|
import functools |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from transformers import GPT2Config, GPT2PreTrainedModel, LogitsProcessorList |
|
from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions |
|
from transformers.utils.model_parallel_utils import get_device_map, assert_device_map |
|
from models.arch_util import AttentionBlock |
|
from utils.typical_sampling import TypicalLogitsWarper |
|
|
|
|
|
def null_position_embeddings(range, dim): |
|
return torch.zeros((range.shape[0], range.shape[1], dim), device=range.device) |
|
|
|
|
|
class ResBlock(nn.Module): |
|
""" |
|
Basic residual convolutional block that uses GroupNorm. |
|
""" |
|
def __init__(self, chan): |
|
super().__init__() |
|
self.net = nn.Sequential( |
|
nn.Conv1d(chan, chan, kernel_size=3, padding=1), |
|
nn.GroupNorm(chan//8, chan), |
|
nn.ReLU(), |
|
nn.Conv1d(chan, chan, kernel_size=3, padding=1), |
|
nn.GroupNorm(chan//8, chan) |
|
) |
|
|
|
def forward(self, x): |
|
return F.relu(self.net(x) + x) |
|
|
|
|
|
class GPT2InferenceModel(GPT2PreTrainedModel): |
|
def __init__(self, config, gpt, text_pos_emb, embeddings, norm, linear): |
|
super().__init__(config) |
|
self.transformer = gpt |
|
self.text_pos_embedding = text_pos_emb |
|
self.embeddings = embeddings |
|
self.lm_head = nn.Sequential(norm, linear) |
|
|
|
|
|
self.model_parallel = False |
|
self.device_map = None |
|
self.cached_mel_emb = None |
|
|
|
def parallelize(self, device_map=None): |
|
self.device_map = ( |
|
get_device_map(len(self.transformer.h), range(torch.cuda.device_count())) |
|
if device_map is None |
|
else device_map |
|
) |
|
assert_device_map(self.device_map, len(self.transformer.h)) |
|
self.transformer.parallelize(self.device_map) |
|
self.lm_head = self.lm_head.to(self.transformer.first_device) |
|
self.model_parallel = True |
|
|
|
def deparallelize(self): |
|
self.transformer.deparallelize() |
|
self.transformer = self.transformer.to("cpu") |
|
self.lm_head = self.lm_head.to("cpu") |
|
self.model_parallel = False |
|
torch.cuda.empty_cache() |
|
|
|
def get_output_embeddings(self): |
|
return self.lm_head |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.lm_head = new_embeddings |
|
|
|
def store_mel_emb(self, mel_emb): |
|
self.cached_mel_emb = mel_emb |
|
|
|
def prepare_inputs_for_generation(self, input_ids, past=None, **kwargs): |
|
|
|
token_type_ids = kwargs.get("token_type_ids", None) |
|
|
|
if past: |
|
input_ids = input_ids[:, -1].unsqueeze(-1) |
|
if token_type_ids is not None: |
|
token_type_ids = token_type_ids[:, -1].unsqueeze(-1) |
|
|
|
attention_mask = kwargs.get("attention_mask", None) |
|
position_ids = kwargs.get("position_ids", None) |
|
|
|
if attention_mask is not None and position_ids is None: |
|
|
|
position_ids = attention_mask.long().cumsum(-1) - 1 |
|
position_ids.masked_fill_(attention_mask == 0, 1) |
|
if past: |
|
position_ids = position_ids[:, -1].unsqueeze(-1) |
|
else: |
|
position_ids = None |
|
return { |
|
"input_ids": input_ids, |
|
"past_key_values": past, |
|
"use_cache": kwargs.get("use_cache"), |
|
"position_ids": position_ids, |
|
"attention_mask": attention_mask, |
|
"token_type_ids": token_type_ids, |
|
} |
|
|
|
def forward( |
|
self, |
|
input_ids=None, |
|
past_key_values=None, |
|
attention_mask=None, |
|
token_type_ids=None, |
|
position_ids=None, |
