jamesthong commited on
Commit
880805e
·
1 Parent(s): f278f39

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +43 -19
README.md CHANGED
@@ -1,5 +1,6 @@
1
  ---
2
  license: apache-2.0
 
3
  tags:
4
  - generated_from_trainer
5
  datasets:
@@ -8,7 +9,20 @@ metrics:
8
  - accuracy
9
  model-index:
10
  - name: distilhubert-finetuned-gtzan
11
- results: []
 
 
 
 
 
 
 
 
 
 
 
 
 
12
  ---
13
 
14
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -18,8 +32,8 @@ should probably proofread and complete it, then remove this comment. -->
18
 
19
  This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
20
  It achieves the following results on the evaluation set:
21
- - Loss: 0.7339
22
- - Accuracy: 0.82
23
 
24
  ## Model description
25
 
@@ -39,33 +53,43 @@ More information needed
39
 
40
  The following hyperparameters were used during training:
41
  - learning_rate: 5e-05
42
- - train_batch_size: 4
43
- - eval_batch_size: 4
44
  - seed: 42
45
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
46
  - lr_scheduler_type: linear
47
  - lr_scheduler_warmup_ratio: 0.1
48
- - num_epochs: 10
49
 
50
  ### Training results
51
 
52
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
53
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
54
- | 1.9233 | 1.0 | 225 | 1.7014 | 0.49 |
55
- | 0.8822 | 2.0 | 450 | 1.0546 | 0.68 |
56
- | 0.676 | 3.0 | 675 | 0.7165 | 0.78 |
57
- | 0.8326 | 4.0 | 900 | 0.5948 | 0.79 |
58
- | 0.3184 | 5.0 | 1125 | 0.5484 | 0.81 |
59
- | 0.6154 | 6.0 | 1350 | 0.5977 | 0.83 |
60
- | 0.0305 | 7.0 | 1575 | 0.6213 | 0.81 |
61
- | 0.0154 | 8.0 | 1800 | 0.7479 | 0.79 |
62
- | 0.086 | 9.0 | 2025 | 0.6926 | 0.84 |
63
- | 0.0103 | 10.0 | 2250 | 0.7339 | 0.82 |
 
 
 
 
 
 
 
 
 
 
64
 
65
 
66
  ### Framework versions
67
 
68
- - Transformers 4.30.2
69
- - Pytorch 2.0.0
70
- - Datasets 2.1.0
71
  - Tokenizers 0.13.3
 
1
  ---
2
  license: apache-2.0
3
+ base_model: ntu-spml/distilhubert
4
  tags:
5
  - generated_from_trainer
6
  datasets:
 
9
  - accuracy
10
  model-index:
11
  - name: distilhubert-finetuned-gtzan
12
+ results:
13
+ - task:
14
+ name: Audio Classification
15
+ type: audio-classification
16
+ dataset:
17
+ name: GTZAN
18
+ type: marsyas/gtzan
19
+ config: all
20
+ split: train
21
+ args: all
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.84
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
32
 
33
  This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
34
  It achieves the following results on the evaluation set:
35
+ - Loss: 0.7913
36
+ - Accuracy: 0.84
37
 
38
  ## Model description
39
 
 
53
 
54
  The following hyperparameters were used during training:
55
  - learning_rate: 5e-05
56
+ - train_batch_size: 8
57
+ - eval_batch_size: 8
58
  - seed: 42
59
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
60
  - lr_scheduler_type: linear
61
  - lr_scheduler_warmup_ratio: 0.1
62
+ - num_epochs: 20
63
 
64
  ### Training results
65
 
66
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
67
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
68
+ | 2.182 | 1.0 | 113 | 2.0488 | 0.51 |
69
+ | 1.5191 | 2.0 | 226 | 1.4777 | 0.63 |
70
+ | 1.1082 | 3.0 | 339 | 1.0471 | 0.74 |
71
+ | 1.1174 | 4.0 | 452 | 0.9705 | 0.71 |
72
+ | 0.5903 | 5.0 | 565 | 0.7648 | 0.78 |
73
+ | 0.4231 | 6.0 | 678 | 0.6599 | 0.79 |
74
+ | 0.3242 | 7.0 | 791 | 0.5716 | 0.85 |
75
+ | 0.0799 | 8.0 | 904 | 0.7228 | 0.8 |
76
+ | 0.2491 | 9.0 | 1017 | 0.5883 | 0.85 |
77
+ | 0.0403 | 10.0 | 1130 | 0.7826 | 0.83 |
78
+ | 0.0093 | 11.0 | 1243 | 0.7241 | 0.86 |
79
+ | 0.1129 | 12.0 | 1356 | 0.6913 | 0.85 |
80
+ | 0.0051 | 13.0 | 1469 | 0.7453 | 0.87 |
81
+ | 0.0046 | 14.0 | 1582 | 0.7348 | 0.86 |
82
+ | 0.0039 | 15.0 | 1695 | 0.7435 | 0.85 |
83
+ | 0.0031 | 16.0 | 1808 | 0.7868 | 0.88 |
84
+ | 0.0523 | 17.0 | 1921 | 0.7812 | 0.84 |
85
+ | 0.0029 | 18.0 | 2034 | 0.7900 | 0.84 |
86
+ | 0.0031 | 19.0 | 2147 | 0.7909 | 0.84 |
87
+ | 0.0038 | 20.0 | 2260 | 0.7913 | 0.84 |
88
 
89
 
90
  ### Framework versions
91
 
92
+ - Transformers 4.31.0
93
+ - Pytorch 2.0.1+cu118
94
+ - Datasets 2.14.1
95
  - Tokenizers 0.13.3