|
|
|
|
|
|
|
|
|
import os |
|
import json |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
import numpy as np |
|
import matplotlib |
|
from scipy.io import wavfile |
|
from matplotlib import pyplot as plt |
|
|
|
matplotlib.use("Agg") |
|
|
|
import hashlib |
|
import os |
|
|
|
import requests |
|
from tqdm import tqdm |
|
|
|
URL_MAP = { |
|
"vggishish_lpaps": "https://a3s.fi/swift/v1/AUTH_a235c0f452d648828f745589cde1219a/specvqgan_public/vggishish16.pt", |
|
"vggishish_mean_std_melspec_10s_22050hz": "https://a3s.fi/swift/v1/AUTH_a235c0f452d648828f745589cde1219a/specvqgan_public/train_means_stds_melspec_10s_22050hz.txt", |
|
"melception": "https://a3s.fi/swift/v1/AUTH_a235c0f452d648828f745589cde1219a/specvqgan_public/melception-21-05-10T09-28-40.pt", |
|
} |
|
|
|
CKPT_MAP = { |
|
"vggishish_lpaps": "vggishish16.pt", |
|
"vggishish_mean_std_melspec_10s_22050hz": "train_means_stds_melspec_10s_22050hz.txt", |
|
"melception": "melception-21-05-10T09-28-40.pt", |
|
} |
|
|
|
MD5_MAP = { |
|
"vggishish_lpaps": "197040c524a07ccacf7715d7080a80bd", |
|
"vggishish_mean_std_melspec_10s_22050hz": "f449c6fd0e248936c16f6d22492bb625", |
|
"melception": "a71a41041e945b457c7d3d814bbcf72d", |
|
} |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
|
|
def read_list(fname): |
|
result = [] |
|
with open(fname, "r") as f: |
|
for each in f.readlines(): |
|
each = each.strip("\n") |
|
result.append(each) |
|
return result |
|
|
|
|
|
def build_dataset_json_from_list(list_path): |
|
data = [] |
|
for each in read_list(list_path): |
|
if "|" in each: |
|
wav, caption = each.split("|") |
|
else: |
|
caption = each |
|
wav = "" |
|
data.append( |
|
{ |
|
"wav": wav, |
|
"caption": caption, |
|
} |
|
) |
|
return {"data": data} |
|
|
|
|
|
def load_json(fname): |
|
with open(fname, "r") as f: |
|
data = json.load(f) |
|
return data |
|
|
|
|
|
def read_json(dataset_json_file): |
|
with open(dataset_json_file, "r") as fp: |
|
data_json = json.load(fp) |
|
return data_json["data"] |
|
|
|
|
|
def copy_test_subset_data(metadata, testset_copy_target_path): |
|
|
|
os.makedirs(testset_copy_target_path, exist_ok=True) |
|
if len(os.listdir(testset_copy_target_path)) == len(metadata): |
|
return |
|
else: |
|
|
|
for file in os.listdir(testset_copy_target_path): |
|
try: |
|
os.remove(os.path.join(testset_copy_target_path, file)) |
|
except Exception as e: |
|
print(e) |
|
|
|
print("Copying test subset data to {}".format(testset_copy_target_path)) |
|
for each in tqdm(metadata): |
|
cmd = "cp {} {}".format(each["wav"], os.path.join(testset_copy_target_path)) |
|
os.system(cmd) |
|
|
|
|
|
def listdir_nohidden(path): |
|
for f in os.listdir(path): |
|
if not f.startswith("."): |
|
yield f |
|
|
|
|
|
def get_restore_step(path): |
|
checkpoints = os.listdir(path) |
|
if os.path.exists(os.path.join(path, "final.ckpt")): |
|
return "final.ckpt", 0 |
|
elif not os.path.exists(os.path.join(path, "last.ckpt")): |
|
steps = [int(x.split(".ckpt")[0].split("step=")[1]) for x in checkpoints] |
|
return checkpoints[np.argmax(steps)], np.max(steps) |
|
else: |
|
steps = [] |
