jaggernaut007's picture
End of training
2d0e1da verified
metadata
license: mit
base_model: ml6team/keyphrase-extraction-distilbert-inspec
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: keyphrase-extraction-distilbert-inspec-finetuned-ner
    results: []

keyphrase-extraction-distilbert-inspec-finetuned-ner

This model is a fine-tuned version of ml6team/keyphrase-extraction-distilbert-inspec on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7236
  • Precision: 0.7952
  • Recall: 0.8590
  • F1: 0.8259
  • Accuracy: 0.7952

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 16
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 0.15 10 0.7251 0.7952 0.8590 0.8259 0.7952
No log 0.3 20 0.7239 0.7952 0.8590 0.8259 0.7952
No log 0.45 30 0.7239 0.7952 0.8590 0.8259 0.7952
No log 0.6 40 0.7236 0.7952 0.8590 0.8259 0.7952
No log 0.75 50 0.7241 0.7952 0.8590 0.8259 0.7952
No log 0.9 60 0.7238 0.7952 0.8590 0.8259 0.7952
No log 1.04 70 0.7241 0.7952 0.8590 0.8259 0.7952

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.2.2+cu121
  • Datasets 2.19.0
  • Tokenizers 0.15.2