jamesthong
commited on
Commit
·
880805e
1
Parent(s):
f278f39
update model card README.md
Browse files
README.md
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
|
|
3 |
tags:
|
4 |
- generated_from_trainer
|
5 |
datasets:
|
@@ -8,7 +9,20 @@ metrics:
|
|
8 |
- accuracy
|
9 |
model-index:
|
10 |
- name: distilhubert-finetuned-gtzan
|
11 |
-
results:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
---
|
13 |
|
14 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -18,8 +32,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
18 |
|
19 |
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
|
20 |
It achieves the following results on the evaluation set:
|
21 |
-
- Loss: 0.
|
22 |
-
- Accuracy: 0.
|
23 |
|
24 |
## Model description
|
25 |
|
@@ -39,33 +53,43 @@ More information needed
|
|
39 |
|
40 |
The following hyperparameters were used during training:
|
41 |
- learning_rate: 5e-05
|
42 |
-
- train_batch_size:
|
43 |
-
- eval_batch_size:
|
44 |
- seed: 42
|
45 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
- lr_scheduler_type: linear
|
47 |
- lr_scheduler_warmup_ratio: 0.1
|
48 |
-
- num_epochs:
|
49 |
|
50 |
### Training results
|
51 |
|
52 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
53 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
54 |
-
|
|
55 |
-
|
|
56 |
-
|
|
57 |
-
|
|
58 |
-
| 0.
|
59 |
-
| 0.
|
60 |
-
| 0.
|
61 |
-
| 0.
|
62 |
-
| 0.
|
63 |
-
| 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
|
66 |
### Framework versions
|
67 |
|
68 |
-
- Transformers 4.
|
69 |
-
- Pytorch 2.0.
|
70 |
-
- Datasets 2.1
|
71 |
- Tokenizers 0.13.3
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
+
base_model: ntu-spml/distilhubert
|
4 |
tags:
|
5 |
- generated_from_trainer
|
6 |
datasets:
|
|
|
9 |
- accuracy
|
10 |
model-index:
|
11 |
- name: distilhubert-finetuned-gtzan
|
12 |
+
results:
|
13 |
+
- task:
|
14 |
+
name: Audio Classification
|
15 |
+
type: audio-classification
|
16 |
+
dataset:
|
17 |
+
name: GTZAN
|
18 |
+
type: marsyas/gtzan
|
19 |
+
config: all
|
20 |
+
split: train
|
21 |
+
args: all
|
22 |
+
metrics:
|
23 |
+
- name: Accuracy
|
24 |
+
type: accuracy
|
25 |
+
value: 0.84
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
32 |
|
33 |
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.7913
|
36 |
+
- Accuracy: 0.84
|
37 |
|
38 |
## Model description
|
39 |
|
|
|
53 |
|
54 |
The following hyperparameters were used during training:
|
55 |
- learning_rate: 5e-05
|
56 |
+
- train_batch_size: 8
|
57 |
+
- eval_batch_size: 8
|
58 |
- seed: 42
|
59 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
60 |
- lr_scheduler_type: linear
|
61 |
- lr_scheduler_warmup_ratio: 0.1
|
62 |
+
- num_epochs: 20
|
63 |
|
64 |
### Training results
|
65 |
|
66 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
67 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
68 |
+
| 2.182 | 1.0 | 113 | 2.0488 | 0.51 |
|
69 |
+
| 1.5191 | 2.0 | 226 | 1.4777 | 0.63 |
|
70 |
+
| 1.1082 | 3.0 | 339 | 1.0471 | 0.74 |
|
71 |
+
| 1.1174 | 4.0 | 452 | 0.9705 | 0.71 |
|
72 |
+
| 0.5903 | 5.0 | 565 | 0.7648 | 0.78 |
|
73 |
+
| 0.4231 | 6.0 | 678 | 0.6599 | 0.79 |
|
74 |
+
| 0.3242 | 7.0 | 791 | 0.5716 | 0.85 |
|
75 |
+
| 0.0799 | 8.0 | 904 | 0.7228 | 0.8 |
|
76 |
+
| 0.2491 | 9.0 | 1017 | 0.5883 | 0.85 |
|
77 |
+
| 0.0403 | 10.0 | 1130 | 0.7826 | 0.83 |
|
78 |
+
| 0.0093 | 11.0 | 1243 | 0.7241 | 0.86 |
|
79 |
+
| 0.1129 | 12.0 | 1356 | 0.6913 | 0.85 |
|
80 |
+
| 0.0051 | 13.0 | 1469 | 0.7453 | 0.87 |
|
81 |
+
| 0.0046 | 14.0 | 1582 | 0.7348 | 0.86 |
|
82 |
+
| 0.0039 | 15.0 | 1695 | 0.7435 | 0.85 |
|
83 |
+
| 0.0031 | 16.0 | 1808 | 0.7868 | 0.88 |
|
84 |
+
| 0.0523 | 17.0 | 1921 | 0.7812 | 0.84 |
|
85 |
+
| 0.0029 | 18.0 | 2034 | 0.7900 | 0.84 |
|
86 |
+
| 0.0031 | 19.0 | 2147 | 0.7909 | 0.84 |
|
87 |
+
| 0.0038 | 20.0 | 2260 | 0.7913 | 0.84 |
|
88 |
|
89 |
|
90 |
### Framework versions
|
91 |
|
92 |
+
- Transformers 4.31.0
|
93 |
+
- Pytorch 2.0.1+cu118
|
94 |
+
- Datasets 2.14.1
|
95 |
- Tokenizers 0.13.3
|