Jacob Bayless
commited on
Commit
•
31d1292
1
Parent(s):
644965b
Added sorting model and modified nanoGPT files
Browse files- nanoGPT/data/config/train_sort.py +43 -0
- nanoGPT/data/sort_lists/meta.pkl +3 -0
- nanoGPT/data/sort_lists/prepare.py +172 -0
- nanoGPT/out-sort-lists/ckpt.pt +3 -0
- nanoGPT/sample.py +99 -0
- nanoGPT/train.py +520 -0
nanoGPT/data/config/train_sort.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Train a small and simple sorting network
|
3 |
+
Requires at least 6 GB of memory
|
4 |
+
|
5 |
+
Based on nanoGPT's shakespeare example: https://github.com/karpathy/nanoGPT
|
6 |
+
"""
|
7 |
+
|
8 |
+
out_dir = 'out-sort-lists'
|
9 |
+
eval_interval = 2000
|
10 |
+
eval_iters = 200
|
11 |
+
log_interval = 200
|
12 |
+
verbose_log_interval = 2000
|
13 |
+
always_save_checkpoint = False
|
14 |
+
|
15 |
+
init_from = 'scratch' # 'scratch' or 'resume'
|
16 |
+
|
17 |
+
wandb_log = False
|
18 |
+
wandb_project = 'sort_lists'
|
19 |
+
wandb_run_name = 'mini-gpt'
|
20 |
+
|
21 |
+
dataset = 'sort_lists'
|
22 |
+
gradient_accumulation_steps = 1
|
23 |
+
batch_size = 12
|
24 |
+
block_size = 256 # context window, keep synchronized with training data
|
25 |
+
|
26 |
+
# Transformer network parameters
|
27 |
+
n_layer = 64
|
28 |
+
n_head = 4
|
29 |
+
n_embd = 256
|
30 |
+
dropout = 0.01
|
31 |
+
|
32 |
+
# Training parameters
|
33 |
+
learning_rate = 1e-4
|
34 |
+
max_iters = 900000
|
35 |
+
weight_decay = 1e-1
|
36 |
+
beta1 = 0.95
|
37 |
+
beta2 = 0.99
|
38 |
+
grad_clip = 1.0
|
39 |
+
# learning rate decay settings
|
40 |
+
decay_lr = True
|
41 |
+
warmup_iters = 2000
|
42 |
+
lr_decay_iters = max_iters
|
43 |
+
min_lr = 0.1*learning_rate
|
nanoGPT/data/sort_lists/meta.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:749a5d6b08620256f53b531a210014219cea2b542dea0175d5493f6390052f1b
|
3 |
+
size 417
|
nanoGPT/data/sort_lists/prepare.py
ADDED
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Prepare the list-sorting dataset for language modeling.
|
3 |
+
Will saves train.bin, val.bin containing the ids, and meta.pkl containing the
|
4 |
+
encoder and decoder and some other related info.
|
5 |
+
|
6 |
+
Based on nanoGPT: https://github.com/karpathy/nanoGPT
|
7 |
+
"""
|
8 |
+
import os
|
9 |
+
import pickle
|
10 |
+
import numpy as np
|
11 |
+
import json
|
12 |
+
|
13 |
+
random = np.random.default_rng()
|
14 |
+
|
15 |
+
context_window_length = 256 # Keep this synchronized with the model definition
|
16 |
+
|
17 |
+
num_training_lists = 2e6 # Output file is about 2 GB
|
18 |
+
num_val_lists = int(0.1*num_training_lists)
|
19 |
+
distribution = "uniform"
|
20 |
+
|
21 |
+
def str_array_to_sorted_array(output_string):
|
22 |
+
template = '{{"values": {}}}'
|
23 |
+
array = np.array(json.loads(template.format(output_string))["values"], dtype = np.uint16)
|
24 |
+
array.sort()
|
25 |
+
return array
|
26 |
+
|
27 |
+
|
28 |
+
def generate_list_pairs(max_list_length_chars = None,
|
29 |
+
max_int = 65536,
|
30 |
+
distribution = "uniform",
|
31 |
+
num_lists = 1,
|
32 |
+
data_file = None,
|
33 |
+
fill_blanks = True):
|
34 |
+
if max_list_length_chars is None:
|
35 |
+
max_list_length_chars = int(np.floor(0.5*context_window_length - 2))
|
36 |
+
|
37 |
+
if data_file is None:
|
38 |
+
data_file = os.path.join(os.path.dirname(__file__), "train.txt")
|
39 |
+
|
40 |
+
with open(data_file, 'a') as f:
|
41 |
+
for n_list in range(int(num_lists)):
|
42 |
+
|
43 |
+
max_random_length = int(np.floor(0.5*max_list_length_chars))
|
44 |
+
|
45 |
+
list_length_ints = random.integers(0, max_random_length)
|
46 |
+
if distribution.casefold() == "uniform":
|
47 |
+
random_shuffled = random.integers(0, max_int, size = list_length_ints, endpoint = False)
|
48 |
+
elif distribution.casefold() == "gaussian":
|
49 |
+
random_floats = random.normal(loc = 0.5*max_int,
|
50 |
+
scale = max_int,
|
51 |
+
size = list_length_ints)
|
52 |
+
random_ints = np.around(random_floats, decimals = 0).astype(np.int64, casting = "unsafe")
|
53 |
+
invalid_integers = np.logical_or(random_ints < 0, random_ints >= max_int)
|
54 |
+
random_ints[invalid_integers]\
|
55 |
+
= random.integers(0, max_int, size = invalid_integers, endpoint = False)
|
56 |
+
else:
|
57 |
+
raise NotImplementedError("No distribution called '{}'".format(distribution))
|
58 |
+
# Crop based on string length
|