|
head_mask=None, |
|
inputs_embeds=None, |
|
encoder_hidden_states=None, |
|
encoder_attention_mask=None, |
|
labels=None, |
|
use_cache=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None, |
|
): |
|
assert self.cached_mel_emb is not None |
|
assert inputs_embeds is None |
|
assert labels is None |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
mel_len = self.cached_mel_emb.shape[1] |
|
if input_ids.shape[1] != 1: |
|
text_inputs = input_ids[:, mel_len:] |
|
text_emb = self.embeddings(text_inputs) |
|
text_emb = text_emb + self.text_pos_embedding(text_emb) |
|
if self.cached_mel_emb.shape[0] != text_emb.shape[0]: |
|
mel_emb = self.cached_mel_emb.repeat_interleave(text_emb.shape[0]//self.cached_mel_emb.shape[0], 0) |
|
else: |
|
mel_emb = self.cached_mel_emb |
|
emb = torch.cat([mel_emb, text_emb], dim=1) |
|
else: |
|
emb = self.embeddings(input_ids) |
|
emb = emb + self.text_pos_embedding.get_fixed_embedding(attention_mask.shape[1]-mel_len, attention_mask.device) |
|
|
|
transformer_outputs = self.transformer( |
|
inputs_embeds=emb, |
|
past_key_values=past_key_values, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=encoder_attention_mask, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
hidden_states = transformer_outputs[0] |
|
|
|
|
|
if self.model_parallel: |
|
torch.cuda.set_device(self.transformer.first_device) |
|
hidden_states = hidden_states.to(self.lm_head.weight.device) |
|
|
|
lm_logits = self.lm_head(hidden_states) |
|
|
|
if not return_dict: |
|
return (lm_logits,) + transformer_outputs[1:] |
|
|
|
return CausalLMOutputWithCrossAttentions( |
|
loss=None, |
|
logits=lm_logits, |
|
past_key_values=transformer_outputs.past_key_values, |
|
hidden_states=transformer_outputs.hidden_states, |
|
attentions=transformer_outputs.attentions, |
|
cross_attentions=transformer_outputs.cross_attentions, |
|
) |
|
|
|
@staticmethod |
|
def _reorder_cache(past, beam_idx): |
|
""" |
|
This function is used to re-order the :obj:`past_key_values` cache if |
|
:meth:`~transformers.PreTrainedModel.beam_search` or :meth:`~transformers.PreTrainedModel.beam_sample` is |
|
called. This is required to match :obj:`past_key_values` with the correct beam_idx at every generation step. |
|
""" |
|
return tuple( |
|
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past) |
|
for layer_past in past |
|
) |
|
|
|
|
|
class ConditioningEncoder(nn.Module): |
|
def __init__(self, |
|
spec_dim, |
|
embedding_dim, |
|
attn_blocks=6, |
|
num_attn_heads=4, |
|
do_checkpointing=False, |
|
mean=False): |
|
super().__init__() |
|
attn = [] |
|
self.init = nn.Conv1d(spec_dim, embedding_dim, kernel_size=1) |
|
for a in range(attn_blocks): |
|
attn.append(AttentionBlock(embedding_dim, num_attn_heads)) |
|
self.attn = nn.Sequential(*attn) |
|
self.dim = embedding_dim |
|
self.do_checkpointing = do_checkpointing |
|
self.mean = mean |
|
|
|
def forward(self, x): |
|
h = self.init(x) |
|
h = self.attn(h) |
|
if self.mean: |
|
return h.mean(dim=2) |
|
else: |
|
return h[:, :, 0] |
|
|
|
|
|
class LearnedPositionEmbeddings(nn.Module): |
|
def __init__(self, seq_len, model_dim, init=.02): |
|
super().__init__() |
|
self.emb = nn.Embedding(seq_len, model_dim) |
|
|
|
self.emb.weight.data.normal_(mean=0.0, std=init) |
|
|
|
def forward(self, x): |
|
sl = x.shape[1] |
|
