paul commited on
Commit
7ee9c17
1 Parent(s): 19d4f45

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +111 -0
README.md ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - imagefolder
7
+ metrics:
8
+ - accuracy
9
+ - precision
10
+ - recall
11
+ - f1
12
+ model-index:
13
+ - name: microsoft-resnet-50-cartoon-emotion-detection
14
+ results:
15
+ - task:
16
+ name: Image Classification
17
+ type: image-classification
18
+ dataset:
19
+ name: imagefolder
20
+ type: imagefolder
21
+ config: default
22
+ split: train
23
+ args: default
24
+ metrics:
25
+ - name: Accuracy
26
+ type: accuracy
27
+ value: 0.6697247706422018
28
+ - name: Precision
29
+ type: precision
30
+ value: 0.5798801171844885
31
+ - name: Recall
32
+ type: recall
33
+ value: 0.6697247706422018
34
+ - name: F1
35
+ type: f1
36
+ value: 0.6086361803243947
37
+ ---
38
+
39
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
40
+ should probably proofread and complete it, then remove this comment. -->
41
+
42
+ # microsoft-resnet-50-cartoon-emotion-detection
43
+
44
+ This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the imagefolder dataset.
45
+ It achieves the following results on the evaluation set:
46
+ - Loss: 1.0059
47
+ - Accuracy: 0.6697
48
+ - Precision: 0.5799
49
+ - Recall: 0.6697
50
+ - F1: 0.6086
51
+
52
+ ## Model description
53
+
54
+ More information needed
55
+
56
+ ## Intended uses & limitations
57
+
58
+ More information needed
59
+
60
+ ## Training and evaluation data
61
+
62
+ More information needed
63
+
64
+ ## Training procedure
65
+
66
+ ### Training hyperparameters
67
+
68
+ The following hyperparameters were used during training:
69
+ - learning_rate: 0.00012
70
+ - train_batch_size: 64
71
+ - eval_batch_size: 64
72
+ - seed: 42
73
+ - gradient_accumulation_steps: 4
74
+ - total_train_batch_size: 256
75
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
76
+ - lr_scheduler_type: linear
77
+ - lr_scheduler_warmup_ratio: 0.1
78
+ - num_epochs: 20
79
+
80
+ ### Training results
81
+
82
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
83
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
84
+ | No log | 0.97 | 8 | 1.3833 | 0.2477 | 0.2054 | 0.2477 | 0.2042 |
85
+ | 1.4276 | 1.97 | 16 | 1.3711 | 0.3028 | 0.1982 | 0.3028 | 0.1932 |
86
+ | 1.4046 | 2.97 | 24 | 1.3550 | 0.3028 | 0.0917 | 0.3028 | 0.1407 |
87
+ | 1.3817 | 3.97 | 32 | 1.3375 | 0.3119 | 0.2852 | 0.3119 | 0.1592 |
88
+ | 1.3562 | 4.97 | 40 | 1.3179 | 0.3211 | 0.4337 | 0.3211 | 0.1785 |
89
+ | 1.3562 | 5.97 | 48 | 1.2991 | 0.3761 | 0.5442 | 0.3761 | 0.2741 |
90
+ | 1.3624 | 6.97 | 56 | 1.2751 | 0.4495 | 0.5593 | 0.4495 | 0.3659 |
91
+ | 1.2914 | 7.97 | 64 | 1.2494 | 0.4771 | 0.5442 | 0.4771 | 0.4094 |
92
+ | 1.2518 | 8.97 | 72 | 1.2279 | 0.5046 | 0.5525 | 0.5046 | 0.4430 |
93
+ | 1.2085 | 9.97 | 80 | 1.1905 | 0.5321 | 0.5134 | 0.5321 | 0.4579 |
94
+ | 1.2085 | 10.97 | 88 | 1.1602 | 0.5505 | 0.5151 | 0.5505 | 0.4872 |
95
+ | 1.1865 | 11.97 | 96 | 1.1307 | 0.5963 | 0.5969 | 0.5963 | 0.5416 |
96
+ | 1.122 | 12.97 | 104 | 1.1037 | 0.5872 | 0.5069 | 0.5872 | 0.5206 |
97
+ | 1.0812 | 13.97 | 112 | 1.0797 | 0.5688 | 0.4868 | 0.5688 | 0.5068 |
98
+ | 1.0449 | 14.97 | 120 | 1.0712 | 0.6239 | 0.5269 | 0.6239 | 0.5641 |
99
+ | 1.0449 | 15.97 | 128 | 1.0425 | 0.6239 | 0.5123 | 0.6239 | 0.5517 |
100
+ | 1.0458 | 16.97 | 136 | 1.0346 | 0.6239 | 0.6487 | 0.6239 | 0.5782 |
101
+ | 1.004 | 17.97 | 144 | 1.0264 | 0.6330 | 0.5472 | 0.6330 | 0.5721 |
102
+ | 0.9806 | 18.97 | 152 | 1.0041 | 0.6606 | 0.6334 | 0.6606 | 0.6069 |
103
+ | 0.97 | 19.97 | 160 | 1.0059 | 0.6697 | 0.5799 | 0.6697 | 0.6086 |
104
+
105
+
106
+ ### Framework versions
107
+
108
+ - Transformers 4.24.0.dev0
109
+ - Pytorch 1.11.0+cu102
110
+ - Datasets 2.6.1
111
+ - Tokenizers 0.13.1