59 |
+
shuffled_str = np.array2string(random_shuffled,
|
60 |
+
max_line_width = max_list_length_chars*2,
|
61 |
+
separator = ',').replace(" ","")
|
62 |
+
shuffled_str = shuffled_str[:np.min([len(shuffled_str), max_list_length_chars - 1])]
|
63 |
+
shuffled_str = shuffled_str[:-1].strip()
|
64 |
+
|
65 |
+
if shuffled_str[-1] in [",", "\n"]:
|
66 |
+
shuffled_str = shuffled_str[:-1]
|
67 |
+
|
68 |
+
shuffled_str += "]"
|
69 |
+
sorted_str = np.array2string(str_array_to_sorted_array(shuffled_str),
|
70 |
+
max_line_width = max_list_length_chars*2,
|
71 |
+
separator = ',').replace(" ","")
|
72 |
+
|
73 |
+
data_line = "(" + shuffled_str[1:-1] + "): [" + sorted_str[1:-1] + "];\n"
|
74 |
+
if fill_blanks:
|
75 |
+
len_align = context_window_length - ((len(data_line) - 5) % context_window_length)
|
76 |
+
filler = "_"*(context_window_length + len_align)
|
77 |
+
f.write(filler)
|
78 |
+
f.write(data_line)
|
79 |
+
if n_list%100 == 0:
|
80 |
+
print("{:.2f}% ({}/{}) -- {}".format(100.*(n_list + 1)/num_lists, n_list, num_lists, len(data_line)))
|
81 |
+
print("Data written to file: {}".format(data_file))
|
82 |
+
return data_file
|
83 |
+
|
84 |
+
|
85 |
+
train_file_path = os.path.join(os.path.dirname(__file__), 'train.txt')
|
86 |
+
val_file_path = os.path.join(os.path.dirname(__file__), 'val.txt')
|
87 |
+
|
88 |
+
print("Generating training data")
|
89 |
+
train_data_file = generate_list_pairs(num_lists = num_training_lists,
|
90 |
+
fill_blanks = True,
|
91 |
+
max_int = 100,
|
92 |
+
distribution = distribution,
|
93 |
+
data_file = train_file_path)
|
94 |
+
print("Generating validation data")
|
95 |
+
val_data_file = generate_list_pairs(num_lists = num_val_lists,
|
96 |
+
fill_blanks = True,
|
97 |
+
max_int = 100,
|
98 |
+
distribution = distribution,
|
99 |
+
data_file = val_file_path)
|
100 |
+
|
101 |
+
|
102 |
+
tokens = ['0','1','2','3','4','5','6','7','8','9',',','(','): [','];\n','_']
|
103 |
+
vocab_size = len(tokens)
|
104 |
+
print("all the unique characters:", ''.join(tokens))
|
105 |
+
print(f"vocab size: {vocab_size:,}")
|
106 |
+
print("Still working...")
|
107 |
+
|
108 |
+
# create a mapping from characters to integers
|
109 |
+
stoi = { ch:i for i,ch in enumerate(tokens) }
|
110 |
+
itos = { i:ch for i,ch in enumerate(tokens) }
|
111 |
+
char_to_token = {token[0]:token for token in tokens}
|
112 |
+
chars_to_skip = {token[0]:len(token)-1 for token in tokens}
|
113 |
+
|
114 |
+
|
115 |
+
def encode(s):
|
116 |
+
encoded = []
|
117 |
+
skip = 0
|
118 |
+
for char in s:
|
119 |
+
if skip:
|
120 |
+
skip -= 1
|
121 |
+
continue
|
122 |
+
else:
|
123 |
+
skip = chars_to_skip[char]
|
124 |
+
encoded.append(stoi[char_to_token[char]])
|
125 |
+
return encoded
|
126 |
+
|
127 |
+
def decode(l):
|
128 |
+
return ''.join([itos[i] for i in l])
|
129 |
+
|
130 |
+
|
131 |
+
# save the meta information as well, to help us encode/decode later
|
132 |
+
meta = {
|
133 |
+
'vocab_size': vocab_size,
|
134 |
+
'tokens': tokens,
|
135 |
+
'itos': itos,
|
136 |
+
'stoi': stoi,
|
137 |
+
"char_to_token": char_to_token,
|
138 |
+
"chars_to_skip": chars_to_skip
|
139 |
+
}
|
140 |
+
with open(os.path.join(os.path.dirname(__file__), 'meta.pkl'), 'wb') as f:
|
141 |
+
pickle.dump(meta, f)
|
142 |
+
print("Saved metadata file")
|
143 |
+
|
144 |
+
if False:
|
145 |
+
print("Still working...")
|
146 |
+
|
147 |
+
# encode both to integers
|
148 |
+
with open(train_data_file, 'r') as f:
|
149 |
+
train_data = f.read()
|
150 |
+
train_ids = encode(train_data)
|
151 |
+
del train_data
|
152 |
+
|
153 |
+
print("Still working...")
|
154 |
+
|
155 |
+
with open(val_data_file, 'r') as f:
|
156 |
+
val_data = f.read()
|
157 |
+
val_ids = encode(val_data)
|
158 |
+
del val_data
|
159 |
+
print(f"train has {len(train_ids):,} tokens")
|
160 |
+
print(f"val has {len(val_ids):,} tokens")
|
161 |
+
|
162 |
+
print("Still working...")
|
163 |
+
# export to bin files
|
164 |
+
train_ids = np.array(train_ids, dtype=np.uint16)
|
165 |
+
print("Still working...")
|
166 |
+
val_ids = np.array(val_ids, dtype=np.uint16)
|
167 |
+
print("Still working...")
|
168 |
+
train_ids.tofile(os.path.join(os.path.dirname(__file__), 'train.bin'))
|
169 |
+
print("Still working...")
|
170 |
+
val_ids.tofile(os.path.join(os.path.dirname(__file__), 'val.bin'))
|
171 |
+
|
172 |
+
print("Export complete.")