return self.emb(torch.arange(0, sl, device=x.device)) |
|
|
|
def get_fixed_embedding(self, ind, dev): |
|
return self.emb(torch.tensor([ind], device=dev)).unsqueeze(0) |
|
|
|
|
|
def build_hf_gpt_transformer(layers, model_dim, heads, max_mel_seq_len, max_text_seq_len, checkpointing): |
|
""" |
|
GPT-2 implemented by the HuggingFace library. |
|
""" |
|
from transformers import GPT2Config, GPT2Model |
|
gpt_config = GPT2Config(vocab_size=256, |
|
n_positions=max_mel_seq_len+max_text_seq_len, |
|
n_ctx=max_mel_seq_len+max_text_seq_len, |
|
n_embd=model_dim, |
|
n_layer=layers, |
|
n_head=heads, |
|
gradient_checkpointing=checkpointing, |
|
use_cache=not checkpointing) |
|
gpt = GPT2Model(gpt_config) |
|
|
|
del gpt.wpe |
|
gpt.wpe = functools.partial(null_position_embeddings, dim=model_dim) |
|
|
|
del gpt.wte |
|
return gpt, LearnedPositionEmbeddings(max_mel_seq_len, model_dim), LearnedPositionEmbeddings(max_text_seq_len, model_dim),\ |
|
None, None |
|
|
|
|
|
class MelEncoder(nn.Module): |
|
def __init__(self, channels, mel_channels=80, resblocks_per_reduction=2): |
|
super().__init__() |
|
self.channels = channels |
|
self.encoder = nn.Sequential(nn.Conv1d(mel_channels, channels//4, kernel_size=3, padding=1), |
|
nn.Sequential(*[ResBlock(channels//4) for _ in range(resblocks_per_reduction)]), |
|
nn.Conv1d(channels//4, channels//2, kernel_size=3, stride=2, padding=1), |
|
nn.GroupNorm(channels//16, channels//2), |
|
nn.ReLU(), |
|
nn.Sequential(*[ResBlock(channels//2) for _ in range(resblocks_per_reduction)]), |
|
nn.Conv1d(channels//2, channels, kernel_size=3, stride=2, padding=1), |
|
nn.GroupNorm(channels//8, channels), |
|
nn.ReLU(), |
|
nn.Sequential(*[ResBlock(channels) for _ in range(resblocks_per_reduction)]), |
|
) |
|
self.reduction = 4 |
|
|
|
|
|
def forward(self, x): |
|
for e in self.encoder: |
|
x = e(x) |
|
return x.permute(0,2,1) |
|
|
|
|
|
class UnifiedVoice(nn.Module): |
|
def __init__(self, layers=8, model_dim=512, heads=8, max_text_tokens=120, max_mel_tokens=250, max_conditioning_inputs=1, |
|
mel_length_compression=1024, number_text_tokens=256, |
|
start_text_token=None, number_mel_codes=8194, start_mel_token=8192, |
|
stop_mel_token=8193, train_solo_embeddings=False, use_mel_codes_as_input=True, |
|
checkpointing=True, average_conditioning_embeddings=False, |
|
types=1): |
|
""" |
|
Args: |
|
layers: Number of layers in transformer stack. |
|
model_dim: Operating dimensions of the transformer |
|
heads: Number of transformer heads. Must be divisible by model_dim. Recommend model_dim//64 |
|
max_text_tokens: Maximum number of text tokens that will be encountered by model. |
|
max_mel_tokens: Maximum number of MEL tokens that will be encountered by model. |
|
max_conditioning_inputs: Maximum number of conditioning inputs provided to the model. If (1), conditioning input can be of format (b,80,s), otherwise (b,n,80,s). |
|
mel_length_compression: The factor between <number_input_samples> and <mel_tokens>. Used to compute MEL code padding given wav input length. |
|
number_text_tokens: |
|
start_text_token: |
|
stop_text_token: |
|
number_mel_codes: |
|
start_mel_token: |
|
stop_mel_token: |
|
train_solo_embeddings: |
|
use_mel_codes_as_input: |
|
checkpointing: |
|
average_conditioning_embeddings: Whether or not conditioning embeddings should be averaged, instead of fed piecewise into the model. |
