metadata
language:
- en
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:4517388
- loss:ContrastiveLoss
base_model: sentence-transformers/all-MiniLM-L6-v2
widget:
- source_sentence: 640 prt ashley floor 10 chula vista california 91913
sentences:
- 10523 howard parks apartment 8 cockseysville md 21030
- 640 prt ashley floor 10 East Gregory PW 91913
- trailwoods radial loveland oh 4514
- source_sentence: 9036 taylorsville road louisville ky 40299-1750
sentences:
- '16331 northwest gearin junctn floor num 6 apt # 4 f tigard or 97223-2808'
- 19 Brian Key walk voorhees township n. j. 08026
- 9036 taylorsville boulevard louisville 40299-175
- source_sentence: 11 simek ln middletown township n j 07758
sentences:
- 248 strawberry meadows place apt 1 springdale 72764-3759
- 11 Daniel Drive knl middletown township MT 41761
- 1135 s westgate ave Mileshaven ca 90049
- source_sentence: so west prospect street aloha or 97078
sentences:
- '1300 Brittney Club plains lot # b new york cty NY 10459'
- 527 Nicole Springs bypas rupert CA 05776
- so wdest prospect street aloha 97078
- source_sentence: 8234 harvest bend lane laurel md 20707
sentences:
- 8234 harvest bend lane laurel md
- 8702 wahl crse basement santee ca 92071
- 310 ella street Jamesborough ne 68310
datasets:
- jarredparrett/deepparse_address_mutations_comb_3
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- dot_accuracy
- dot_accuracy_threshold
- dot_f1
- dot_f1_threshold
- dot_precision
- dot_recall
- dot_ap
- manhattan_accuracy
- manhattan_accuracy_threshold
- manhattan_f1
- manhattan_f1_threshold
- manhattan_precision
- manhattan_recall
- manhattan_ap
- euclidean_accuracy
- euclidean_accuracy_threshold
- euclidean_f1
- euclidean_f1_threshold
- euclidean_precision
- euclidean_recall
- euclidean_ap
- max_accuracy
- max_accuracy_threshold
- max_f1
- max_f1_threshold
- max_precision
- max_recall
- max_ap
model-index:
- name: SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
results:
- task:
type: binary-classification
name: Binary Classification
dataset:
name: jarredparrett/deepparse address mutations comb 3
type: jarredparrett/deepparse_address_mutations_comb_3
metrics:
- type: cosine_accuracy
value: 0.9770643339132159
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.7712496519088745
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.9784053285401372
name: Cosine F1
- type: cosine_f1_threshold
value: 0.7712496519088745
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.960100255219399
name: Cosine Precision
- type: cosine_recall
value: 0.9974219699718995
name: Cosine Recall
- type: cosine_ap
value: 0.9864940067102314
name: Cosine Ap
- type: dot_accuracy
value: 0.9770643339132159
name: Dot Accuracy
- type: dot_accuracy_threshold
value: 0.7712496519088745
name: Dot Accuracy Threshold
- type: dot_f1
value: 0.9784053285401372
name: Dot F1
- type: dot_f1_threshold
value: 0.7712496519088745
name: Dot F1 Threshold
- type: dot_precision
value: 0.960100255219399
name: Dot Precision
- type: dot_recall
value: 0.9974219699718995
name: Dot Recall
- type: dot_ap
value: 0.986499063941509
name: Dot Ap
- type: manhattan_accuracy
value: 0.9770395408321384
name: Manhattan Accuracy
- type: manhattan_accuracy_threshold
value: 10.601512908935547
name: Manhattan Accuracy Threshold
- type: manhattan_f1
value: 0.978383036334317
name: Manhattan F1
- type: manhattan_f1_threshold
value: 10.611783027648926
name: Manhattan F1 Threshold
- type: manhattan_precision
