|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import builtins |
|
import datetime |
|
import os |
|
import time |
|
from collections import defaultdict, deque |
|
from pathlib import Path |
|
|
|
import torch |
|
import torch.distributed as dist |
|
from torch._six import inf |
|
|
|
|
|
class SmoothedValue(object): |
|
"""Track a series of values and provide access to smoothed values over a |
|
window or the global series average. |
|
""" |
|
|
|
def __init__(self, window_size=20, fmt=None): |
|
if fmt is None: |
|
fmt = "{median:.4f} ({global_avg:.4f})" |
|
self.deque = deque(maxlen=window_size) |
|
self.total = 0.0 |
|
self.count = 0 |
|
self.fmt = fmt |
|
|
|
def update(self, value, n=1): |
|
self.deque.append(value) |
|
self.count += n |
|
self.total += value * n |
|
|
|
def synchronize_between_processes(self): |
|
""" |
|
Warning: does not synchronize the deque! |
|
""" |
|
if not is_dist_avail_and_initialized(): |
|
return |
|
t = torch.tensor([self.count, self.total], dtype=torch.float64, device="cuda") |
|
dist.barrier() |
|
dist.all_reduce(t) |
|
t = t.tolist() |
|
self.count = int(t[0]) |
|
self.total = t[1] |
|
|
|
@property |
|
def median(self): |
|
d = torch.tensor(list(self.deque)) |
|
return d.median().item() |
|
|
|
@property |
|
def avg(self): |
|
d = torch.tensor(list(self.deque), dtype=torch.float32) |
|
return d.mean().item() |
|
|
|
@property |
|
def global_avg(self): |
|
return self.total / self.count |
|
|
|
@property |
|
def max(self): |
|
return max(self.deque) |
|
|
|
@property |
|
def value(self): |
|
return self.deque[-1] |
|
|
|
def __str__(self): |
|
return self.fmt.format( |
|
median=self.median, |
|
avg=self.avg, |
|
global_avg=self.global_avg, |
|
max=self.max, |
|
value=self.value, |
|
) |
|
|
|
|
|
class MetricLogger(object): |
|
def __init__(self, delimiter="\t"): |
|
self.meters = defaultdict(SmoothedValue) |
|
self.delimiter = delimiter |
|
|
|
def update(self, **kwargs): |
|
for k, v in kwargs.items(): |
|
if v is None: |
|
continue |
|
if isinstance(v, torch.Tensor): |
|
v = v.item() |
|
assert isinstance(v, (float, int)) |
|
self.meters[k].update(v) |
|
|
|
def __getattr__(self, attr): |
|
if attr in self.meters: |
|
return self.meters[attr] |
|
if attr in self.__dict__: |
|
return self.__dict__[attr] |
|
raise AttributeError( |
|
"'{}' object has no attribute '{}'".format(type(self).__name__, attr) |
|
) |
|
|
|
def __str__(self): |
|
loss_str = [] |
|
for name, meter in self.meters.items(): |
|
loss_str.append("{}: {}".format(name, str(meter))) |
|
return self.delimiter.join(loss_str) |
|
|
|
def synchronize_between_processes(self): |
|
for meter in self.meters.values(): |
|
meter.synchronize_between_processes() |
|
|
|
def add_meter(self, name, meter): |
|
self.meters[name] = meter |
|
|
|
def log_every(self, iterable, print_freq, header=None): |
|
i = 0 |
|
if not header: |
|
header = "" |
|
start_time = time.time() |
|
end = time.time() |
|
iter_time = SmoothedValue(fmt="{avg:.4f}") |
|
data_time = SmoothedValue(fmt="{avg:.4f}") |
