|
""" |
|
Sample from a trained model |
|
""" |
|
import os |
|
import pickle |
|
from contextlib import nullcontext |
|
import torch |
|
import tiktoken |
|
from model import GPTConfig, GPT |
|
|
|
|
|
init_from = 'resume' |
|
out_dir = 'out' |
|
start = "\n" |
|
num_samples = 10 |
|
max_new_tokens = 500 |
|
temperature = 0.0 |
|
top_k = 200 |
|
seed = 1337 |
|
device = 'cuda' |
|
dtype = 'float16' |
|
compile = False |
|
exec(open('configurator.py').read()) |
|
|
|
|
|
torch.manual_seed(seed) |
|
torch.cuda.manual_seed(seed) |
|
torch.backends.cuda.matmul.allow_tf32 = True |
|
torch.backends.cudnn.allow_tf32 = True |
|
device_type = 'cuda' if 'cuda' in device else 'cpu' |
|
ptdtype = {'float32': torch.float32, 'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype] |
|
ctx = nullcontext() if device_type == 'cpu' else torch.amp.autocast(device_type=device_type, dtype=ptdtype) |
|
|
|
|
|
if init_from == 'resume': |
|
|
|
ckpt_path = os.path.join(out_dir, 'ckpt.pt') |
|
checkpoint = torch.load(ckpt_path, map_location=device) |
|
gptconf = GPTConfig(**checkpoint['model_args']) |
|
model = GPT(gptconf) |
|
state_dict = checkpoint['model'] |
|
unwanted_prefix = '_orig_mod.' |
|
for k,v in list(state_dict.items()): |
|
if k.startswith(unwanted_prefix): |
|
state_dict[k[len(unwanted_prefix):]] = state_dict.pop(k) |
|
model.load_state_dict(state_dict) |
|
elif init_from.startswith('gpt2'): |
|
|
|
model = GPT.from_pretrained(init_from, dict(dropout=0.0)) |
|
|
|
model.eval() |
|
model.to(device) |
|
if compile: |
|
model = torch.compile(model) |
|
|
|
|
|
load_meta = False |
|
if init_from == 'resume' and 'config' in checkpoint and 'dataset' in checkpoint['config']: |
|
meta_path = os.path.join('data', checkpoint['config']['dataset'], 'meta.pkl') |
|
load_meta = os.path.exists(meta_path) |
|
if load_meta: |
|
print(f"Loading meta from {meta_path}...") |
|
with open(meta_path, 'rb') as f: |
|
meta = pickle.load(f) |
|
stoi, itos = meta['stoi'], meta['itos'] |
|
char_to_token = meta["char_to_token"] |
|
chars_to_skip = meta["chars_to_skip"] |
|
|
|
def encode(s): |
|
encoded = [] |
|
skip = 0 |
|
for char in s: |
|
if skip: |
|
skip -= 1 |
|
continue |
|
else: |
|
skip = chars_to_skip[char] |
|
encoded.append(stoi[char_to_token[char]]) |
|
return encoded |
|
|
|
def decode(l): |
|
return ''.join([itos[i] for i in l]) |
|
else: |
|
raise RuntimeError("No meta.pkl found for sorting! Cannot find token encoder or decoder.") |
|
|
|
|
|
if start.startswith('FILE:'): |
|
with open(start[5:], 'r', encoding='utf-8') as f: |
|
start = f.read() |
|
start_ids = encode(start) |
|
x = (torch.tensor(start_ids, dtype=torch.long, device=device)[None, ...]) |
|
|
|
|
|
with torch.no_grad(): |
|
with ctx: |
|
for k in range(num_samples): |
|
y = model.generate(x, max_new_tokens, temperature=temperature, top_k=top_k) |
|
print(decode(y[0].tolist())) |
|
print('---------------') |
|
|