|
for x in checkpoints: |
|
if "last" in x: |
|
if "-v" not in x: |
|
fname = "last.ckpt" |
|
else: |
|
this_version = int(x.split(".ckpt")[0].split("-v")[1]) |
|
steps.append(this_version) |
|
if len(steps) == 0 or this_version > np.max(steps): |
|
fname = "last-v%s.ckpt" % this_version |
|
return fname, 0 |
|
|
|
|
|
def download(url, local_path, chunk_size=1024): |
|
os.makedirs(os.path.split(local_path)[0], exist_ok=True) |
|
with requests.get(url, stream=True) as r: |
|
total_size = int(r.headers.get("content-length", 0)) |
|
with tqdm(total=total_size, unit="B", unit_scale=True) as pbar: |
|
with open(local_path, "wb") as f: |
|
for data in r.iter_content(chunk_size=chunk_size): |
|
if data: |
|
f.write(data) |
|
pbar.update(chunk_size) |
|
|
|
|
|
def md5_hash(path): |
|
with open(path, "rb") as f: |
|
content = f.read() |
|
return hashlib.md5(content).hexdigest() |
|
|
|
|
|
def get_ckpt_path(name, root, check=False): |
|
assert name in URL_MAP |
|
path = os.path.join(root, CKPT_MAP[name]) |
|
if not os.path.exists(path) or (check and not md5_hash(path) == MD5_MAP[name]): |
|
print("Downloading {} model from {} to {}".format(name, URL_MAP[name], path)) |
|
download(URL_MAP[name], path) |
|
md5 = md5_hash(path) |
|
assert md5 == MD5_MAP[name], md5 |
|
return path |
|
|
|
|
|
class KeyNotFoundError(Exception): |
|
def __init__(self, cause, keys=None, visited=None): |
|
self.cause = cause |
|
self.keys = keys |
|
self.visited = visited |
|
messages = list() |
|
if keys is not None: |
|
messages.append("Key not found: {}".format(keys)) |
|
if visited is not None: |
|
messages.append("Visited: {}".format(visited)) |
|
messages.append("Cause:\n{}".format(cause)) |
|
message = "\n".join(messages) |
|
super().__init__(message) |
|
|
|
|
|
def retrieve( |
|
list_or_dict, key, splitval="/", default=None, expand=True, pass_success=False |
|
): |
|
"""Given a nested list or dict return the desired value at key expanding |
|
callable nodes if necessary and :attr:`expand` is ``True``. The expansion |
|
is done in-place. |
|
|
|
Parameters |
|
---------- |
|
list_or_dict : list or dict |
|
Possibly nested list or dictionary. |
|
key : str |
|
key/to/value, path like string describing all keys necessary to |
|
consider to get to the desired value. List indices can also be |
|
passed here. |
|
splitval : str |
|
String that defines the delimiter between keys of the |
|
different depth levels in `key`. |
|
default : obj |
|
Value returned if :attr:`key` is not found. |
|
expand : bool |
|
Whether to expand callable nodes on the path or not. |
|
|
|
Returns |
|
------- |
|
The desired value or if :attr:`default` is not ``None`` and the |
|
:attr:`key` is not found returns ``default``. |
|
|
|
Raises |
|
------ |
|
Exception if ``key`` not in ``list_or_dict`` and :attr:`default` is |
|
``None``. |
|
""" |
|
|
|
keys = key.split(splitval) |
|
|
|
success = True |
|
try: |
|
visited = [] |
|
parent = None |
|
last_key = None |
|
for key in keys: |
|
if callable(list_or_dict): |
|
if not expand: |
|
raise KeyNotFoundError( |
|
ValueError( |
|
