jarredparrett's picture
Add new SentenceTransformer model.
79c2367 verified
metadata
language:
  - en
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:4517388
  - loss:ContrastiveLoss
base_model: sentence-transformers/all-MiniLM-L6-v2
widget:
  - source_sentence: 640 prt ashley floor 10 chula vista california 91913
    sentences:
      - 10523 howard parks apartment 8 cockseysville md 21030
      - 640 prt ashley floor 10 East Gregory PW 91913
      - trailwoods radial loveland oh 4514
  - source_sentence: 9036 taylorsville road louisville ky 40299-1750
    sentences:
      - '16331 northwest gearin junctn floor num 6 apt # 4 f tigard or 97223-2808'
      - 19 Brian Key walk voorhees township n. j. 08026
      - 9036 taylorsville boulevard louisville 40299-175
  - source_sentence: 11 simek ln middletown township n j 07758
    sentences:
      - 248 strawberry meadows place apt 1 springdale 72764-3759
      - 11 Daniel Drive knl middletown township MT 41761
      - 1135 s westgate ave Mileshaven ca 90049
  - source_sentence: so west prospect street aloha or 97078
    sentences:
      - '1300 Brittney Club plains lot # b new york cty NY 10459'
      - 527 Nicole Springs bypas rupert CA 05776
      - so wdest prospect street aloha 97078
  - source_sentence: 8234 harvest bend lane laurel md 20707
    sentences:
      - 8234 harvest bend lane laurel md
      - 8702 wahl crse basement santee ca 92071
      - 310 ella street Jamesborough ne 68310
datasets:
  - jarredparrett/deepparse_address_mutations_comb_3
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
  - cosine_accuracy
  - cosine_accuracy_threshold
  - cosine_f1
  - cosine_f1_threshold
  - cosine_precision
  - cosine_recall
  - cosine_ap
  - dot_accuracy
  - dot_accuracy_threshold
  - dot_f1
  - dot_f1_threshold
  - dot_precision
  - dot_recall
  - dot_ap
  - manhattan_accuracy
  - manhattan_accuracy_threshold
  - manhattan_f1
  - manhattan_f1_threshold
  - manhattan_precision
  - manhattan_recall
  - manhattan_ap
  - euclidean_accuracy
  - euclidean_accuracy_threshold
  - euclidean_f1
  - euclidean_f1_threshold
  - euclidean_precision
  - euclidean_recall
  - euclidean_ap
  - max_accuracy
  - max_accuracy_threshold
  - max_f1
  - max_f1_threshold
  - max_precision
  - max_recall
  - max_ap
model-index:
  - name: SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
    results:
      - task:
          type: binary-classification
          name: Binary Classification
        dataset:
          name: jarredparrett/deepparse address mutations comb 3
          type: jarredparrett/deepparse_address_mutations_comb_3
        metrics:
          - type: cosine_accuracy
            value: 0.9770643339132159
            name: Cosine Accuracy
          - type: cosine_accuracy_threshold
            value: 0.7712496519088745
            name: Cosine Accuracy Threshold
          - type: cosine_f1
            value: 0.9784053285401372
            name: Cosine F1
          - type: cosine_f1_threshold
            value: 0.7712496519088745
            name: Cosine F1 Threshold
          - type: cosine_precision
            value: 0.960100255219399
            name: Cosine Precision
          - type: cosine_recall
            value: 0.9974219699718995
            name: Cosine Recall
          - type: cosine_ap
            value: 0.9864940067102314
            name: Cosine Ap
          - type: dot_accuracy
            value: 0.9770643339132159
            name: Dot Accuracy
          - type: dot_accuracy_threshold
            value: 0.7712496519088745
            name: Dot Accuracy Threshold
          - type: dot_f1
            value: 0.9784053285401372
            name: Dot F1
          - type: dot_f1_threshold
            value: 0.7712496519088745
            name: Dot F1 Threshold
          - type: dot_precision
            value: 0.960100255219399
            name: Dot Precision
          - type: dot_recall
            value: 0.9974219699718995
            name: Dot Recall
          - type: dot_ap
            value: 0.986499063941509
            name: Dot Ap
          - type: manhattan_accuracy
            value: 0.9770395408321384
            name: Manhattan Accuracy
          - type: manhattan_accuracy_threshold
            value: 10.601512908935547
            name: Manhattan Accuracy Threshold
          - type: manhattan_f1
            value: 0.978383036334317
            name: Manhattan F1
          - type: manhattan_f1_threshold
            value: 10.611783027648926
            name: Manhattan F1 Threshold
          - type: manhattan_precision
            value: 0.9600334406666756
            name: Manhattan Precision
          - type: manhattan_recall
            value: 0.9974477502721805
            name: Manhattan Recall
          - type: manhattan_ap
            value: 0.9865423177462433
            name: Manhattan Ap
          - type: euclidean_accuracy
            value: 0.9770643339132159
            name: Euclidean Accuracy
          - type: euclidean_accuracy_threshold