|
""" |
|
super().__init__() |
|
|
|
self.number_text_tokens = number_text_tokens |
|
self.start_text_token = number_text_tokens * types if start_text_token is None else start_text_token |
|
self.stop_text_token = 0 |
|
self.number_mel_codes = number_mel_codes |
|
self.start_mel_token = start_mel_token |
|
self.stop_mel_token = stop_mel_token |
|
self.layers = layers |
|
self.heads = heads |
|
self.max_mel_tokens = max_mel_tokens |
|
self.max_text_tokens = max_text_tokens |
|
self.model_dim = model_dim |
|
self.max_conditioning_inputs = max_conditioning_inputs |
|
self.mel_length_compression = mel_length_compression |
|
self.conditioning_encoder = ConditioningEncoder(80, model_dim, num_attn_heads=heads) |
|
self.average_conditioning_embeddings = average_conditioning_embeddings |
|
self.text_embedding = nn.Embedding(self.number_text_tokens*types+1, model_dim) |
|
if use_mel_codes_as_input: |
|
self.mel_embedding = nn.Embedding(self.number_mel_codes, model_dim) |
|
else: |
|
self.mel_embedding = MelEncoder(model_dim, resblocks_per_reduction=1) |
|
self.gpt, self.mel_pos_embedding, self.text_pos_embedding, self.mel_layer_pos_embedding, self.text_layer_pos_embedding = \ |
|
build_hf_gpt_transformer(layers, model_dim, heads, self.max_mel_tokens+2+self.max_conditioning_inputs, self.max_text_tokens+2, checkpointing) |
|
if train_solo_embeddings: |
|
self.mel_solo_embedding = nn.Parameter(torch.randn(1, 1, model_dim) * .02, requires_grad=True) |
|
self.text_solo_embedding = nn.Parameter(torch.randn(1, 1, model_dim) * .02, requires_grad=True) |
|
else: |
|
self.mel_solo_embedding = 0 |
|
self.text_solo_embedding = 0 |
|
|
|
self.final_norm = nn.LayerNorm(model_dim) |
|
self.text_head = nn.Linear(model_dim, self.number_text_tokens*types+1) |
|
self.mel_head = nn.Linear(model_dim, self.number_mel_codes) |
|
|
|
|
|
embeddings = [self.text_embedding] |
|
if use_mel_codes_as_input: |
|
embeddings.append(self.mel_embedding) |
|
for module in embeddings: |
|
module.weight.data.normal_(mean=0.0, std=.02) |
|
|
|
def build_aligned_inputs_and_targets(self, input, start_token, stop_token): |
|
inp = F.pad(input, (1,0), value=start_token) |
|
tar = F.pad(input, (0,1), value=stop_token) |
|
return inp, tar |
|
|
|
def set_mel_padding(self, mel_input_tokens, wav_lengths): |
|
""" |
|
Given mel tokens that are derived from a padded audio clip and the actual lengths of each batch element in |
|
that audio clip, reformats the tokens with STOP_MEL_TOKEN in place of the zero padding. This is required |
|
preformatting to create a working TTS model. |
|
""" |
|
|
|
mel_lengths = torch.div(wav_lengths, self.mel_length_compression, rounding_mode='trunc') |
|
for b in range(len(mel_lengths)): |
|
actual_end = mel_lengths[b] + 1 |
|
if actual_end < mel_input_tokens.shape[-1]: |
|
mel_input_tokens[b, actual_end:] = self.stop_mel_token |
|
return mel_input_tokens |
|
|
|
def get_logits(self, speech_conditioning_inputs, first_inputs, first_head, second_inputs=None, second_head=None, get_attns=False, return_latent=False): |
|
if second_inputs is not None: |
|
emb = torch.cat([speech_conditioning_inputs, first_inputs, second_inputs], dim=1) |
|
else: |
|
emb = torch.cat([speech_conditioning_inputs, first_inputs], dim=1) |
|
|
|
gpt_out = self.gpt(inputs_embeds=emb, return_dict=True, output_attentions=get_attns) |