|
space_fmt = ":" + str(len(str(len(iterable)))) + "d" |
|
log_msg = [ |
|
header, |
|
"[{0" + space_fmt + "}/{1}]", |
|
"eta: {eta}", |
|
"{meters}", |
|
"time: {time}", |
|
"data: {data}", |
|
] |
|
if torch.cuda.is_available(): |
|
log_msg.append("max mem: {memory:.0f}") |
|
log_msg = self.delimiter.join(log_msg) |
|
MB = 1024.0 * 1024.0 |
|
for obj in iterable: |
|
data_time.update(time.time() - end) |
|
yield obj |
|
iter_time.update(time.time() - end) |
|
if i % print_freq == 0 or i == len(iterable) - 1: |
|
eta_seconds = iter_time.global_avg * (len(iterable) - i) |
|
eta_string = str(datetime.timedelta(seconds=int(eta_seconds))) |
|
if torch.cuda.is_available(): |
|
print( |
|
log_msg.format( |
|
i, |
|
len(iterable), |
|
eta=eta_string, |
|
meters=str(self), |
|
time=str(iter_time), |
|
data=str(data_time), |
|
memory=torch.cuda.max_memory_allocated() / MB, |
|
) |
|
) |
|
else: |
|
print( |
|
log_msg.format( |
|
i, |
|
len(iterable), |
|
eta=eta_string, |
|
meters=str(self), |
|
time=str(iter_time), |
|
data=str(data_time), |
|
) |
|
) |
|
i += 1 |
|
end = time.time() |
|
total_time = time.time() - start_time |
|
total_time_str = str(datetime.timedelta(seconds=int(total_time))) |
|
print( |
|
"{} Total time: {} ({:.4f} s / it)".format( |
|
header, total_time_str, total_time / len(iterable) |
|
) |
|
) |
|
|
|
|
|
def setup_for_distributed(is_master): |
|
""" |
|
This function disables printing when not in master process |
|
""" |
|
builtin_print = builtins.print |
|
|
|
def print(*args, **kwargs): |
|
force = kwargs.pop("force", False) |
|
force = force or (get_world_size() > 8) |
|
if is_master or force: |
|
now = datetime.datetime.now().time() |
|
builtin_print("[{}] ".format(now), end="") |
|
builtin_print(*args, **kwargs) |
|
|
|
builtins.print = print |
|
|
|
|
|
def is_dist_avail_and_initialized(): |
|
if not dist.is_available(): |
|
return False |
|
if not dist.is_initialized(): |
|
return False |
|
return True |
|
|
|
|
|
def get_world_size(): |
|
if not is_dist_avail_and_initialized(): |
|
return 1 |
|
return dist.get_world_size() |
|
|
|
|
|
def get_rank(): |
|
if not is_dist_avail_and_initialized(): |
|
return 0 |
|
return dist.get_rank() |
|
|
|
|
|
def is_main_process(): |
|
return get_rank() == 0 |
|
|
|
|
|
def save_on_master(*args, **kwargs): |
|
if is_main_process(): |
|
torch.save(*args, **kwargs) |
|
|
|
|
|
def init_distributed_mode(args): |
|
if args.dist_on_itp: |
|
args.rank = int(os.environ["OMPI_COMM_WORLD_RANK"]) |
|
args.world_size = int(os.environ["OMPI_COMM_WORLD_SIZE"]) |
|
args.gpu = int(os.environ["OMPI_COMM_WORLD_LOCAL_RANK"]) |
|
args.dist_url = "tcp://%s:%s" % ( |
|
os.environ["MASTER_ADDR"], |
|
os.environ["MASTER_PORT"], |
|
) |
|
os.environ["LOCAL_RANK"] = str(args.gpu) |
|
os.environ["RANK"] = str(args.rank) |
|
os.environ["WORLD_SIZE"] = str(args.world_size) |
|
|
|
elif "RANK" in os.environ and "WORLD_SIZE" in os.environ: |
|
args.rank = int(os.environ["RANK"]) |
|
args.world_size = int(os.environ["WORLD_SIZE"]) |
|
