whisper-base-speech / README.md
jayavardhan31's picture
End of training
399864e verified
metadata
language:
  - te
license: apache-2.0
base_model: openai/whisper-base
tags:
  - generated_from_trainer
datasets:
  - google/fleurs
metrics:
  - wer
model-index:
  - name: Whisper base te - jayavardhan
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: fleurs
          type: google/fleurs
          config: te_in
          split: None
          args: 'config: te, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 70.43668684786809

Whisper base te - jayavardhan

This model is a fine-tuned version of openai/whisper-base on the fleurs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1934
  • Wer: 70.4367

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 250
  • training_steps: 1500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.084 6.12 500 0.1455 71.1065
0.0297 12.23 1000 0.1682 69.8570
0.0175 18.35 1500 0.1934 70.4367

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2