paul
commited on
Commit
•
7ee9c17
1
Parent(s):
19d4f45
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- imagefolder
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
- precision
|
10 |
+
- recall
|
11 |
+
- f1
|
12 |
+
model-index:
|
13 |
+
- name: microsoft-resnet-50-cartoon-emotion-detection
|
14 |
+
results:
|
15 |
+
- task:
|
16 |
+
name: Image Classification
|
17 |
+
type: image-classification
|
18 |
+
dataset:
|
19 |
+
name: imagefolder
|
20 |
+
type: imagefolder
|
21 |
+
config: default
|
22 |
+
split: train
|
23 |
+
args: default
|
24 |
+
metrics:
|
25 |
+
- name: Accuracy
|
26 |
+
type: accuracy
|
27 |
+
value: 0.6697247706422018
|
28 |
+
- name: Precision
|
29 |
+
type: precision
|
30 |
+
value: 0.5798801171844885
|
31 |
+
- name: Recall
|
32 |
+
type: recall
|
33 |
+
value: 0.6697247706422018
|
34 |
+
- name: F1
|
35 |
+
type: f1
|
36 |
+
value: 0.6086361803243947
|
37 |
+
---
|
38 |
+
|
39 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
40 |
+
should probably proofread and complete it, then remove this comment. -->
|
41 |
+
|
42 |
+
# microsoft-resnet-50-cartoon-emotion-detection
|
43 |
+
|
44 |
+
This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the imagefolder dataset.
|
45 |
+
It achieves the following results on the evaluation set:
|
46 |
+
- Loss: 1.0059
|
47 |
+
- Accuracy: 0.6697
|
48 |
+
- Precision: 0.5799
|
49 |
+
- Recall: 0.6697
|
50 |
+
- F1: 0.6086
|
51 |
+
|
52 |
+
## Model description
|
53 |
+
|
54 |
+
More information needed
|
55 |
+
|
56 |
+
## Intended uses & limitations
|
57 |
+
|
58 |
+
More information needed
|
59 |
+
|
60 |
+
## Training and evaluation data
|
61 |
+
|
62 |
+
More information needed
|
63 |
+
|
64 |
+
## Training procedure
|
65 |
+
|
66 |
+
### Training hyperparameters
|
67 |
+
|
68 |
+
The following hyperparameters were used during training:
|
69 |
+
- learning_rate: 0.00012
|
70 |
+
- train_batch_size: 64
|
71 |
+
- eval_batch_size: 64
|
72 |
+
- seed: 42
|
73 |
+
- gradient_accumulation_steps: 4
|
74 |
+
- total_train_batch_size: 256
|
75 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
76 |
+
- lr_scheduler_type: linear
|
77 |
+
- lr_scheduler_warmup_ratio: 0.1
|
78 |
+
- num_epochs: 20
|
79 |
+
|
80 |
+
### Training results
|
81 |
+
|
82 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|
83 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
|
84 |
+
| No log | 0.97 | 8 | 1.3833 | 0.2477 | 0.2054 | 0.2477 | 0.2042 |
|
85 |
+
| 1.4276 | 1.97 | 16 | 1.3711 | 0.3028 | 0.1982 | 0.3028 | 0.1932 |
|
86 |
+
| 1.4046 | 2.97 | 24 | 1.3550 | 0.3028 | 0.0917 | 0.3028 | 0.1407 |
|
87 |
+
| 1.3817 | 3.97 | 32 | 1.3375 | 0.3119 | 0.2852 | 0.3119 | 0.1592 |
|
88 |
+
| 1.3562 | 4.97 | 40 | 1.3179 | 0.3211 | 0.4337 | 0.3211 | 0.1785 |
|
89 |
+
| 1.3562 | 5.97 | 48 | 1.2991 | 0.3761 | 0.5442 | 0.3761 | 0.2741 |
|
90 |
+
| 1.3624 | 6.97 | 56 | 1.2751 | 0.4495 | 0.5593 | 0.4495 | 0.3659 |
|
91 |
+
| 1.2914 | 7.97 | 64 | 1.2494 | 0.4771 | 0.5442 | 0.4771 | 0.4094 |
|
92 |
+
| 1.2518 | 8.97 | 72 | 1.2279 | 0.5046 | 0.5525 | 0.5046 | 0.4430 |
|
93 |
+
| 1.2085 | 9.97 | 80 | 1.1905 | 0.5321 | 0.5134 | 0.5321 | 0.4579 |
|
94 |
+
| 1.2085 | 10.97 | 88 | 1.1602 | 0.5505 | 0.5151 | 0.5505 | 0.4872 |
|
95 |
+
| 1.1865 | 11.97 | 96 | 1.1307 | 0.5963 | 0.5969 | 0.5963 | 0.5416 |
|
96 |
+
| 1.122 | 12.97 | 104 | 1.1037 | 0.5872 | 0.5069 | 0.5872 | 0.5206 |
|
97 |
+
| 1.0812 | 13.97 | 112 | 1.0797 | 0.5688 | 0.4868 | 0.5688 | 0.5068 |
|
98 |
+
| 1.0449 | 14.97 | 120 | 1.0712 | 0.6239 | 0.5269 | 0.6239 | 0.5641 |
|
99 |
+
| 1.0449 | 15.97 | 128 | 1.0425 | 0.6239 | 0.5123 | 0.6239 | 0.5517 |
|
100 |
+
| 1.0458 | 16.97 | 136 | 1.0346 | 0.6239 | 0.6487 | 0.6239 | 0.5782 |
|
101 |
+
| 1.004 | 17.97 | 144 | 1.0264 | 0.6330 | 0.5472 | 0.6330 | 0.5721 |
|
102 |
+
| 0.9806 | 18.97 | 152 | 1.0041 | 0.6606 | 0.6334 | 0.6606 | 0.6069 |
|
103 |
+
| 0.97 | 19.97 | 160 | 1.0059 | 0.6697 | 0.5799 | 0.6697 | 0.6086 |
|
104 |
+
|
105 |
+
|
106 |
+
### Framework versions
|
107 |
+
|
108 |
+
- Transformers 4.24.0.dev0
|
109 |
+
- Pytorch 1.11.0+cu102
|
110 |
+
- Datasets 2.6.1
|
111 |
+
- Tokenizers 0.13.1
|