args.gpu = int(os.environ["LOCAL_RANK"]) |
|
elif "SLURM_PROCID" in os.environ: |
|
args.rank = int(os.environ["SLURM_PROCID"]) |
|
args.gpu = args.rank % torch.cuda.device_count() |
|
else: |
|
print("Not using distributed mode") |
|
setup_for_distributed(is_master=True) |
|
args.distributed = False |
|
return |
|
|
|
args.distributed = True |
|
|
|
torch.cuda.set_device(args.gpu) |
|
args.dist_backend = "nccl" |
|
print( |
|
"| distributed init (rank {}): {}, gpu {}".format( |
|
args.rank, args.dist_url, args.gpu |
|
), |
|
flush=True, |
|
) |
|
torch.distributed.init_process_group( |
|
backend=args.dist_backend, |
|
init_method=args.dist_url, |
|
world_size=args.world_size, |
|
rank=args.rank, |
|
) |
|
torch.distributed.barrier() |
|
setup_for_distributed(args.rank == 0) |
|
|
|
|
|
class NativeScalerWithGradNormCount: |
|
state_dict_key = "amp_scaler" |
|
|
|
def __init__(self): |
|
self._scaler = torch.cuda.amp.GradScaler() |
|
|
|
def __call__( |
|
self, |
|
loss, |
|
optimizer, |
|
clip_grad=None, |
|
parameters=None, |
|
create_graph=False, |
|
update_grad=True, |
|
): |
|
self._scaler.scale(loss).backward(create_graph=create_graph) |
|
if update_grad: |
|
if clip_grad is not None: |
|
assert parameters is not None |
|
self._scaler.unscale_( |
|
optimizer |
|
) |
|
norm = torch.nn.utils.clip_grad_norm_(parameters, clip_grad) |
|
else: |
|
self._scaler.unscale_(optimizer) |
|
norm = get_grad_norm_(parameters) |
|
self._scaler.step(optimizer) |
|
self._scaler.update() |
|
else: |
|
norm = None |
|
return norm |
|
|
|
def state_dict(self): |
|
return self._scaler.state_dict() |
|
|
|
def load_state_dict(self, state_dict): |
|
self._scaler.load_state_dict(state_dict) |
|
|
|
|
|
def get_grad_norm_(parameters, norm_type: float = 2.0) -> torch.Tensor: |
|
if isinstance(parameters, torch.Tensor): |
|
parameters = [parameters] |
|
parameters = [p for p in parameters if p.grad is not None] |
|
norm_type = float(norm_type) |
|
if len(parameters) == 0: |
|
return torch.tensor(0.0) |
|
device = parameters[0].grad.device |
|
if norm_type == inf: |
|
total_norm = max(p.grad.detach().abs().max().to(device) for p in parameters) |
|
else: |
|
total_norm = torch.norm( |
|
torch.stack( |
|
[torch.norm(p.grad.detach(), norm_type).to(device) for p in parameters] |
|
), |
|
norm_type, |
|
) |
|
return total_norm |
|
|
|
|
|
def save_model(args, epoch, model, model_without_ddp, optimizer, loss_scaler): |
|
output_dir = Path(args.output_dir) |
|
epoch_name = str(epoch) |
|
if loss_scaler is not None: |
|
checkpoint_paths = [output_dir / ("checkpoint-%s.pth" % epoch_name)] |
|
for checkpoint_path in checkpoint_paths: |
|
to_save = { |
|
"model": model_without_ddp.state_dict(), |
|
"optimizer": optimizer.state_dict(), |
|
"epoch": epoch, |
|
"scaler": loss_scaler.state_dict(), |
|
"args": args, |
|
} |
|
|
|
save_on_master(to_save, checkpoint_path) |
|
else: |
|
client_state = {"epoch": epoch} |
|
model.save_checkpoint( |
|
save_dir=args.output_dir, |
|
tag="checkpoint-%s" % epoch_name, |
|
client_state=client_state, |