|
nanoGPT/out-sort-lists/ckpt.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7037aba6fa5003481a8dd53b71a0621d284ad167351d65033cbe62f574df7904
|
3 |
+
size 605632927
|
nanoGPT/sample.py
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Sample from a trained model
|
3 |
+
"""
|
4 |
+
import os
|
5 |
+
import pickle
|
6 |
+
from contextlib import nullcontext
|
7 |
+
import torch
|
8 |
+
import tiktoken
|
9 |
+
from model import GPTConfig, GPT
|
10 |
+
|
11 |
+
# -----------------------------------------------------------------------------
|
12 |
+
init_from = 'resume' # either 'resume' (from an out_dir) or a gpt2 variant (e.g. 'gpt2-xl')
|
13 |
+
out_dir = 'out' # ignored if init_from is not 'resume'
|
14 |
+
start = "\n" # or "<|endoftext|>" or etc. Can also specify a file, use as: "FILE:prompt.txt"
|
15 |
+
num_samples = 10 # number of samples to draw
|
16 |
+
max_new_tokens = 500 # number of tokens generated in each sample
|
17 |
+
temperature = 0.0 # 1.0 = no change, < 1.0 = less random, > 1.0 = more random, in predictions
|
18 |
+
top_k = 200 # retain only the top_k most likely tokens, clamp others to have 0 probability
|
19 |
+
seed = 1337
|
20 |
+
device = 'cuda' # examples: 'cpu', 'cuda', 'cuda:0', 'cuda:1', etc.
|
21 |
+
dtype = 'float16' # 'float32' or 'bfloat16' or 'float16'
|
22 |
+
compile = False # use PyTorch 2.0 to compile the model to be faster
|
23 |
+
exec(open('configurator.py').read()) # overrides from command line or config file
|
24 |
+
# -----------------------------------------------------------------------------
|
25 |
+
|
26 |
+
torch.manual_seed(seed)
|
27 |
+
torch.cuda.manual_seed(seed)
|
28 |
+
torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul
|
29 |
+
torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn
|
30 |
+
device_type = 'cuda' if 'cuda' in device else 'cpu' # for later use in torch.autocast
|
31 |
+
ptdtype = {'float32': torch.float32, 'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype]
|
32 |
+
ctx = nullcontext() if device_type == 'cpu' else torch.amp.autocast(device_type=device_type, dtype=ptdtype)
|
33 |
+
|
34 |
+
# model
|
35 |
+
if init_from == 'resume':
|
36 |
+
# init from a model saved in a specific directory
|
37 |
+
ckpt_path = os.path.join(out_dir, 'ckpt.pt')
|
38 |
+
checkpoint = torch.load(ckpt_path, map_location=device)
|
39 |
+
gptconf = GPTConfig(**checkpoint['model_args'])
|
40 |
+
model = GPT(gptconf)
|
41 |
+
state_dict = checkpoint['model']
|
42 |
+
unwanted_prefix = '_orig_mod.'
|
43 |
+
for k,v in list(state_dict.items()):
|
44 |
+
if k.startswith(unwanted_prefix):
|
45 |
+
state_dict[k[len(unwanted_prefix):]] = state_dict.pop(k)
|
46 |
+
model.load_state_dict(state_dict)
|
47 |
+
elif init_from.startswith('gpt2'):
|
48 |
+
# init from a given GPT-2 model
|
49 |
+
model = GPT.from_pretrained(init_from, dict(dropout=0.0))
|
50 |
+
|
51 |
+
model.eval()
|
52 |
+
model.to(device)
|
53 |
+
if compile:
|
54 |
+
model = torch.compile(model) # requires PyTorch 2.0 (optional)
|
55 |
+
|
56 |
+
# look for the meta pickle in case it is available in the dataset folder
|
57 |
+
load_meta = False
|
58 |
+
if init_from == 'resume' and 'config' in checkpoint and 'dataset' in checkpoint['config']: # older checkpoints might not have these...
|
59 |
+
meta_path = os.path.join('data', checkpoint['config']['dataset'], 'meta.pkl')
|
60 |
+
load_meta = os.path.exists(meta_path)
|
61 |
+
if load_meta:
|
62 |
+
print(f"Loading meta from {meta_path}...")
|
63 |
+
with open(meta_path, 'rb') as f:
|
64 |
+
meta = pickle.load(f)
|
65 |
+
stoi, itos = meta['stoi'], meta['itos']
|
66 |
+
char_to_token = meta["char_to_token"]
|
67 |
+
chars_to_skip = meta["chars_to_skip"]
|
68 |
+
|
69 |
+
def encode(s):
|
70 |
+
encoded = []
|
71 |
+
skip = 0
|
72 |
+
for char in s:
|
73 |
+
if skip:
|
74 |
+
skip -= 1
|
75 |
+
continue
|
76 |
+
else:
|
77 |
+
skip = chars_to_skip[char]
|
78 |
+
encoded.append(stoi[char_to_token[char]])
|
79 |
+
return encoded
|
80 |
+
|
81 |
+
def decode(l):
|
82 |
+
return ''.join([itos[i] for i in l])
|
83 |
+
else:
|
84 |
+
raise RuntimeError("No meta.pkl found for sorting! Cannot find token encoder or decoder.")
|
85 |
+
|
86 |
+
# encode the beginning of the prompt
|
87 |
+
if start.startswith('FILE:'):
|
88 |
+
with open(start[5:], 'r', encoding='utf-8') as f:
|
89 |
+
start = f.read()
|
90 |
+
start_ids = encode(start)
|
91 |
+
x = (torch.tensor(start_ids, dtype=torch.long, device=device)[None, ...])
|
92 |
+
|
93 |
+
# run generation
|
94 |
+
with torch.no_grad():
|
95 |
+
with ctx:
|
96 |
+
for k in range(num_samples):
|
97 |
+
y = model.generate(x, max_new_tokens, temperature=temperature, top_k=top_k)
|
98 |
+
print(decode(y[0].tolist()))
|
99 |
+
print('---------------')
|
nanoGPT/train.py
ADDED
@@ -0,0 +1,520 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
This training script can be run both on a single gpu in debug mode,
|
3 |
+
and also in a larger training run with distributed data parallel (ddp).
