|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from functools import partial |
|
from json import encoder |
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
from timm.models.vision_transformer import Block |
|
from audioldm_train.modules.audiomae.util.pos_embed import ( |
|
get_2d_sincos_pos_embed, |
|
get_2d_sincos_pos_embed_flexible, |
|
get_1d_sincos_pos_embed_from_grid, |
|
) |
|
from audioldm_train.modules.audiomae.util.patch_embed import ( |
|
PatchEmbed_new, |
|
PatchEmbed_org, |
|
) |
|
|
|
|
|
class MaskedAutoencoderViT(nn.Module): |
|
"""Masked Autoencoder with VisionTransformer backbone""" |
|
|
|
def __init__( |
|
self, |
|
img_size=224, |
|
patch_size=16, |
|
stride=10, |
|
in_chans=3, |
|
embed_dim=1024, |
|
depth=24, |
|
num_heads=16, |
|
decoder_embed_dim=512, |
|
decoder_depth=8, |
|
decoder_num_heads=16, |
|
mlp_ratio=4.0, |
|
norm_layer=nn.LayerNorm, |
|
norm_pix_loss=False, |
|
audio_exp=False, |
|
alpha=0.0, |
|
temperature=0.2, |
|
mode=0, |
|
contextual_depth=8, |
|
use_custom_patch=False, |
|
split_pos=False, |
|
pos_trainable=False, |
|
use_nce=False, |
|
beta=4.0, |
|
decoder_mode=0, |
|
mask_t_prob=0.6, |
|
mask_f_prob=0.5, |
|
mask_2d=False, |
|
epoch=0, |
|
no_shift=False, |
|
): |
|
super().__init__() |
|
|
|
self.audio_exp = audio_exp |
|
self.embed_dim = embed_dim |
|
self.decoder_embed_dim = decoder_embed_dim |
|
|
|
|
|
if use_custom_patch: |
|
print( |
|
f"Use custom patch_emb with patch size: {patch_size}, stride: {stride}" |
|
) |
|
self.patch_embed = PatchEmbed_new( |
|
img_size=img_size, |
|
patch_size=patch_size, |
|
in_chans=in_chans, |
|
embed_dim=embed_dim, |
|
stride=stride, |
|
) |
|
else: |
|
self.patch_embed = PatchEmbed_org(img_size, patch_size, in_chans, embed_dim) |
|
self.use_custom_patch = use_custom_patch |
|
num_patches = self.patch_embed.num_patches |
|
|
|
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) |
|
|
|
|
|
self.pos_embed = nn.Parameter( |
|
torch.zeros(1, num_patches + 1, embed_dim), requires_grad=pos_trainable |
|
) |
|
|
|
self.encoder_depth = depth |
|
self.contextual_depth = contextual_depth |
|
self.blocks = nn.ModuleList( |
|
[ |
|
Block( |
|
embed_dim, |
|
num_heads, |
|
mlp_ratio, |
|
qkv_bias=True, |
|
norm_layer=norm_layer, |
|
) |
|
for i in range(depth) |
|
] |
|
) |
|
self.norm = norm_layer(embed_dim) |
|
|
|
|
|
|
|
self.decoder_embed = nn.Linear(embed_dim, decoder_embed_dim, bias=True) |
|
|
|
self.mask_token = nn.Parameter(torch.zeros(1, 1, decoder_embed_dim)) |
|
self.decoder_pos_embed = nn.Parameter( |
|
torch.zeros(1, num_patches + 1, decoder_embed_dim), |
|
requires_grad=pos_trainable, |
|
) |
|
|
|
self.no_shift = no_shift |
|
|
|
self.decoder_mode = decoder_mode |
|
if ( |
|
self.use_custom_patch |
|
): |
|
window_size = (6, 6) |
|
feat_size = (102, 12) |
|
else: |
|
window_size = (4, 4) |
|
feat_size = (64, 8) |
|
if self.decoder_mode == 1: |
|
decoder_modules = [] |
|
for index in range(16): |
|
if self.no_shift: |
|
shift_size = (0, 0) |
|
else: |
|
if (index % 2) == 0: |
|
shift_size = (0, 0) |
