = image_embeds.shape |
|
|
|
kwargs = {} |
|
if self.positional_dims == 1: |
|
arrange = 'b n d -> b d n' |
|
else: |
|
h = w = int(sqrt(n)) |
|
arrange = 'b (h w) d -> b d h w' |
|
kwargs = {'h': h, 'w': w} |
|
image_embeds = rearrange(image_embeds, arrange, **kwargs) |
|
images = [image_embeds] |
|
for layer in self.decoder: |
|
images.append(layer(images[-1])) |
|
return images[-1], images[-2] |
|
|
|
def infer(self, img): |
|
img = self.norm(img) |
|
logits = self.encoder(img).permute((0,2,3,1) if len(img.shape) == 4 else (0,2,1)) |
|
sampled, codes, commitment_loss = self.codebook(logits) |
|
return self.decode(codes) |
|
|
|
|
|
|
|
|
|
def forward( |
|
self, |
|
img |
|
): |
|
img = self.norm(img) |
|
logits = self.encoder(img).permute((0,2,3,1) if len(img.shape) == 4 else (0,2,1)) |
|
sampled, codes, commitment_loss = self.codebook(logits) |
|
sampled = sampled.permute((0,3,1,2) if len(img.shape) == 4 else (0,2,1)) |
|
|
|
if self.training: |
|
out = sampled |
|
for d in self.decoder: |
|
out = d(out) |
|
self.log_codes(codes) |
|
else: |
|
|
|
out, _ = self.decode(codes) |
|
|
|
|
|
recon_loss = self.loss_fn(img, out, reduction='none') |
|
|
|
return recon_loss, commitment_loss, out |
|
|
|
def log_codes(self, codes): |
|
|
|
if self.record_codes and self.internal_step % 10 == 0: |
|
codes = codes.flatten() |
|
l = codes.shape[0] |
|
i = self.code_ind if (self.codes.shape[0] - self.code_ind) > l else self.codes.shape[0] - l |
|
self.codes[i:i+l] = codes.cpu() |
|
self.code_ind = self.code_ind + l |
|
if self.code_ind >= self.codes.shape[0]: |
|
self.code_ind = 0 |
|
self.total_codes += 1 |
|
self.internal_step += 1 |
|
|
|
|
|
if __name__ == '__main__': |
|
v = DiscreteVAE(channels=80, normalization=None, positional_dims=1, num_tokens=8192, codebook_dim=2048, |
|
hidden_dim=512, num_resnet_blocks=3, kernel_size=3, num_layers=1, use_transposed_convs=False) |
|
r,l,o=v(torch.randn(1,80,256)) |
|
v.decode(torch.randint(0,8192,(1,256))) |
|
print(o.shape, l.shape) |
|
|