"Trying to get past callable node with expand=False." |
|
), |
|
keys=keys, |
|
visited=visited, |
|
) |
|
list_or_dict = list_or_dict() |
|
parent[last_key] = list_or_dict |
|
|
|
last_key = key |
|
parent = list_or_dict |
|
|
|
try: |
|
if isinstance(list_or_dict, dict): |
|
list_or_dict = list_or_dict[key] |
|
else: |
|
list_or_dict = list_or_dict[int(key)] |
|
except (KeyError, IndexError, ValueError) as e: |
|
raise KeyNotFoundError(e, keys=keys, visited=visited) |
|
|
|
visited += [key] |
|
|
|
if expand and callable(list_or_dict): |
|
list_or_dict = list_or_dict() |
|
parent[last_key] = list_or_dict |
|
except KeyNotFoundError as e: |
|
if default is None: |
|
raise e |
|
else: |
|
list_or_dict = default |
|
success = False |
|
|
|
if not pass_success: |
|
return list_or_dict |
|
else: |
|
return list_or_dict, success |
|
|
|
|
|
def to_device(data, device): |
|
if len(data) == 12: |
|
( |
|
ids, |
|
raw_texts, |
|
speakers, |
|
texts, |
|
src_lens, |
|
max_src_len, |
|
mels, |
|
mel_lens, |
|
max_mel_len, |
|
pitches, |
|
energies, |
|
durations, |
|
) = data |
|
|
|
speakers = torch.from_numpy(speakers).long().to(device) |
|
texts = torch.from_numpy(texts).long().to(device) |
|
src_lens = torch.from_numpy(src_lens).to(device) |
|
mels = torch.from_numpy(mels).float().to(device) |
|
mel_lens = torch.from_numpy(mel_lens).to(device) |
|
pitches = torch.from_numpy(pitches).float().to(device) |
|
energies = torch.from_numpy(energies).to(device) |
|
durations = torch.from_numpy(durations).long().to(device) |
|
|
|
return ( |
|
ids, |
|
raw_texts, |
|
speakers, |
|
texts, |
|
src_lens, |
|
max_src_len, |
|
mels, |
|
mel_lens, |
|
max_mel_len, |
|
pitches, |
|
energies, |
|
durations, |
|
) |
|
|
|
if len(data) == 6: |
|
(ids, raw_texts, speakers, texts, src_lens, max_src_len) = data |
|
|
|
speakers = torch.from_numpy(speakers).long().to(device) |
|
texts = torch.from_numpy(texts).long().to(device) |
|
src_lens = torch.from_numpy(src_lens).to(device) |
|
|
|
return (ids, raw_texts, speakers, texts, src_lens, max_src_len) |
|
|
|
|
|
def log(logger, step=None, fig=None, audio=None, sampling_rate=22050, tag=""): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if fig is not None: |
|
logger.add_figure(tag, fig) |
|
|
|
if audio is not None: |
|
audio = audio / (max(abs(audio)) * 1.1) |
|
logger.add_audio( |
|
tag, |
|
audio, |
|
sample_rate=sampling_rate, |
|
) |
|
|
|
|
|
def get_mask_from_lengths(lengths, max_len=None): |
|
batch_size = lengths.shape[0] |
|
if max_len is None: |
|
max_len = torch.max(lengths).item() |
|
|
|
ids = torch.arange(0, max_len).unsqueeze(0).expand(batch_size, -1).to(device) |
|
mask = ids >= lengths.unsqueeze(1).expand(-1, max_len) |
|
|
|
return mask |
|
|
|
|
|
def expand(values, durations): |
|
out = list() |
|
for value, d in zip(values, durations): |
|
out += [value] * max(0, int(d)) |
|
return np.array(out) |
|
|
|
|
|
def synth_one_sample_val( |
|
targets, predictions, vocoder, model_config, preprocess_config |
|
): |
|
index = np.random.choice(list(np.arange(targets[6].size(0)))) |
|
|
|
basename = targets[0][index] |