|
4 |
+
|
5 |
+
To run on a single GPU, example:
|
6 |
+
$ python train.py config/train_sort.py
|
7 |
+
|
8 |
+
Based on nanoGPT by Andrej Karpathy: https://github.com/karpathy/nanoGPT
|
9 |
+
Modified for a learn-to-sort experiment by Jacob Bayless
|
10 |
+
"""
|
11 |
+
|
12 |
+
import os
|
13 |
+
import time
|
14 |
+
import math
|
15 |
+
import pickle
|
16 |
+
from contextlib import nullcontext
|
17 |
+
|
18 |
+
import numpy as np
|
19 |
+
import torch
|
20 |
+
from torch.nn.parallel import DistributedDataParallel as DDP
|
21 |
+
from torch.distributed import init_process_group, destroy_process_group
|
22 |
+
|
23 |
+
from model import GPTConfig, GPT
|
24 |
+
import json
|
25 |
+
|
26 |
+
# -----------------------------------------------------------------------------
|
27 |
+
# default config values designed to train a gpt2 (124M) on OpenWebText
|
28 |
+
# I/O
|
29 |
+
out_dir = 'out'
|
30 |
+
eval_interval = 2000
|
31 |
+
verbose_log_interval = 250
|
32 |
+
log_interval = 1
|
33 |
+
eval_iters = 200
|
34 |
+
eval_only = False # if True, script exits right after the first eval
|
35 |
+
always_save_checkpoint = True # if True, always save a checkpoint after each eval
|
36 |
+
init_from = 'scratch' # 'scratch' or 'resume' or 'gpt2*'
|
37 |
+
# wandb logging
|
38 |
+
wandb_log = False # disabled by default
|
39 |
+
wandb_project = 'owt'
|
40 |
+
wandb_run_name = 'gpt2' # 'run' + str(time.time())
|
41 |
+
# data
|
42 |
+
dataset = 'openwebtext'
|
43 |
+
gradient_accumulation_steps = 5 * 8 # used to simulate larger batch sizes
|
44 |
+
batch_size = 12 # if gradient_accumulation_steps > 1, this is the micro-batch size
|
45 |
+
block_size = 1024
|
46 |
+
# model
|
47 |
+
n_layer = 12
|
48 |
+
n_head = 12
|
49 |
+
n_embd = 768
|
50 |
+
dropout = 0.0 # for pretraining 0 is good, for finetuning try 0.1+
|
51 |
+
bias = False # do we use bias inside LayerNorm and Linear layers?
|
52 |
+
# adamw optimizer
|
53 |
+
learning_rate = 6e-4 # max learning rate
|
54 |
+
max_iters = 600000 # total number of training iterations
|
55 |
+
weight_decay = 1e-1
|
56 |
+
beta1 = 0.9
|
57 |
+
beta2 = 0.95
|
58 |
+
grad_clip = 1.0 # clip gradients at this value, or disable if == 0.0
|
59 |
+
# learning rate decay settings
|
60 |
+
decay_lr = True # whether to decay the learning rate
|
61 |
+
warmup_iters = 2000 # how many steps to warm up for
|
62 |
+
lr_decay_iters = 600000 # should be ~= max_iters per Chinchilla
|
63 |
+
min_lr = 6e-5 # minimum learning rate, should be ~= learning_rate/10 per Chinchilla
|
64 |
+
# DDP settings
|
65 |
+
backend = 'nccl' # 'nccl', 'gloo', etc.
|
66 |
+
# system
|
67 |
+
device = 'cuda' # examples: 'cpu', 'cuda', 'cuda:0', 'cuda:1' etc., or try 'mps' on macbooks
|
68 |
+
dtype = 'float16' # 'float32', 'bfloat16', or 'float16', the latter will auto implement a GradScaler
|
69 |
+
compile = False # use PyTorch 2.0 to compile the model to be faster
|
70 |
+
# -----------------------------------------------------------------------------
|
71 |
+
config_keys = [k for k,v in globals().items() if not k.startswith('_') and isinstance(v, (int, float, bool, str))]
|
72 |
+
exec(open('configurator.py').read()) # overrides from command line or config file
|
73 |
+
config = {k: globals()[k] for k in config_keys} # will be useful for logging
|
74 |
+
# -----------------------------------------------------------------------------
|
75 |
+
|
76 |
+
|
77 |
+
verbose_logfile = os.path.join(out_dir, "verbose_log.txt")
|
78 |
+
performance_file = os.path.join(out_dir, "perf_log.txt")
|
79 |
+
|
80 |
+
random = np.random.default_rng()
|
81 |
+
|
82 |
+
meta_path = os.path.join('data', dataset, 'meta.pkl')
|
83 |
+
print(f"Loading meta from {meta_path}...")
