jalal-elzein commited on
Commit
815b07c
·
1 Parent(s): 3d35e23

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +32 -1
README.md CHANGED
@@ -5,9 +5,24 @@ tags:
5
  - generated_from_trainer
6
  datasets:
7
  - marsyas/gtzan
 
 
8
  model-index:
9
  - name: distilhubert-finetuned-gtzan
10
- results: []
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  ---
12
 
13
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -16,6 +31,9 @@ should probably proofread and complete it, then remove this comment. -->
16
  # distilhubert-finetuned-gtzan
17
 
18
  This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
 
 
 
19
 
20
  ## Model description
21
 
@@ -45,6 +63,19 @@ The following hyperparameters were used during training:
45
  - lr_scheduler_warmup_ratio: 0.1
46
  - num_epochs: 7
47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48
  ### Framework versions
49
 
50
  - Transformers 4.31.0
 
5
  - generated_from_trainer
6
  datasets:
7
  - marsyas/gtzan
8
+ metrics:
9
+ - accuracy
10
  model-index:
11
  - name: distilhubert-finetuned-gtzan
12
+ results:
13
+ - task:
14
+ name: Audio Classification
15
+ type: audio-classification
16
+ dataset:
17
+ name: GTZAN
18
+ type: marsyas/gtzan
19
+ config: all
20
+ split: train
21
+ args: all
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.88
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
31
  # distilhubert-finetuned-gtzan
32
 
33
  This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 0.5117
36
+ - Accuracy: 0.88
37
 
38
  ## Model description
39
 
 
63
  - lr_scheduler_warmup_ratio: 0.1
64
  - num_epochs: 7
65
 
66
+ ### Training results
67
+
68
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
69
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
70
+ | 1.8388 | 1.0 | 112 | 1.7222 | 0.53 |
71
+ | 1.3269 | 2.0 | 225 | 1.1259 | 0.73 |
72
+ | 0.8797 | 3.0 | 337 | 0.8566 | 0.78 |
73
+ | 0.6708 | 4.0 | 450 | 0.7945 | 0.8 |
74
+ | 0.6879 | 5.0 | 562 | 0.6607 | 0.85 |
75
+ | 0.5266 | 6.0 | 675 | 0.5240 | 0.88 |
76
+ | 0.3709 | 6.97 | 784 | 0.5117 | 0.88 |
77
+
78
+
79
  ### Framework versions
80
 
81
  - Transformers 4.31.0