value: 0.9600334406666756
name: Manhattan Precision
- type: manhattan_recall
value: 0.9974477502721805
name: Manhattan Recall
- type: manhattan_ap
value: 0.9865423177462433
name: Manhattan Ap
- type: euclidean_accuracy
value: 0.9770643339132159
name: Euclidean Accuracy
- type: euclidean_accuracy_threshold
value: 0.6763879060745239
name: Euclidean Accuracy Threshold
- type: euclidean_f1
value: 0.9784053285401372
name: Euclidean F1
- type: euclidean_f1_threshold
value: 0.6763879060745239
name: Euclidean F1 Threshold
- type: euclidean_precision
value: 0.960100255219399
name: Euclidean Precision
- type: euclidean_recall
value: 0.9974219699718995
name: Euclidean Recall
- type: euclidean_ap
value: 0.9865515796011742
name: Euclidean Ap
- type: max_accuracy
value: 0.9770643339132159
name: Max Accuracy
- type: max_accuracy_threshold
value: 10.601512908935547
name: Max Accuracy Threshold
- type: max_f1
value: 0.9784053285401372
name: Max F1
- type: max_f1_threshold
value: 10.611783027648926
name: Max F1 Threshold
- type: max_precision
value: 0.960100255219399
name: Max Precision
- type: max_recall
value: 0.9974477502721805
name: Max Recall
- type: max_ap
value: 0.9865515796011742
name: Max Ap
- type: cosine_accuracy
value: 0.9770612347780813
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.7710819244384766
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.9783854448042815
name: Cosine F1
- type: cosine_f1_threshold
value: 0.7710819244384766
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.9600473761629129
name: Cosine Precision
- type: cosine_recall
value: 0.9974377142267394
name: Cosine Recall
- type: cosine_ap
value: 0.9865423807819248
name: Cosine Ap
- type: dot_accuracy
value: 0.9770612347780813
name: Dot Accuracy
- type: dot_accuracy_threshold
value: 0.7710819244384766
name: Dot Accuracy Threshold
- type: dot_f1
value: 0.9783854448042815
name: Dot F1
- type: dot_f1_threshold
value: 0.7710819244384766
name: Dot F1 Threshold
- type: dot_precision
value: 0.9600473761629129
name: Dot Precision
- type: dot_recall
value: 0.9974377142267394
name: Dot Recall
- type: dot_ap
value: 0.9865613743522202
name: Dot Ap
- type: manhattan_accuracy
value: 0.9770395408321384
name: Manhattan Accuracy
- type: manhattan_accuracy_threshold
value: 10.510114669799805
name: Manhattan Accuracy Threshold
- type: manhattan_f1
value: 0.9783637843035726
name: Manhattan F1
- type: manhattan_f1_threshold
value: 10.637184143066406
name: Manhattan F1 Threshold
- type: manhattan_precision
value: 0.9599119169895931
name: Manhattan Precision
- type: manhattan_recall
value: 0.9975389354307954
name: Manhattan Recall
- type: manhattan_ap
value: 0.9865931109650937
name: Manhattan Ap
- type: euclidean_accuracy
value: 0.9770612347780813
name: Euclidean Accuracy
- type: euclidean_accuracy_threshold
value: 0.6766358613967896
name: Euclidean Accuracy Threshold
- type: euclidean_f1
value: 0.9783854448042815
name: Euclidean F1
- type: euclidean_f1_threshold
value: 0.6766358613967896
name: Euclidean F1 Threshold
- type: euclidean_precision
value: 0.9600473761629129
name: Euclidean Precision
- type: euclidean_recall
value: 0.9974377142267394
name: Euclidean Recall
- type: euclidean_ap
value: 0.9866061739963429
name: Euclidean Ap
- type: max_accuracy
value: 0.9770612347780813
name: Max Accuracy
- type: max_accuracy_threshold
value: 10.510114669799805
name: Max Accuracy Threshold
- type: max_f1
value: 0.9783854448042815
name: Max F1