|
84 |
+
with open(meta_path, 'rb') as f:
|
85 |
+
meta = pickle.load(f)
|
86 |
+
stoi, itos = meta['stoi'], meta['itos']
|
87 |
+
char_to_token = meta["char_to_token"]
|
88 |
+
chars_to_skip = meta["chars_to_skip"]
|
89 |
+
|
90 |
+
def encode(s):
|
91 |
+
encoded = []
|
92 |
+
skip = 0
|
93 |
+
for char in s:
|
94 |
+
if skip:
|
95 |
+
skip -= 1
|
96 |
+
continue
|
97 |
+
else:
|
98 |
+
skip = chars_to_skip[char]
|
99 |
+
encoded.append(stoi[char_to_token[char]])
|
100 |
+
return encoded
|
101 |
+
|
102 |
+
def decode(l):
|
103 |
+
return ''.join([itos[i] for i in l])
|
104 |
+
|
105 |
+
def str_array_to_sorted_array(output_string):
|
106 |
+
template = '{{"values": {}}}'
|
107 |
+
array = np.array(json.loads(template.format(output_string))["values"], dtype = np.uint16)
|
108 |
+
array.sort()
|
109 |
+
return array
|
110 |
+
|
111 |
+
def generate_validation_list(max_int = 99,
|
112 |
+
force_list_length = None,
|
113 |
+
max_list_length_chars = None):
|
114 |
+
if max_list_length_chars is None:
|
115 |
+
max_list_length_chars = int(np.floor(0.5*block_size - 2))
|
116 |
+
max_random_length = int(np.floor(0.5*max_list_length_chars))
|
117 |
+
if force_list_length is None:
|
118 |
+
list_length_ints = random.integers(0, max_random_length)
|
119 |
+
else:
|
120 |
+
list_length_ints = np.min([force_list_length, max_random_length])
|
121 |
+
random_shuffled = random.integers(0, max_int,
|
122 |
+
size = list_length_ints,
|
123 |
+
endpoint = False)
|
124 |
+
# Crop based on string length
|
125 |
+
shuffled_str = np.array2string(random_shuffled,
|
126 |
+
max_line_width = max_list_length_chars*2,
|
127 |
+
separator = ',').replace(" ","")
|
128 |
+
shuffled_str = shuffled_str[:np.min([len(shuffled_str), max_list_length_chars - 1])]
|
129 |
+
shuffled_str = shuffled_str[:-1].strip()
|
130 |
+
|
131 |
+
if shuffled_str[-1] in [",", "\n"]:
|
132 |
+
shuffled_str = shuffled_str[:-1]
|
133 |
+
shuffled_str += "]"
|
134 |
+
sorted_str = np.array2string(str_array_to_sorted_array(shuffled_str),
|
135 |
+
max_line_width = max_list_length_chars*2,
|
136 |
+
separator = ',').replace(" ","")
|
137 |
+
input_line = "(" + shuffled_str[1:-1] + "): ["
|
138 |
+
correct_output = sorted_str[1:-1] + "];\n"
|
139 |
+
return (input_line, correct_output)
|
140 |
+
|
141 |
+
|
142 |
+
def score_performance(model_output,
|
143 |
+
correct_output,
|
144 |
+
output_terminator = "];\n",
|
145 |
+
blank_separator = "_",
|
146 |
+
list_separator = ","):
|
147 |
+
errors = 0
|
148 |
+
|
149 |
+
model_output, _, _ = model_output.partition(blank_separator)
|
150 |
+
|
151 |
+
if output_terminator in correct_output and output_terminator not in model_output:
|
152 |
+
errors += 2
|
153 |
+
|
154 |
+
correct_output, _, _ = correct_output.partition(output_terminator)
|
155 |
+
model_output, _, _ = model_output.partition(output_terminator)
|
156 |
+
|
157 |
+
correct_output = correct_output.split(list_separator)
|
158 |
+
model_output = model_output.split(list_separator)
|
159 |
+
min_length = np.min([len(correct_output), len(model_output)])
|
160 |
+
|
161 |
+
length_error = np.abs(len(correct_output) - len(model_output))
|
162 |
+
errors += length_error
|
163 |
+
|
164 |
+
for entry in range(min_length):
|
165 |
+
if model_output[entry] != correct_output[entry]:
|
166 |
+
errors += 1
|
167 |
+
|
168 |
+
return errors, errors/float(len(correct_output) + 1), len(correct_output)
|
169 |
+
|
170 |
+
|
171 |
+
def evaluate_performance(model,
|
172 |
+
force_list_length = None,
|
173 |
+
max_list_length_chars = None,
|
174 |
+
output_separator = "): [",
|
175 |
+
output_terminator = "];\n",
|
176 |
+
list_separator = ","):
|
177 |
+
|
178 |
+
input_line, correct_output = generate_validation_list(force_list_length = force_list_length,
|
179 |
+
max_list_length_chars = max_list_length_chars)
|
180 |
+
|
181 |
+
max_new_tokens = len(correct_output) + 10
|
182 |
+
|
183 |
+
temperature = 0.0001
|
184 |
+
|
185 |
+
start_ids = encode(input_line)
|
186 |
+
x = (torch.tensor(start_ids, dtype=torch.long, device=device)[None, ...])
|
187 |
+
|
188 |
+
y = model.generate(x, max_new_tokens, temperature=temperature, top_k=15)
|
189 |
+
model_output = str(decode(y[0].tolist())).partition(output_separator)[-1]
|
190 |
+
|
191 |
+
error_abs, error_rel, correct_length = score_performance(model_output, correct_output,
|
192 |
+
output_terminator = output_terminator,
|
193 |
+
list_separator = list_separator)
|
194 |
+
|
195 |
+
return(input_line, correct_output, model_output, error_abs, error_rel, correct_length)
|
196 |
+
|
197 |
+
def log_performance_verbose(model, iter_number,
|
198 |
+
n = 10,
|
199 |
+
verbose_log_file = None,
|
200 |
+
performance_log_file = None):
|
201 |
+
|
202 |
+
max_list_length_chars = int(np.floor(0.5*block_size - 2))
|
203 |
+
max_random_length = int(np.floor(0.5*max_list_length_chars))
|
204 |
+
force_list_lengths = np.linspace(int(np.floor(0.2*max_random_length)),
|
205 |
+
max_random_length,
|
206 |
+
n, dtype = np.int64)
|
207 |
+
|
208 |
+
|
209 |
+
errors_abs = []
|
210 |
+
errors_rel = []
|
211 |
+
with open(verbose_log_file, 'a') as log_file:
|
212 |
+
log_file.write("\n\n_____ {} ______\n".format(iter_number))
|
213 |
+
|
214 |
+
with open(performance_log_file, 'a') as perf_file:
|
215 |
+
perf_file.write("{}:".format(iter_number))
|
216 |
+
|
217 |
+
list_length_total = 0
|
218 |
+
best_rel_error = np.inf
|
219 |
+
worst_rel_error = -np.inf
|
220 |
+
worst_abs_error = -1
|
221 |
+
worst_list_length = -1
|
222 |
+
best_abs_error = -1
|
223 |
+
best_list_length = -1
|
224 |
+
for n_ind, force_list_length in enumerate(force_list_lengths):
|
225 |
+
input_line, correct_output, model_output,\
|
226 |
+