            value: 0.6763879060745239
            name: Euclidean Accuracy Threshold
          - type: euclidean_f1
            value: 0.9784053285401372
            name: Euclidean F1
          - type: euclidean_f1_threshold
            value: 0.6763879060745239
            name: Euclidean F1 Threshold
          - type: euclidean_precision
            value: 0.960100255219399
            name: Euclidean Precision
          - type: euclidean_recall
            value: 0.9974219699718995
            name: Euclidean Recall
          - type: euclidean_ap
            value: 0.9865515796011742
            name: Euclidean Ap
          - type: max_accuracy
            value: 0.9770643339132159
            name: Max Accuracy
          - type: max_accuracy_threshold
            value: 10.601512908935547
            name: Max Accuracy Threshold
          - type: max_f1
            value: 0.9784053285401372
            name: Max F1
          - type: max_f1_threshold
            value: 10.611783027648926
            name: Max F1 Threshold
          - type: max_precision
            value: 0.960100255219399
            name: Max Precision
          - type: max_recall
            value: 0.9974477502721805
            name: Max Recall
          - type: max_ap
            value: 0.9865515796011742
            name: Max Ap
          - type: cosine_accuracy
            value: 0.9770612347780813
            name: Cosine Accuracy
          - type: cosine_accuracy_threshold
            value: 0.7710819244384766
            name: Cosine Accuracy Threshold
          - type: cosine_f1
            value: 0.9783854448042815
            name: Cosine F1
          - type: cosine_f1_threshold
            value: 0.7710819244384766
            name: Cosine F1 Threshold
          - type: cosine_precision
            value: 0.9600473761629129
            name: Cosine Precision
          - type: cosine_recall
            value: 0.9974377142267394
            name: Cosine Recall
          - type: cosine_ap
            value: 0.9865423807819248
            name: Cosine Ap
          - type: dot_accuracy
            value: 0.9770612347780813
            name: Dot Accuracy
          - type: dot_accuracy_threshold
            value: 0.7710819244384766
            name: Dot Accuracy Threshold
          - type: dot_f1
            value: 0.9783854448042815
            name: Dot F1
          - type: dot_f1_threshold
            value: 0.7710819244384766
            name: Dot F1 Threshold
          - type: dot_precision
            value: 0.9600473761629129
            name: Dot Precision
          - type: dot_recall
            value: 0.9974377142267394
            name: Dot Recall
          - type: dot_ap
            value: 0.9865613743522202
            name: Dot Ap
          - type: manhattan_accuracy
            value: 0.9770395408321384
            name: Manhattan Accuracy
          - type: manhattan_accuracy_threshold
            value: 10.510114669799805
            name: Manhattan Accuracy Threshold
          - type: manhattan_f1
            value: 0.9783637843035726
            name: Manhattan F1
          - type: manhattan_f1_threshold
            value: 10.637184143066406
            name: Manhattan F1 Threshold
          - type: manhattan_precision
            value: 0.9599119169895931
            name: Manhattan Precision
          - type: manhattan_recall
            value: 0.9975389354307954
            name: Manhattan Recall
          - type: manhattan_ap
            value: 0.9865931109650937
            name: Manhattan Ap
          - type: euclidean_accuracy
            value: 0.9770612347780813
            name: Euclidean Accuracy
          - type: euclidean_accuracy_threshold
            value: 0.6766358613967896
            name: Euclidean Accuracy Threshold
          - type: euclidean_f1
            value: 0.9783854448042815
            name: Euclidean F1
          - type: euclidean_f1_threshold
            value: 0.6766358613967896
            name: Euclidean F1 Threshold
          - type: euclidean_precision
            value: 0.9600473761629129
            name: Euclidean Precision
          - type: euclidean_recall
            value: 0.9974377142267394
            name: Euclidean Recall
          - type: euclidean_ap
            value: 0.9866061739963429
            name: Euclidean Ap
          - type: max_accuracy
            value: 0.9770612347780813
            name: Max Accuracy
          - type: max_accuracy_threshold
            value: 10.510114669799805
            name: Max Accuracy Threshold
          - type: max_f1
            value: 0.9783854448042815
            name: Max F1
          - type: max_f1_threshold
            value: 10.637184143066406
            name: Max F1 Threshold
          - type: max_precision
            value: 0.9600473761629129
            name: Max Precision
          - type: max_recall
            value: 0.9975389354307954
            name: Max Recall
          - type: max_ap
            value: 0.9866061739963429
            name: Max Ap

SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2

This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2 on the deepparse_address_mutations_comb_3 dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("jarredparrett/all-MiniLM-L6-v2_tuned_on_deepparse_address_mutations_comb_3")
# Run inference
sentences = [
    '8234 harvest bend lane laurel md 20707',
    '8234 harvest bend lane laurel md',
    '8702 wahl crse basement santee ca 92071',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Binary Classification

Metric Value
cosine_accuracy 0.9771
cosine_accuracy_threshold 0.7712
cosine_f1 0.9784
cosine_f1_threshold 0.7712
cosine_precision 0.9601
cosine_recall 0.9974
cosine_ap 0.9865
dot_accuracy 0.9771
dot_accuracy_threshold 0.7712
dot_f1 0.9784
dot_f1_threshold 0.7712
dot_precision 0.9601
dot_recall 0.9974
dot_ap 0.9865
manhattan_accuracy 0.977
manhattan_accuracy_threshold 10.6015
manhattan_f1 0.9784
manhattan_f1_threshold 10.6118
manhattan_precision 0.96
manhattan_recall 0.9974
manhattan_ap 0.9865
euclidean_accuracy 0.9771
euclidean_accuracy_threshold 0.6764
euclidean_f1 0.9784
euclidean_f1_threshold 0.6764
euclidean_precision 0.9601
euclidean_recall 0.9974
euclidean_ap 0.9866
max_accuracy 0.9771
max_accuracy_threshold 10.6015
max_f1 0.9784
max_f1_threshold 10.6118
max_precision 0.9601
max_recall 0.9974
max_ap 0.9866

Binary Classification

Metric Value
cosine_accuracy 0.9771
cosine_accuracy_threshold 0.7711
cosine_f1 0.9784
cosine_f1_threshold 0.7711
cosine_precision 0.96
cosine_recall 0.9974
cosine_ap 0.9865
dot_accuracy 0.9771
dot_accuracy_threshold 0.7711
dot_f1 0.9784
dot_f1_threshold 0.7711
dot_precision 0.96
dot_recall 0.9974
dot_ap 0.9866
manhattan_accuracy 0.977
manhattan_accuracy_threshold 10.5101
manhattan_f1 0.9784
manhattan_f1_threshold 10.6372
manhattan_precision 0.9599
manhattan_recall 0.9975
manhattan_ap 0.9866
euclidean_accuracy 0.9771
euclidean_accuracy_threshold 0.6766
euclidean_f1 0.9784
euclidean_f1_threshold 0.6766
euclidean_precision 0.96
euclidean_recall 0.9974
euclidean_ap 0.9866
max_accuracy 0.9771
max_accuracy_threshold 10.5101
max_f1 0.9784
max_f1_threshold 10.6372
max_precision 0.96
max_recall 0.9975
max_ap 0.9866