|
if get_attns: |
|
return gpt_out.attentions |
|
|
|
enc = gpt_out.last_hidden_state[:, 1:] |
|
enc = self.final_norm(enc) |
|
|
|
if return_latent: |
|
return enc[:, speech_conditioning_inputs.shape[1]:speech_conditioning_inputs.shape[1]+first_inputs.shape[1]], enc[:, -second_inputs.shape[1]:] |
|
|
|
first_logits = enc[:, :first_inputs.shape[1]] |
|
first_logits = first_head(first_logits) |
|
first_logits = first_logits.permute(0,2,1) |
|
if second_inputs is not None: |
|
second_logits = enc[:, -second_inputs.shape[1]:] |
|
second_logits = second_head(second_logits) |
|
second_logits = second_logits.permute(0,2,1) |
|
return first_logits, second_logits |
|
else: |
|
return first_logits |
|
|
|
def forward(self, speech_conditioning_input, text_inputs, text_lengths, mel_codes, wav_lengths, types=None, text_first=True, raw_mels=None, return_attentions=False, |
|
return_latent=False, clip_inputs=True): |
|
""" |
|
Forward pass that uses both text and voice in either text conditioning mode or voice conditioning mode |
|
(actuated by `text_first`). |
|
|
|
speech_conditioning_input: MEL float tensor, (b,80,s) |
|
text_inputs: long tensor, (b,t) |
|
text_lengths: long tensor, (b,) |
|
mel_inputs: long tensor, (b,m) |
|
wav_lengths: long tensor, (b,) |
|
raw_mels: MEL float tensor (b,80,s) |
|
|
|
If return_attentions is specified, only logits are returned. |
|
If return_latent is specified, loss & logits are not computed or returned. Only the predicted latents are returned. |
|
If clip_inputs is True, the inputs will be clipped to the smallest input size across each input modality. |
|
""" |
|
|
|
if types is not None: |
|
text_inputs = text_inputs * (1+types).unsqueeze(-1) |
|
|
|
if clip_inputs: |
|
|
|
|
|
max_text_len = text_lengths.max() |
|
text_inputs = text_inputs[:, :max_text_len] |
|
max_mel_len = wav_lengths.max() // self.mel_length_compression |
|
mel_codes = mel_codes[:, :max_mel_len] |
|
if raw_mels is not None: |
|
raw_mels = raw_mels[:, :, :max_mel_len*4] |
|
mel_codes = self.set_mel_padding(mel_codes, wav_lengths) |
|
text_inputs = F.pad(text_inputs, (0,1), value=self.stop_text_token) |
|
mel_codes = F.pad(mel_codes, (0,1), value=self.stop_mel_token) |
|
|
|
speech_conditioning_input = speech_conditioning_input.unsqueeze(1) if len(speech_conditioning_input.shape) == 3 else speech_conditioning_input |
|
conds = [] |
|
for j in range(speech_conditioning_input.shape[1]): |
|
conds.append(self.conditioning_encoder(speech_conditioning_input[:, j])) |
|
conds = torch.stack(conds, dim=1) |
|
if self.average_conditioning_embeddings: |
|
conds = conds.mean(dim=1).unsqueeze(1) |
|
|
|
text_inputs, text_targets = self.build_aligned_inputs_and_targets(text_inputs, self.start_text_token, self.stop_text_token) |
|
text_emb = self.text_embedding(text_inputs) + self.text_pos_embedding(text_inputs) |
|
mel_codes, mel_targets = self.build_aligned_inputs_and_targets(mel_codes, self.start_mel_token, self.stop_mel_token) |
|
if raw_mels is not None: |
|
mel_inp = F.pad(raw_mels, (0, 8)) |
|
else: |
|
mel_inp = mel_codes |
|
mel_emb = self.mel_embedding(mel_inp) |
|
mel_emb = mel_emb + self.mel_pos_embedding(mel_codes) |
|
|
|
if text_first: |
|
text_logits, mel_logits = self.get_logits(conds, text_emb, self.text_head, mel_emb, self.mel_head, get_attns=return_attentions, return_latent=return_latent) |