error_abs, error_rel, correct_length = evaluate_performance(model, force_list_length = force_list_length)
|
227 |
+
errors_abs.append(error_abs)
|
228 |
+
errors_rel.append(error_rel)
|
229 |
+
list_length_total += correct_length
|
230 |
+
|
231 |
+
if(error_rel > worst_rel_error):
|
232 |
+
worst_rel_error = error_rel
|
233 |
+
worst_abs_error = error_abs
|
234 |
+
worst_list_length = correct_length
|
235 |
+
if(error_rel < best_rel_error):
|
236 |
+
best_rel_error = error_rel
|
237 |
+
best_abs_error = error_abs
|
238 |
+
best_list_length = correct_length
|
239 |
+
|
240 |
+
with open(verbose_log_file, 'a') as log_file:
|
241 |
+
log_file.write("\n\tINPUT: {}\n\tEXAMPLE: {}\n\t OUTPUT: {}\n\tERRORS:{} / {} ({:.2f}%)\n".format(input_line,
|
242 |
+
correct_output,
|
243 |
+
model_output,
|
244 |
+
error_abs,
|
245 |
+
correct_length,
|
246 |
+
error_rel*100.0))
|
247 |
+
with open(performance_log_file, 'a') as perf_file:
|
248 |
+
if n_ind > 0:
|
249 |
+
perf_file.write(",")
|
250 |
+
perf_file.write(" {} / {} ({:.2f}%)".format(error_abs, correct_length, error_rel*100.0))
|
251 |
+
with open(performance_log_file, 'a') as perf_file:
|
252 |
+
perf_file.write("\n")
|
253 |
+
print("ITER {}: total score is {} errors / {} ({:.2f}%)".format(iter_number,
|
254 |
+
np.sum(errors_abs),
|
255 |
+
np.sum(list_length_total),
|
256 |
+
100.0*np.mean(errors_rel)))
|
257 |
+
print("\t Best: {} errors / {} ({:.2f}%)".format(best_abs_error,
|
258 |
+
best_list_length,
|
259 |
+
100.0*best_rel_error))
|
260 |
+
print("\t Worst: {} errors / {} ({:.2f}%)".format(worst_abs_error,
|
261 |
+
worst_list_length,
|
262 |
+
100.0*worst_rel_error))
|
263 |
+
|
264 |
+
# various inits, derived attributes, I/O setup
|
265 |
+
ddp = int(os.environ.get('RANK', -1)) != -1 # is this a ddp run?
|
266 |
+
if ddp:
|
267 |
+
init_process_group(backend=backend)
|
268 |
+
ddp_rank = int(os.environ['RANK'])
|
269 |
+
ddp_local_rank = int(os.environ['LOCAL_RANK'])
|
270 |
+
ddp_world_size = int(os.environ['WORLD_SIZE'])
|
271 |
+
device = f'cuda:{ddp_local_rank}'
|
272 |
+
torch.cuda.set_device(device)
|
273 |
+
master_process = ddp_rank == 0 # this process will do logging, checkpointing etc.
|
274 |
+
seed_offset = ddp_rank # each process gets a different seed
|
275 |
+
assert gradient_accumulation_steps % torch.cuda.device_count() == 0
|
276 |
+
gradient_accumulation_steps //= torch.cuda.device_count()
|
277 |
+
else:
|
278 |
+
# if not ddp, we are running on a single gpu, and one process
|
279 |
+
master_process = True
|
280 |
+
seed_offset = 0
|
281 |
+
ddp_world_size = 1
|
282 |
+
tokens_per_iter = gradient_accumulation_steps * ddp_world_size * batch_size * block_size
|
283 |
+
print(f"tokens per iteration will be: {tokens_per_iter:,}")
|
284 |
+
|
285 |
+
if master_process:
|
286 |
+
os.makedirs(out_dir, exist_ok=True)
|
287 |
+
torch.manual_seed(1337 + seed_offset)
|
288 |
+
torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul
|
289 |
+
torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn
|
290 |
+
device_type = 'cuda' if 'cuda' in device else 'cpu' # for later use in torch.autocast
|
291 |
+
# note: float16 data type will automatically use a GradScaler
|
292 |
+
ptdtype = {'float32': torch.float32, 'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype]
|
293 |
+
ctx = nullcontext() if device_type == 'cpu' else torch.amp.autocast(device_type=device_type, dtype=ptdtype)
|
294 |
+
|
295 |
+
# poor man's data loader
|
296 |
+
data_dir = os.path.join('data', dataset)
|
297 |
+
train_data = np.memmap(os.path.join(data_dir, 'train.bin'), dtype=np.uint16, mode='r')
|
298 |
+
val_data = np.memmap(os.path.join(data_dir, 'val.bin'), dtype=np.uint16, mode='r')
|
299 |
+
def get_batch(split):
|
300 |
+
data = train_data if split == 'train' else val_data
|
301 |
+
ix = torch.randint(len(data) - block_size, (batch_size,))
|
302 |
+
x = torch.stack([torch.from_numpy((data[i:i+block_size]).astype(np.int64)) for i in ix])
|
303 |
+
y = torch.stack([torch.from_numpy((data[i+1:i+1+block_size]).astype(np.int64)) for i in ix])
|
304 |
+
if device_type == 'cuda':
|
305 |
+
# pin arrays x,y, which allows us to move them to GPU asynchronously (non_blocking=True)
|
306 |
+
x, y = x.pin_memory().to(device, non_blocking=True), y.pin_memory().to(device, non_blocking=True)
|
307 |
+
else:
|
308 |
+
x, y = x.to(device), y.to(device)
|
309 |
+
return x, y
|
310 |
+
|
311 |
+
# init these up here, can override if init_from='resume' (i.e. from a checkpoint)
|
312 |
+
iter_num = 0
|
313 |
+
best_val_loss = 1e9
|
314 |
+
|
315 |
+
# attempt to derive vocab_size from the dataset
|
316 |
+
meta_path = os.path.join(data_dir, 'meta.pkl')
|
317 |
+
meta_vocab_size = None
|
318 |
+
if os.path.exists(meta_path):
|
319 |
+
with open(meta_path, 'rb') as f:
|
320 |
+
meta = pickle.load(f)
|
321 |
+
meta_vocab_size = meta['vocab_size']
|
322 |
+
print(f"found vocab_size = {meta_vocab_size} (inside {meta_path})")
|
323 |
+
|
324 |
+
# model init
|
325 |
+
model_args = dict(n_layer=n_layer, n_head=n_head, n_embd=n_embd, block_size=block_size,
|
326 |
+
bias=bias, vocab_size=None, dropout=dropout) # start with model_args from command line
|
327 |
+
if init_from == 'scratch':
|
328 |
+
# init a new model from scratch
|
329 |
+
print("Initializing a new model from scratch")
|
330 |
+
# determine the vocab size we'll use for from-scratch training
|
331 |
+
if meta_vocab_size is None:
|
332 |
+
print("defaulting to vocab_size of GPT-2 to 50304 (50257 rounded up for efficiency)")
|
333 |
+
model_args['vocab_size'] = meta_vocab_size if meta_vocab_size is not None else 50304
|
334 |
+
gptconf = GPTConfig(**model_args)
|
335 |
+
model = GPT(gptconf)
|
336 |
+
elif init_from == 'resume':
|
337 |
+
print(f"Resuming training from {out_dir}")