- type: max_f1_threshold
value: 10.637184143066406
name: Max F1 Threshold
- type: max_precision
value: 0.9600473761629129
name: Max Precision
- type: max_recall
value: 0.9975389354307954
name: Max Recall
- type: max_ap
value: 0.9866061739963429
name: Max Ap
SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2 on the deepparse_address_mutations_comb_3 dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-MiniLM-L6-v2
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("jarredparrett/all-MiniLM-L6-v2_tuned_on_deepparse_address_mutations_comb_3")
# Run inference
sentences = [
'8234 harvest bend lane laurel md 20707',
'8234 harvest bend lane laurel md',
'8702 wahl crse basement santee ca 92071',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Binary Classification
- Dataset:
jarredparrett/deepparse_address_mutations_comb_3
- Evaluated with
BinaryClassificationEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.9771 |
cosine_accuracy_threshold | 0.7712 |
cosine_f1 | 0.9784 |
cosine_f1_threshold | 0.7712 |
cosine_precision | 0.9601 |
cosine_recall | 0.9974 |
cosine_ap | 0.9865 |
dot_accuracy | 0.9771 |
dot_accuracy_threshold | 0.7712 |
dot_f1 | 0.9784 |
dot_f1_threshold | 0.7712 |
dot_precision | 0.9601 |
dot_recall | 0.9974 |
dot_ap | 0.9865 |
manhattan_accuracy | 0.977 |
manhattan_accuracy_threshold | 10.6015 |
manhattan_f1 | 0.9784 |
manhattan_f1_threshold | 10.6118 |
manhattan_precision | 0.96 |
manhattan_recall | 0.9974 |
manhattan_ap | 0.9865 |
euclidean_accuracy | 0.9771 |
euclidean_accuracy_threshold | 0.6764 |
euclidean_f1 | 0.9784 |
euclidean_f1_threshold | 0.6764 |
euclidean_precision | 0.9601 |
euclidean_recall | 0.9974 |
euclidean_ap | 0.9866 |
max_accuracy | 0.9771 |
max_accuracy_threshold | 10.6015 |
max_f1 | 0.9784 |
max_f1_threshold | 10.6118 |
max_precision | 0.9601 |
max_recall | 0.9974 |
max_ap | 0.9866 |
Binary Classification
- Dataset:
jarredparrett/deepparse_address_mutations_comb_3
- Evaluated with
BinaryClassificationEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.9771 |
cosine_accuracy_threshold | 0.7711 |
cosine_f1 | 0.9784 |
cosine_f1_threshold | 0.7711 |
cosine_precision | 0.96 |
cosine_recall | 0.9974 |
cosine_ap | 0.9865 |
dot_accuracy | 0.9771 |
dot_accuracy_threshold | 0.7711 |
dot_f1 | 0.9784 |
dot_f1_threshold | 0.7711 |
dot_precision | 0.96 |
dot_recall | 0.9974 |
dot_ap | 0.9866 |
manhattan_accuracy | 0.977 |
manhattan_accuracy_threshold | 10.5101 |
manhattan_f1 | 0.9784 |
manhattan_f1_threshold | 10.6372 |
manhattan_precision | 0.9599 |
manhattan_recall | 0.9975 |
manhattan_ap | 0.9866 |
euclidean_accuracy | 0.9771 |
euclidean_accuracy_threshold | 0.6766 |
euclidean_f1 | 0.9784 |
euclidean_f1_threshold | 0.6766 |
euclidean_precision | 0.96 |
euclidean_recall | 0.9974 |
euclidean_ap | 0.9866 |
max_accuracy | 0.9771 |
max_accuracy_threshold | 10.5101 |
max_f1 | 0.9784 |
max_f1_threshold | 10.6372 |
max_precision | 0.96 |
max_recall | 0.9975 |
max_ap | 0.9866 |
Training Details
Training Dataset
deepparse_address_mutations_comb_3
- Dataset: deepparse_address_mutations_comb_3 at 7162fdc
- Size: 4,517,388 training samples
- Columns:
label
,sentence1
, andsentence2
- Approximate statistics based on the first 1000 samples:
label sentence1 sentence2 type torch.Tensor string string details - min: 8 tokens
- mean: 13.21 tokens
- max: 22 tokens
- min: 6 tokens
- mean: 13.54 tokens
- max: 22 tokens
- Samples:
label sentence1 sentence2 tensor(1, device='cuda:0')