|
if return_latent: |
|
return mel_logits[:, :-2] |
|
else: |
|
mel_logits, text_logits = self.get_logits(conds, mel_emb, self.mel_head, text_emb, self.text_head, get_attns=return_attentions, return_latent=return_latent) |
|
if return_latent: |
|
return text_logits[:, :-2] |
|
|
|
if return_attentions: |
|
return mel_logits |
|
loss_text = F.cross_entropy(text_logits, text_targets.long()) |
|
loss_mel = F.cross_entropy(mel_logits, mel_targets.long()) |
|
return loss_text.mean(), loss_mel.mean(), mel_logits |
|
|
|
def text_forward(self, speech_conditioning_input, text_inputs, text_lengths): |
|
""" |
|
Performs autoregressive modeling on only text. Still requires a speech_conditioning_input due to the way the |
|
model inputs are formatted. Just provide any audio clip (arguably, zeros could be provided). |
|
""" |
|
assert self.max_text_tokens >= text_inputs.shape[1], f'{text_inputs.shape[1]}' |
|
|
|
|
|
|
|
max_text_len = text_lengths.max() |
|
text_inputs = F.pad(text_inputs[:, :max_text_len], (0,1), value=self.stop_text_token) |
|
|
|
speech_conditioning_input = speech_conditioning_input.unsqueeze(1) if len(speech_conditioning_input.shape) == 3 else speech_conditioning_input |
|
conds = [] |
|
for j in range(speech_conditioning_input.shape[1]): |
|
conds.append(self.conditioning_encoder(speech_conditioning_input[:, j])) |
|
conds = torch.stack(conds, dim=1) |
|
if self.average_conditioning_embeddings: |
|
conds = conds.mean(dim=1).unsqueeze(1) |
|
|
|
text_inputs, text_targets = self.build_aligned_inputs_and_targets(text_inputs, self.start_text_token, self.stop_text_token) |
|
text_emb = self.text_embedding(text_inputs) + self.text_pos_embedding(text_inputs) + self.text_solo_embedding |
|
text_logits = self.get_logits(conds, text_emb, self.text_head) |
|
loss_text = F.cross_entropy(text_logits, text_targets.long()) |
|
return loss_text.mean() |
|
|
|
def speech_forward(self, speech_conditioning_input, mel_codes, wav_lengths, raw_mels=None): |
|
""" |
|
Performs autoregressive modeling on only speech data. |
|
""" |
|
assert self.max_mel_tokens >= mel_codes.shape[1], f'{mel_codes.shape[1]}' |
|
|
|
|
|
|
|
max_mel_len = wav_lengths.max() // self.mel_length_compression |
|
mel_codes = F.pad(mel_codes[:, :max_mel_len], (0,1), value=self.stop_mel_token) |
|
mel_codes = self.set_mel_padding(mel_codes, wav_lengths) |
|
if raw_mels is not None: |
|
raw_mels = raw_mels[:, :, :max_mel_len*4] |
|
|
|
speech_conditioning_input = speech_conditioning_input.unsqueeze(1) if len(speech_conditioning_input.shape) == 3 else speech_conditioning_input |
|
conds = [] |
|
for j in range(speech_conditioning_input.shape[1]): |
|
conds.append(self.conditioning_encoder(speech_conditioning_input[:, j])) |
|
conds = torch.stack(conds, dim=1) |
|
if self.average_conditioning_embeddings: |
|
conds = conds.mean(dim=1).unsqueeze(1) |
|
|
|
mel_codes, mel_targets = self.build_aligned_inputs_and_targets(mel_codes, self.start_mel_token, self.stop_mel_token) |
|
if raw_mels is not None: |
|
mel_inp = F.pad(raw_mels, (0, 4)) |
|
else: |
|
mel_inp = mel_codes |
|
mel_emb = self.mel_embedding(mel_inp) |
|
mel_emb = mel_emb + self.mel_pos_embedding(mel_codes) + self.mel_solo_embedding |
|
mel_logits = self.get_logits(conds, mel_emb, self.mel_head) |
|