|
src_len = predictions[8][index].item() |
|
mel_len = predictions[9][index].item() |
|
mel_target = targets[6][index, :mel_len].detach().transpose(0, 1) |
|
|
|
mel_prediction = predictions[0][index, :mel_len].detach().transpose(0, 1) |
|
postnet_mel_prediction = predictions[1][index, :mel_len].detach().transpose(0, 1) |
|
duration = targets[11][index, :src_len].detach().cpu().numpy() |
|
|
|
if preprocess_config["preprocessing"]["pitch"]["feature"] == "phoneme_level": |
|
pitch = predictions[2][index, :src_len].detach().cpu().numpy() |
|
pitch = expand(pitch, duration) |
|
else: |
|
pitch = predictions[2][index, :mel_len].detach().cpu().numpy() |
|
|
|
if preprocess_config["preprocessing"]["energy"]["feature"] == "phoneme_level": |
|
energy = predictions[3][index, :src_len].detach().cpu().numpy() |
|
energy = expand(energy, duration) |
|
else: |
|
energy = predictions[3][index, :mel_len].detach().cpu().numpy() |
|
|
|
with open( |
|
os.path.join(preprocess_config["path"]["preprocessed_path"], "stats.json") |
|
) as f: |
|
stats = json.load(f) |
|
stats = stats["pitch"] + stats["energy"][:2] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
fig = plot_mel( |
|
[ |
|
(mel_prediction.cpu().numpy(), pitch, energy), |
|
(postnet_mel_prediction.cpu().numpy(), pitch, energy), |
|
(mel_target.cpu().numpy(), pitch, energy), |
|
], |
|
stats, |
|
[ |
|
"Raw mel spectrogram prediction", |
|
"Postnet mel prediction", |
|
"Ground-Truth Spectrogram", |
|
], |
|
) |
|
|
|
if vocoder is not None: |
|
from .model_util import vocoder_infer |
|
|
|
wav_reconstruction = vocoder_infer( |
|
mel_target.unsqueeze(0), |
|
vocoder, |
|
model_config, |
|
preprocess_config, |
|
)[0] |
|
wav_prediction = vocoder_infer( |
|
postnet_mel_prediction.unsqueeze(0), |
|
vocoder, |
|
model_config, |
|
preprocess_config, |
|
)[0] |
|
else: |
|
wav_reconstruction = wav_prediction = None |
|
|
|
return fig, wav_reconstruction, wav_prediction, basename |
|
|
|
|
|
def synth_one_sample(mel_input, mel_prediction, labels, vocoder): |
|
if vocoder is not None: |
|
from .model_util import vocoder_infer |
|
|
|
wav_reconstruction = vocoder_infer( |
|
mel_input.permute(0, 2, 1), |
|
vocoder, |
|
) |
|
wav_prediction = vocoder_infer( |
|
mel_prediction.permute(0, 2, 1), |
|
vocoder, |
|
) |
|
else: |
|
wav_reconstruction = wav_prediction = None |
|
|
|
return wav_reconstruction, wav_prediction |
|
|
|
|
|
def synth_samples(targets, predictions, vocoder, model_config, preprocess_config, path): |
|
|
|
|
|
basenames = targets[0] |
|
|
|
for i in range(len(predictions[1])): |
|
basename = basenames[i] |
|
src_len = predictions[8][i].item() |
|
mel_len = predictions[9][i].item() |
|
mel_prediction = predictions[1][i, :mel_len].detach().transpose(0, 1) |
|
|
|
|
|
if preprocess_config["preprocessing"]["pitch"]["feature"] == "phoneme_level": |
|
pitch = predictions[2][i, :src_len].detach().cpu().numpy() |
|
|
|
else: |
|
pitch = predictions[2][i, :mel_len].detach().cpu().numpy() |
|
if preprocess_config["preprocessing"]["energy"]["feature"] == "phoneme_level": |
|