Training Details

Training Dataset

deepparse_address_mutations_comb_3

  • Dataset: deepparse_address_mutations_comb_3 at 7162fdc
  • Size: 4,517,388 training samples
  • Columns: label, sentence1, and sentence2
  • Approximate statistics based on the first 1000 samples:
    label sentence1 sentence2
    type torch.Tensor string string
    details
    • min: 8 tokens
    • mean: 13.21 tokens
    • max: 22 tokens
    • min: 6 tokens
    • mean: 13.54 tokens
    • max: 22 tokens
  • Samples:
    label sentence1 sentence2
    tensor(1, device='cuda:0') 12737 chesdin landng dr chesterfield va 23838 12737 chesdin landng dr chesterfield va
    tensor(1, device='cuda:0') 6080 norh oak trafficway gladstone mo 64118 6080 norh oak trafficway gladstone 64118-4896
    tensor(0, device='cuda:0') 242 pierce view cir wentzville mo 63385 242 pierce view cir wentzville LA 63385
  • Loss: ContrastiveLoss with these parameters:
    {
        "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
        "margin": 0.5,
        "size_average": true
    }
    

Evaluation Dataset

deepparse_address_mutations_comb_3

  • Dataset: deepparse_address_mutations_comb_3 at 7162fdc
  • Size: 968,012 evaluation samples
  • Columns: label, sentence1, and sentence2
  • Approximate statistics based on the first 1000 samples:
    label sentence1 sentence2
    type torch.Tensor string string
    details
    • min: 8 tokens
    • mean: 13.24 tokens
    • max: 22 tokens
    • min: 7 tokens
    • mean: 13.45 tokens
    • max: 27 tokens
  • Samples:
    label sentence1 sentence2
    tensor(1, device='cuda:0') 1 vincent avenue essex maryland 21221 1 vincent avenue essedx MD 21221
    tensor(1, device='cuda:0') 139 berg avenue hamilton tshp n.j. 08610 139 bcrg avenue hamilton tshp n.j. 08610
    tensor(1, device='cuda:0') 714 havard rd houston texas 77336 714 havaplns plns houston texas 77336-3120
  • Loss: ContrastiveLoss with these parameters:
    {
        "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
        "margin": 0.5,
        "size_average": true
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 1024
  • per_device_eval_batch_size: 1024
  • learning_rate: 2e-05
  • warmup_ratio: 0.1
  • fp16: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 1024
  • per_device_eval_batch_size: 1024
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 3
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss loss jarredparrett/deepparse_address_mutations_comb_3_max_ap
0.1133 500 0.0191 0.0131 0.8459
0.2267 1000 0.0112 0.0091 0.8887
0.3400 1500 0.0086 0.0067 0.9346
0.4533 2000 0.0064 0.0044 0.9604
0.5666 2500 0.0049 0.0037 0.9722
0.6800 3000 0.0042 0.0033 0.9761
0.7933 3500 0.0039 0.0032 0.9808
0.9066 4000 0.0037 0.0029 0.9825
1.0197 4500 0.0035 0.0028 0.9826
1.1330 5000 0.0033 0.0028 0.9836
1.2464 5500 0.0032 0.0027 0.9845
1.3597 6000 0.0031 0.0026 0.9853
1.4730 6500 0.003 0.0025 0.9857
1.5864 7000 0.003 0.0025 0.9859
1.6997 7500 0.0029 0.0025 0.9862
1.8130 8000 0.0028 0.0024 0.9864
1.9263 8500 0.0028 0.0024 0.9861
2.0394 9000 0.0028 0.0024 0.9864
2.1528 9500 0.0027 0.0024 0.9864
2.2661 10000 0.0027 0.0024 0.9865
2.3794 10500 0.0027 0.0023 0.9866
2.4927 11000 0.0026 0.0023 0.9866
2.6061 11500 0.0026 0.0023 0.9865
2.7194 12000 0.0026 0.0023 0.9865
2.8327 12500 0.0026 0.0023 0.9865
2.9461 13000 0.0026 0.0023 0.9866
2.9995 13236 - - 0.9866

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.1.1
  • Transformers: 4.45.2
  • PyTorch: 2.5.1+cu121
  • Accelerate: 1.1.1
  • Datasets: 3.2.0
  • Tokenizers: 0.20.3

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

ContrastiveLoss

@inproceedings{hadsell2006dimensionality,
    author={Hadsell, R. and Chopra, S. and LeCun, Y.},
    booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)},
    title={Dimensionality Reduction by Learning an Invariant Mapping},
    year={2006},
    volume={2},
    number={},
    pages={1735-1742},
    doi={10.1109/CVPR.2006.100}
}