loss_mel = F.cross_entropy(mel_logits, mel_targets.long()) |
|
return loss_mel.mean() |
|
|
|
def inference_speech(self, speech_conditioning_input, text_inputs, input_tokens=None, num_return_sequences=1, |
|
max_generate_length=None, typical_sampling=False, typical_mass=.9, **hf_generate_kwargs): |
|
seq_length = self.max_mel_tokens + self.max_text_tokens + 2 |
|
if not hasattr(self, 'inference_model'): |
|
|
|
gpt_config = GPT2Config(vocab_size=self.max_mel_tokens, |
|
n_positions=seq_length, |
|
n_ctx=seq_length, |
|
n_embd=self.model_dim, |
|
n_layer=self.layers, |
|
n_head=self.heads, |
|
gradient_checkpointing=False, |
|
use_cache=True) |
|
self.inference_model = GPT2InferenceModel(gpt_config, self.gpt, self.mel_pos_embedding, self.mel_embedding, self.final_norm, self.mel_head) |
|
self.gpt.wte = self.mel_embedding |
|
|
|
text_inputs = F.pad(text_inputs, (0, 1), value=self.stop_text_token) |
|
text_inputs, text_targets = self.build_aligned_inputs_and_targets(text_inputs, self.start_text_token, self.stop_text_token) |
|
text_emb = self.text_embedding(text_inputs) + self.text_pos_embedding(text_inputs) |
|
|
|
speech_conditioning_input = speech_conditioning_input.unsqueeze(1) if len(speech_conditioning_input.shape) == 3 else speech_conditioning_input |
|
conds = [] |
|
for j in range(speech_conditioning_input.shape[1]): |
|
conds.append(self.conditioning_encoder(speech_conditioning_input[:, j])) |
|
conds = torch.stack(conds, dim=1) |
|
if self.average_conditioning_embeddings: |
|
conds = conds.mean(dim=1).unsqueeze(1) |
|
|
|
emb = torch.cat([conds, text_emb], dim=1) |
|
self.inference_model.store_mel_emb(emb) |
|
|
|
fake_inputs = torch.full((emb.shape[0], conds.shape[1] + emb.shape[1],), fill_value=1, dtype=torch.long, |
|
device=text_inputs.device) |
|
fake_inputs[:, -1] = self.start_mel_token |
|
trunc_index = fake_inputs.shape[1] |
|
if input_tokens is None: |
|
inputs = fake_inputs |
|
else: |
|
assert num_return_sequences % input_tokens.shape[0] == 0, "The number of return sequences must be divisible by the number of input sequences" |
|
fake_inputs = fake_inputs.repeat(num_return_sequences, 1) |
|
input_tokens = input_tokens.repeat(num_return_sequences // input_tokens.shape[0], 1) |
|
inputs = torch.cat([fake_inputs, input_tokens], dim=1) |
|
|
|
logits_processor = LogitsProcessorList([TypicalLogitsWarper(mass=typical_mass)]) if typical_sampling else LogitsProcessorList() |
|
max_length = trunc_index + self.max_mel_tokens - 1 if max_generate_length is None else trunc_index + max_generate_length |
|
gen = self.inference_model.generate(inputs, bos_token_id=self.start_mel_token, pad_token_id=self.stop_mel_token, eos_token_id=self.stop_mel_token, |
|
max_length=max_length, logits_processor=logits_processor, |
|
num_return_sequences=num_return_sequences, **hf_generate_kwargs) |
|
return gen[:, trunc_index:] |
|
|
|
|
|
if __name__ == '__main__': |
|
gpt = UnifiedVoice(model_dim=256, heads=4, train_solo_embeddings=True, use_mel_codes_as_input=True, max_conditioning_inputs=4) |
|
l = gpt(torch.randn(2, 3, 80, 800), |
|
torch.randint(high=120, size=(2,120)), |
|
torch.tensor([32, 120]), |
|
torch.randint(high=8192, size=(2,250)), |
|
torch.tensor([250*256,195*256])) |
|
gpt.text_forward(torch.randn(2,80,800), torch.randint(high=50, size=(2,80)), torch.tensor([32, 80])) |
|
|