librarian-bot commited on
Commit
b9d504c
1 Parent(s): 02c12e8

Librarian Bot: Add base_model information to model

Browse files

This pull request aims to enrich the metadata of your model by adding [`microsoft/resnet-50`](https://huggingface.co/microsoft/resnet-50) as a `base_model` field, situated in the `YAML` block of your model's `README.md`.

How did we find this information? We performed a regular expression match on your `README.md` file to determine the connection.

**Why add this?** Enhancing your model's metadata in this way:
- **Boosts Discoverability** - It becomes straightforward to trace the relationships between various models on the Hugging Face Hub.
- **Highlights Impact** - It showcases the contributions and influences different models have within the community.

For a hands-on example of how such metadata can play a pivotal role in mapping model connections, take a look at [librarian-bots/base_model_explorer](https://huggingface.co/spaces/librarian-bots/base_model_explorer).

This PR comes courtesy of [Librarian Bot](https://huggingface.co/librarian-bot). If you have any feedback, queries, or need assistance, please don't hesitate to reach out to [@davanstrien](https://huggingface.co/davanstrien). Your input is invaluable to us!

Files changed (1) hide show
  1. README.md +23 -22
README.md CHANGED
@@ -1,30 +1,31 @@
1
  ---
 
 
2
  license: apache-2.0
3
  tags:
4
- - vision
5
- - image-classification
6
- - generated_from_trainer
7
  datasets:
8
- - imagefolder
9
- model-index:
10
- - name: fruits-and-vegetables-detector-36
11
- results:
12
- - task:
13
- name: Image Classification
14
- type: image-classification
15
- dataset:
16
- name: imagefolder
17
- type: imagefolder
18
- config: default
19
- split: train
20
- args: default
21
- metrics:
22
- - name: Accuracy
23
- type: accuracy
24
- value: 0.9721
25
- language:
26
- - en
27
  pipeline_tag: image-classification
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28
  ---
29
 
30
  # fruits-and-vegetables-detector-36
 
1
  ---
2
+ language:
3
+ - en
4
  license: apache-2.0
5
  tags:
6
+ - vision
7
+ - image-classification
8
+ - generated_from_trainer
9
  datasets:
10
+ - imagefolder
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  pipeline_tag: image-classification
12
+ base_model: microsoft/resnet-50
13
+ model-index:
14
+ - name: fruits-and-vegetables-detector-36
15
+ results:
16
+ - task:
17
+ type: image-classification
18
+ name: Image Classification
19
+ dataset:
20
+ name: imagefolder
21
+ type: imagefolder
22
+ config: default
23
+ split: train
24
+ args: default
25
+ metrics:
26
+ - type: accuracy
27
+ value: 0.9721
28
+ name: Accuracy
29
  ---
30
 
31
  # fruits-and-vegetables-detector-36