metadata
language:
- te
license: apache-2.0
base_model: openai/whisper-base
tags:
- generated_from_trainer
datasets:
- google/fleurs
metrics:
- wer
model-index:
- name: Whisper base te - jayavardhan
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: fleurs
type: google/fleurs
config: te_in
split: None
args: 'config: te, split: test'
metrics:
- name: Wer
type: wer
value: 70.43668684786809
Whisper base te - jayavardhan
This model is a fine-tuned version of openai/whisper-base on the fleurs dataset. It achieves the following results on the evaluation set:
- Loss: 0.1934
- Wer: 70.4367
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 250
- training_steps: 1500
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.084 | 6.12 | 500 | 0.1455 | 71.1065 |
0.0297 | 12.23 | 1000 | 0.1682 | 69.8570 |
0.0175 | 18.35 | 1500 | 0.1934 | 70.4367 |
Framework versions
- Transformers 4.39.3
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2