12737 chesdin landng dr chesterfield va 23838
12737 chesdin landng dr chesterfield va
tensor(1, device='cuda:0')
6080 norh oak trafficway gladstone mo 64118
6080 norh oak trafficway gladstone 64118-4896
tensor(0, device='cuda:0')
242 pierce view cir wentzville mo 63385
242 pierce view cir wentzville LA 63385
- Loss:
ContrastiveLoss
with these parameters:{ "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE", "margin": 0.5, "size_average": true }
Evaluation Dataset
deepparse_address_mutations_comb_3
- Dataset: deepparse_address_mutations_comb_3 at 7162fdc
- Size: 968,012 evaluation samples
- Columns:
label
,sentence1
, andsentence2
- Approximate statistics based on the first 1000 samples:
label sentence1 sentence2 type torch.Tensor string string details - min: 8 tokens
- mean: 13.24 tokens
- max: 22 tokens
- min: 7 tokens
- mean: 13.45 tokens
- max: 27 tokens
- Samples:
label sentence1 sentence2 tensor(1, device='cuda:0')
1 vincent avenue essex maryland 21221
1 vincent avenue essedx MD 21221
tensor(1, device='cuda:0')
139 berg avenue hamilton tshp n.j. 08610
139 bcrg avenue hamilton tshp n.j. 08610
tensor(1, device='cuda:0')
714 havard rd houston texas 77336
714 havaplns plns houston texas 77336-3120
- Loss:
ContrastiveLoss
with these parameters:{ "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE", "margin": 0.5, "size_average": true }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 1024per_device_eval_batch_size
: 1024learning_rate
: 2e-05warmup_ratio
: 0.1fp16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 1024per_device_eval_batch_size
: 1024per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 3max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | loss | jarredparrett/deepparse_address_mutations_comb_3_max_ap |
---|---|---|---|---|
0.1133 | 500 | 0.0191 | 0.0131 | 0.8459 |
0.2267 | 1000 | 0.0112 | 0.0091 | 0.8887 |
0.3400 | 1500 | 0.0086 | 0.0067 | 0.9346 |
0.4533 | 2000 | 0.0064 | 0.0044 | 0.9604 |
0.5666 | 2500 | 0.0049 | 0.0037 | 0.9722 |
0.6800 | 3000 | 0.0042 | 0.0033 | 0.9761 |
0.7933 | 3500 | 0.0039 | 0.0032 | 0.9808 |
0.9066 | 4000 | 0.0037 | 0.0029 | 0.9825 |
1.0197 | 4500 | 0.0035 | 0.0028 | 0.9826 |
1.1330 | 5000 | 0.0033 | 0.0028 | 0.9836 |
1.2464 | 5500 | 0.0032 | 0.0027 | 0.9845 |
1.3597 | 6000 | 0.0031 | 0.0026 | 0.9853 |
1.4730 | 6500 | 0.003 | 0.0025 | 0.9857 |
1.5864 | 7000 | 0.003 | 0.0025 | 0.9859 |
1.6997 | 7500 | 0.0029 | 0.0025 | 0.9862 |
1.8130 | 8000 | 0.0028 | 0.0024 | 0.9864 |
1.9263 | 8500 | 0.0028 | 0.0024 | 0.9861 |
2.0394 | 9000 | 0.0028 | 0.0024 | 0.9864 |
2.1528 | 9500 | 0.0027 | 0.0024 | 0.9864 |
2.2661 | 10000 | 0.0027 | 0.0024 | 0.9865 |
2.3794 | 10500 | 0.0027 | 0.0023 | 0.9866 |
2.4927 | 11000 | 0.0026 | 0.0023 | 0.9866 |
2.6061 | 11500 | 0.0026 | 0.0023 | 0.9865 |
2.7194 | 12000 | 0.0026 | 0.0023 | 0.9865 |
2.8327 | 12500 | 0.0026 | 0.0023 | 0.9865 |
2.9461 | 13000 | 0.0026 | 0.0023 | 0.9866 |
2.9995 | 13236 | - | - | 0.9866 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.1
- Transformers: 4.45.2
- PyTorch: 2.5.1+cu121
- Accelerate: 1.1.1
- Datasets: 3.2.0
- Tokenizers: 0.20.3
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
ContrastiveLoss
@inproceedings{hadsell2006dimensionality,
author={Hadsell, R. and Chopra, S. and LeCun, Y.},
booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)},
title={Dimensionality Reduction by Learning an Invariant Mapping},
year={2006},
volume={2},
number={},
pages={1735-1742},
doi={10.1109/CVPR.2006.100}
}