|
) |
|
|
|
|
|
def load_model(args, model_without_ddp, optimizer, loss_scaler): |
|
if args.resume: |
|
if args.resume.startswith("https"): |
|
checkpoint = torch.hub.load_state_dict_from_url( |
|
args.resume, map_location="cpu", check_hash=True |
|
) |
|
else: |
|
checkpoint = torch.load(args.resume, map_location="cpu") |
|
model_without_ddp.load_state_dict(checkpoint["model"]) |
|
print("Resume checkpoint %s" % args.resume) |
|
if ( |
|
"optimizer" in checkpoint |
|
and "epoch" in checkpoint |
|
and not (hasattr(args, "eval") and args.eval) |
|
): |
|
optimizer.load_state_dict(checkpoint["optimizer"]) |
|
args.start_epoch = checkpoint["epoch"] + 1 |
|
if "scaler" in checkpoint: |
|
loss_scaler.load_state_dict(checkpoint["scaler"]) |
|
print("With optim & sched!") |
|
|
|
|
|
def all_reduce_mean(x): |
|
world_size = get_world_size() |
|
if world_size > 1: |
|
x_reduce = torch.tensor(x).cuda() |
|
dist.all_reduce(x_reduce) |
|
x_reduce /= world_size |
|
return x_reduce.item() |
|
else: |
|
return x |
|
|
|
|
|
|
|
@torch.no_grad() |
|
def concat_all_gather(tensor): |
|
""" |
|
Performs all_gather operation on the provided tensors. |
|
*** Warning ***: torch.distributed.all_gather has no gradient. |
|
""" |
|
tensors_gather = [ |
|
torch.ones_like(tensor) for _ in range(torch.distributed.get_world_size()) |
|
] |
|
torch.distributed.all_gather(tensors_gather, tensor, async_op=False) |
|
|
|
output = torch.cat(tensors_gather, dim=0) |
|
return output |
|
|
|
|
|
def merge_vmae_to_avmae(avmae_state_dict, vmae_ckpt): |
|
|
|
|
|
|
|
vmae_ckpt["cls_token"] = vmae_ckpt["cls_token_v"] |
|
vmae_ckpt["mask_token"] = vmae_ckpt["mask_token_v"] |
|
|
|
|
|
pos_embed_v = vmae_ckpt["pos_embed_v"] |
|
pos_embed = pos_embed_v[:, 1:, :] |
|
cls_embed = pos_embed_v[:, 0, :].unsqueeze(1) |
|
pos_embed = pos_embed.reshape(1, 2, 14, 14, 768).sum(dim=1) |
|
print("Position interpolate from 14,14 to 64,8") |
|
pos_embed = pos_embed.permute(0, 3, 1, 2) |
|
pos_embed = torch.nn.functional.interpolate( |
|
pos_embed, size=(64, 8), mode="bicubic", align_corners=False |
|
) |
|
pos_embed = pos_embed.permute(0, 2, 3, 1).flatten( |
|
1, 2 |
|
) |
|
pos_embed = torch.cat((cls_embed, pos_embed), dim=1) |
|
assert vmae_ckpt["pos_embed"].shape == pos_embed.shape |
|
vmae_ckpt["pos_embed"] = pos_embed |
|
|
|
|
|
v_weight = vmae_ckpt["patch_embed_v.proj.weight"] |
|
new_proj_weight = torch.nn.Parameter(v_weight.sum(dim=2).sum(dim=1).unsqueeze(1)) |
|
assert new_proj_weight.shape == vmae_ckpt["patch_embed.proj.weight"].shape |
|
vmae_ckpt["patch_embed.proj.weight"] = new_proj_weight |
|
vmae_ckpt["patch_embed.proj.bias"] = vmae_ckpt["patch_embed_v.proj.bias"] |
|
|
|
|
|
vmae_ckpt["norm.weight"] = vmae_ckpt["norm_v.weight"] |
|
vmae_ckpt["norm.bias"] = vmae_ckpt["norm_v.bias"] |
|
|
|
|
|
for k, v in vmae_ckpt.items(): |
|
if k.startswith("blocks."): |
|
kk = k.replace("blocks.", "blocks_v.") |
|
vmae_ckpt[k] = vmae_ckpt[kk] |
|
elif k.startswith("blocks_v."): |
|
pass |
|
else: |
|
print(k) |
|
pass |
|
print(k) |
|
|