paul commited on
Commit
f193def
1 Parent(s): a376455

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +96 -0
README.md ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - imagefolder
7
+ metrics:
8
+ - accuracy
9
+ model-index:
10
+ - name: swin-base-patch4-window7-224-20epochs-finetuned-memes
11
+ results:
12
+ - task:
13
+ name: Image Classification
14
+ type: image-classification
15
+ dataset:
16
+ name: imagefolder
17
+ type: imagefolder
18
+ config: default
19
+ split: train
20
+ args: default
21
+ metrics:
22
+ - name: Accuracy
23
+ type: accuracy
24
+ value: 0.847758887171561
25
+ ---
26
+
27
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
+ should probably proofread and complete it, then remove this comment. -->
29
+
30
+ # swin-base-patch4-window7-224-20epochs-finetuned-memes
31
+
32
+ This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
33
+ It achieves the following results on the evaluation set:
34
+ - Loss: 0.7090
35
+ - Accuracy: 0.8478
36
+
37
+ ## Model description
38
+
39
+ More information needed
40
+
41
+ ## Intended uses & limitations
42
+
43
+ More information needed
44
+
45
+ ## Training and evaluation data
46
+
47
+ More information needed
48
+
49
+ ## Training procedure
50
+
51
+ ### Training hyperparameters
52
+
53
+ The following hyperparameters were used during training:
54
+ - learning_rate: 0.00012
55
+ - train_batch_size: 32
56
+ - eval_batch_size: 32
57
+ - seed: 42
58
+ - gradient_accumulation_steps: 4
59
+ - total_train_batch_size: 128
60
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
+ - lr_scheduler_type: linear
62
+ - lr_scheduler_warmup_ratio: 0.1
63
+ - num_epochs: 20
64
+
65
+ ### Training results
66
+
67
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
68
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
69
+ | 1.0238 | 0.99 | 40 | 0.9636 | 0.6445 |
70
+ | 0.777 | 1.99 | 80 | 0.6591 | 0.7666 |
71
+ | 0.4763 | 2.99 | 120 | 0.5381 | 0.8130 |
72
+ | 0.3215 | 3.99 | 160 | 0.5244 | 0.8253 |
73
+ | 0.2179 | 4.99 | 200 | 0.5123 | 0.8238 |
74
+ | 0.1868 | 5.99 | 240 | 0.5052 | 0.8308 |
75
+ | 0.154 | 6.99 | 280 | 0.5444 | 0.8338 |
76
+ | 0.1166 | 7.99 | 320 | 0.6318 | 0.8238 |
77
+ | 0.1099 | 8.99 | 360 | 0.5656 | 0.8338 |
78
+ | 0.0925 | 9.99 | 400 | 0.6057 | 0.8338 |
79
+ | 0.0779 | 10.99 | 440 | 0.5942 | 0.8393 |
80
+ | 0.0629 | 11.99 | 480 | 0.6112 | 0.8400 |
81
+ | 0.0742 | 12.99 | 520 | 0.6588 | 0.8331 |
82
+ | 0.0752 | 13.99 | 560 | 0.6143 | 0.8408 |
83
+ | 0.0577 | 14.99 | 600 | 0.6450 | 0.8516 |
84
+ | 0.0589 | 15.99 | 640 | 0.6787 | 0.8400 |
85
+ | 0.0555 | 16.99 | 680 | 0.6641 | 0.8454 |
86
+ | 0.052 | 17.99 | 720 | 0.7213 | 0.8524 |
87
+ | 0.0589 | 18.99 | 760 | 0.6917 | 0.8470 |
88
+ | 0.0506 | 19.99 | 800 | 0.7090 | 0.8478 |
89
+
90
+
91
+ ### Framework versions
92
+
93
+ - Transformers 4.22.1
94
+ - Pytorch 1.12.1+cu113
95
+ - Datasets 2.4.0
96
+ - Tokenizers 0.12.1