|
338 |
+
# resume training from a checkpoint.
|
339 |
+
ckpt_path = os.path.join(out_dir, 'ckpt.pt')
|
340 |
+
checkpoint = torch.load(ckpt_path, map_location=device)
|
341 |
+
checkpoint_model_args = checkpoint['model_args']
|
342 |
+
# force these config attributes to be equal otherwise we can't even resume training
|
343 |
+
# the rest of the attributes (e.g. dropout) can stay as desired from command line
|
344 |
+
for k in ['n_layer', 'n_head', 'n_embd', 'block_size', 'bias', 'vocab_size']:
|
345 |
+
model_args[k] = checkpoint_model_args[k]
|
346 |
+
# create the model
|
347 |
+
gptconf = GPTConfig(**model_args)
|
348 |
+
model = GPT(gptconf)
|
349 |
+
state_dict = checkpoint['model']
|
350 |
+
# fix the keys of the state dictionary :(
|
351 |
+
# honestly no idea how checkpoints sometimes get this prefix, have to debug more
|
352 |
+
unwanted_prefix = '_orig_mod.'
|
353 |
+
for k,v in list(state_dict.items()):
|
354 |
+
if k.startswith(unwanted_prefix):
|
355 |
+
state_dict[k[len(unwanted_prefix):]] = state_dict.pop(k)
|
356 |
+
model.load_state_dict(state_dict)
|
357 |
+
iter_num = checkpoint['iter_num']
|
358 |
+
best_val_loss = checkpoint['best_val_loss']
|
359 |
+
elif init_from.startswith('gpt2'):
|
360 |
+
print(f"Initializing from OpenAI GPT-2 weights: {init_from}")
|
361 |
+
# initialize from OpenAI GPT-2 weights
|
362 |
+
override_args = dict(dropout=dropout)
|
363 |
+
model = GPT.from_pretrained(init_from, override_args)
|
364 |
+
# read off the created config params, so we can store them into checkpoint correctly
|
365 |
+
for k in ['n_layer', 'n_head', 'n_embd', 'block_size', 'bias', 'vocab_size']:
|
366 |
+
model_args[k] = getattr(model.config, k)
|
367 |
+
# crop down the model block size if desired, using model surgery
|
368 |
+
if block_size < model.config.block_size:
|
369 |
+
model.crop_block_size(block_size)
|
370 |
+
model_args['block_size'] = block_size # so that the checkpoint will have the right value
|
371 |
+
model.to(device)
|
372 |
+
|
373 |
+
# initialize a GradScaler. If enabled=False scaler is a no-op
|
374 |
+
scaler = torch.cuda.amp.GradScaler(enabled=(dtype == 'float16'))
|
375 |
+
|
376 |
+
# optimizer
|
377 |
+
optimizer = model.configure_optimizers(weight_decay, learning_rate, (beta1, beta2), device_type)
|
378 |
+
if init_from == 'resume':
|
379 |
+
optimizer.load_state_dict(checkpoint['optimizer'])
|
380 |
+
checkpoint = None # free up memory
|
381 |
+
|
382 |
+
# compile the model
|
383 |
+
if compile:
|
384 |
+
print("compiling the model... (takes a ~minute)")
|
385 |
+
unoptimized_model = model
|
386 |
+
model = torch.compile(model) # requires PyTorch 2.0
|
387 |
+
|
388 |
+
# wrap model into DDP container
|
389 |
+
if ddp:
|
390 |
+
model = DDP(model, device_ids=[ddp_local_rank])
|
391 |
+
|
392 |
+
# helps estimate an arbitrarily accurate loss over either split using many batches
|
393 |
+
@torch.no_grad()
|
394 |
+
def estimate_loss():
|
395 |
+
out = {}
|
396 |
+
model.eval()
|
397 |
+
for split in ['train', 'val']:
|
398 |
+
losses = torch.zeros(eval_iters)
|
399 |
+
for k in range(eval_iters):
|
400 |
+
X, Y = get_batch(split)
|
401 |
+
with ctx:
|
402 |
+
logits, loss = model(X, Y)
|
403 |
+
losses[k] = loss.item()
|
404 |
+
out[split] = losses.mean()
|
405 |
+
model.train()
|
406 |
+
return out
|
407 |
+
|
408 |
+
# learning rate decay scheduler (cosine with warmup)
|
409 |
+
def get_lr(it):
|
410 |
+
# 1) linear warmup for warmup_iters steps
|
411 |
+
if it < warmup_iters:
|
412 |
+
return learning_rate * it / warmup_iters
|
413 |
+
# 2) if it > lr_decay_iters, return min learning rate
|
414 |
+
if it > lr_decay_iters:
|
415 |
+
return min_lr
|
416 |
+
# 3) in between, use cosine decay down to min learning rate
|
417 |
+
decay_ratio = (it - warmup_iters) / (lr_decay_iters - warmup_iters)
|
418 |
+
assert 0 <= decay_ratio <= 1
|
419 |
+
coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio)) # coeff ranges 0..1
|
420 |
+
return min_lr + coeff * (learning_rate - min_lr)
|
421 |
+
|
422 |
+
# logging
|
423 |
+
if wandb_log and master_process:
|
424 |
+
import wandb
|
425 |
+
wandb.init(project=wandb_project, name=wandb_run_name, config=config)
|
426 |
+
|
427 |
+
# training loop
|
428 |
+
X, Y = get_batch('train') # fetch the very first batch
|
429 |
+
t0 = time.time()