energy = predictions[3][i, :src_len].detach().cpu().numpy() |
|
|
|
else: |
|
energy = predictions[3][i, :mel_len].detach().cpu().numpy() |
|
|
|
with open( |
|
os.path.join(preprocess_config["path"]["preprocessed_path"], "stats.json") |
|
) as f: |
|
stats = json.load(f) |
|
stats = stats["pitch"] + stats["energy"][:2] |
|
|
|
fig = plot_mel( |
|
[ |
|
(mel_prediction.cpu().numpy(), pitch, energy), |
|
], |
|
stats, |
|
["Synthetized Spectrogram by PostNet"], |
|
) |
|
|
|
plt.savefig(os.path.join(path, "{}_postnet_2.png".format(basename))) |
|
plt.close() |
|
|
|
from .model_util import vocoder_infer |
|
|
|
mel_predictions = predictions[1].transpose(1, 2) |
|
lengths = predictions[9] * preprocess_config["preprocessing"]["stft"]["hop_length"] |
|
wav_predictions = vocoder_infer( |
|
mel_predictions, vocoder, model_config, preprocess_config, lengths=lengths |
|
) |
|
|
|
sampling_rate = preprocess_config["preprocessing"]["audio"]["sampling_rate"] |
|
for wav, basename in zip(wav_predictions, basenames): |
|
wavfile.write(os.path.join(path, "{}.wav".format(basename)), sampling_rate, wav) |
|
|
|
|
|
def plot_mel(data, titles=None): |
|
fig, axes = plt.subplots(len(data), 1, squeeze=False) |
|
if titles is None: |
|
titles = [None for i in range(len(data))] |
|
|
|
for i in range(len(data)): |
|
mel = data[i] |
|
axes[i][0].imshow(mel, origin="lower", aspect="auto") |
|
axes[i][0].set_aspect(2.5, adjustable="box") |
|
axes[i][0].set_ylim(0, mel.shape[0]) |
|
axes[i][0].set_title(titles[i], fontsize="medium") |
|
axes[i][0].tick_params(labelsize="x-small", left=False, labelleft=False) |
|
axes[i][0].set_anchor("W") |
|
|
|
return fig |
|
|
|
|
|
def pad_1D(inputs, PAD=0): |
|
def pad_data(x, length, PAD): |
|
x_padded = np.pad( |
|
x, (0, length - x.shape[0]), mode="constant", constant_values=PAD |
|
) |
|
return x_padded |
|
|
|
max_len = max((len(x) for x in inputs)) |
|
padded = np.stack([pad_data(x, max_len, PAD) for x in inputs]) |
|
|
|
return padded |
|
|
|
|
|
def pad_2D(inputs, maxlen=None): |
|
def pad(x, max_len): |
|
PAD = 0 |
|
if np.shape(x)[0] > max_len: |
|
raise ValueError("not max_len") |
|
|
|
s = np.shape(x)[1] |
|
x_padded = np.pad( |
|
x, (0, max_len - np.shape(x)[0]), mode="constant", constant_values=PAD |
|
) |
|
return x_padded[:, :s] |
|
|
|
if maxlen: |
|
output = np.stack([pad(x, maxlen) for x in inputs]) |
|
else: |
|
max_len = max(np.shape(x)[0] for x in inputs) |
|
output = np.stack([pad(x, max_len) for x in inputs]) |
|
|
|
return output |
|
|
|
|
|
def pad(input_ele, mel_max_length=None): |
|
if mel_max_length: |
|
max_len = mel_max_length |
|
else: |
|
max_len = max([input_ele[i].size(0) for i in range(len(input_ele))]) |
|
|
|
out_list = list() |
|
for i, batch in enumerate(input_ele): |
|
if len(batch.shape) == 1: |
|
one_batch_padded = F.pad( |
|
batch, (0, max_len - batch.size(0)), "constant", 0.0 |
|
) |
|
elif len(batch.shape) == 2: |
|
one_batch_padded = F.pad( |
|
batch, (0, 0, 0, max_len - batch.size(0)), "constant", 0.0 |
|
) |
|
out_list.append(one_batch_padded) |
|
out_padded = torch.stack(out_list) |
|
return out_padded |