|
430 |
+
local_iter_num = 0 # number of iterations in the lifetime of this process
|
431 |
+
raw_model = model.module if ddp else model # unwrap DDP container if needed
|
432 |
+
running_mfu = -1.0
|
433 |
+
while True:
|
434 |
+
|
435 |
+
# determine and set the learning rate for this iteration
|
436 |
+
lr = get_lr(iter_num) if decay_lr else learning_rate
|
437 |
+
for param_group in optimizer.param_groups:
|
438 |
+
param_group['lr'] = lr
|
439 |
+
|
440 |
+
# evaluate the loss on train/val sets and write checkpoints
|
441 |
+
if iter_num % eval_interval == 0 and master_process:
|
442 |
+
losses = estimate_loss()
|
443 |
+
print(f"step {iter_num}: train loss {losses['train']:.4f}, val loss {losses['val']:.4f}")
|
444 |
+
if wandb_log:
|
445 |
+
wandb.log({
|
446 |
+
"iter": iter_num,
|
447 |
+
"train/loss": losses['train'],
|
448 |
+
"val/loss": losses['val'],
|
449 |
+
"lr": lr,
|
450 |
+
"mfu": running_mfu*100, # convert to percentage
|
451 |
+
})
|
452 |
+
if losses['val'] < best_val_loss or always_save_checkpoint:
|
453 |
+
best_val_loss = losses['val']
|
454 |
+
if iter_num > 0:
|
455 |
+
checkpoint = {
|
456 |
+
'model': raw_model.state_dict(),
|
457 |
+
'optimizer': optimizer.state_dict(),
|
458 |
+
'model_args': model_args,
|
459 |
+
'iter_num': iter_num,
|
460 |
+
'best_val_loss': best_val_loss,
|
461 |
+
'config': config,
|
462 |
+
}
|
463 |
+
print(f"saving checkpoint to {out_dir}")
|
464 |
+
torch.save(checkpoint, os.path.join(out_dir, 'ckpt.pt'))
|
465 |
+
if iter_num == 0 and eval_only:
|
466 |
+
break
|
467 |
+
|
468 |
+
# forward backward update, with optional gradient accumulation to simulate larger batch size
|
469 |
+
# and using the GradScaler if data type is float16
|
470 |
+
for micro_step in range(gradient_accumulation_steps):
|
471 |
+
if ddp:
|
472 |
+
# in DDP training we only need to sync gradients at the last micro step.
|
473 |
+
# the official way to do this is with model.no_sync() context manager, but
|
474 |
+
# I really dislike that this bloats the code and forces us to repeat code
|
475 |
+
# looking at the source of that context manager, it just toggles this variable
|
476 |
+
model.require_backward_grad_sync = (micro_step == gradient_accumulation_steps - 1)
|
477 |
+
with ctx:
|
478 |
+
logits, loss = model(X, Y)
|
479 |
+
loss = loss / gradient_accumulation_steps # scale the loss to account for gradient accumulation
|
480 |
+
# immediately async prefetch next batch while model is doing the forward pass on the GPU
|
481 |
+
X, Y = get_batch('train')
|
482 |
+
# backward pass, with gradient scaling if training in fp16
|
483 |
+
scaler.scale(loss).backward()
|
484 |
+
# clip the gradient
|
485 |
+
if grad_clip != 0.0:
|
486 |
+
scaler.unscale_(optimizer)
|
487 |
+
torch.nn.utils.clip_grad_norm_(model.parameters(), grad_clip)
|
488 |
+
# step the optimizer and scaler if training in fp16
|
489 |
+
scaler.step(optimizer)
|
490 |
+
scaler.update()
|
491 |
+
# flush the gradients as soon as we can, no need for this memory anymore
|
492 |
+
optimizer.zero_grad(set_to_none=True)
|
493 |
+
|
494 |
+
# timing and logging
|
495 |
+
t1 = time.time()
|
496 |
+
dt = t1 - t0
|
497 |
+
t0 = t1
|
498 |
+
if iter_num % log_interval == 0 and master_process:
|
499 |
+
# get loss as float. note: this is a CPU-GPU sync point
|
500 |
+
# scale up to undo the division above, approximating the true total loss (exact would have been a sum)
|
501 |
+
lossf = loss.item() * gradient_accumulation_steps
|
502 |
+
if local_iter_num >= 5: # let the training loop settle a bit
|
503 |
+
mfu = raw_model.estimate_mfu(batch_size * gradient_accumulation_steps, dt)
|
504 |
+
running_mfu = mfu if running_mfu == -1.0 else 0.9*running_mfu + 0.1*mfu
|
505 |
+
print(f"iter {iter_num}: loss {lossf:.4f}, time {dt*1000:.2f}ms, mfu {running_mfu*100:.2f}%")
|
506 |
+
|
507 |
+
if (iter_num % verbose_log_interval == 0) and master_process and (local_iter_num > 0):
|
508 |
+
log_performance_verbose(raw_model, iter_num,
|
509 |
+
verbose_log_file = verbose_logfile,
|
510 |
+
performance_log_file = performance_file)
|
511 |
+
|
512 |
+
iter_num += 1
|
513 |
+
local_iter_num += 1
|
514 |
+
|
515 |
+
# termination conditions
|
516 |
+
if iter_num > max_iters:
|
517 |
+
break
|
518 |
+
|
519 |
+
if ddp:
|
520 |
+
destroy_process_group()
|