|
else: |
|
shift_size = (2, 0) |
|
|
|
decoder_modules.append( |
|
SwinTransformerBlock( |
|
dim=decoder_embed_dim, |
|
num_heads=16, |
|
feat_size=feat_size, |
|
window_size=window_size, |
|
shift_size=shift_size, |
|
mlp_ratio=mlp_ratio, |
|
drop=0.0, |
|
drop_attn=0.0, |
|
drop_path=0.0, |
|
extra_norm=False, |
|
sequential_attn=False, |
|
norm_layer=norm_layer, |
|
) |
|
) |
|
self.decoder_blocks = nn.ModuleList(decoder_modules) |
|
else: |
|
|
|
self.decoder_blocks = nn.ModuleList( |
|
[ |
|
Block( |
|
decoder_embed_dim, |
|
decoder_num_heads, |
|
mlp_ratio, |
|
qkv_bias=True, |
|
norm_layer=norm_layer, |
|
) |
|
for i in range(decoder_depth) |
|
] |
|
) |
|
|
|
self.decoder_norm = norm_layer(decoder_embed_dim) |
|
self.decoder_pred = nn.Linear( |
|
decoder_embed_dim, patch_size**2 * in_chans, bias=True |
|
) |
|
|
|
|
|
|
|
self.norm_pix_loss = norm_pix_loss |
|
|
|
self.patch_size = patch_size |
|
self.stride = stride |
|
|
|
|
|
self.alpha = alpha |
|
self.T = temperature |
|
self.mode = mode |
|
self.use_nce = use_nce |
|
self.beta = beta |
|
|
|
self.log_softmax = nn.LogSoftmax(dim=-1) |
|
|
|
self.mask_t_prob = mask_t_prob |
|
self.mask_f_prob = mask_f_prob |
|
self.mask_2d = mask_2d |
|
|
|
self.epoch = epoch |
|
|
|
self.initialize_weights() |
|
|
|
def initialize_weights(self): |
|
|
|
|
|
if self.audio_exp: |
|
pos_embed = get_2d_sincos_pos_embed_flexible( |
|
self.pos_embed.shape[-1], self.patch_embed.patch_hw, cls_token=True |
|
) |
|
else: |
|
pos_embed = get_2d_sincos_pos_embed( |
|
self.pos_embed.shape[-1], |
|
int(self.patch_embed.num_patches**0.5), |
|
cls_token=True, |
|
) |
|
self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0)) |
|
|
|
if self.audio_exp: |
|
decoder_pos_embed = get_2d_sincos_pos_embed_flexible( |
|
self.decoder_pos_embed.shape[-1], |
|
self.patch_embed.patch_hw, |
|
cls_token=True, |
|
) |
|
else: |
|
decoder_pos_embed = get_2d_sincos_pos_embed( |
|
self.decoder_pos_embed.shape[-1], |
|
int(self.patch_embed.num_patches**0.5), |
|
cls_token=True, |
|
) |
|
self.decoder_pos_embed.data.copy_( |
|
torch.from_numpy(decoder_pos_embed).float().unsqueeze(0) |
|
) |
|
|
|
|
|
w = self.patch_embed.proj.weight.data |
|
torch.nn.init.xavier_uniform_(w.view([w.shape[0], -1])) |
|
|
|
|
|
torch.nn.init.normal_(self.cls_token, std=0.02) |
|
torch.nn.init.normal_(self.mask_token, std=0.02) |
|
|
|
|
|
self.apply(self._init_weights) |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, nn.Linear): |
|
|
|
torch.nn.init.xavier_uniform_(m.weight) |
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.LayerNorm): |
|
nn.init.constant_(m.bias, 0) |
|
nn.init.constant_(m.weight, 1.0) |
|
|
|
def patchify(self, imgs): |
|
""" |
|
imgs: (N, 3, H, W) |
|
x: (N, L, patch_size**2 *3) |
|
L = (H/p)*(W/p) |
|
""" |
|
p = self.patch_embed.patch_size[0] |
|
|
|
|
|
if self.audio_exp: |
|
if self.use_custom_patch: |
|
h, w = self.patch_embed.patch_hw |
|
|
|
x = imgs.unfold(2, self.patch_size, self.stride).unfold( |
|
3, self.patch_size, self.stride |
|
) |
|
x = x.reshape(shape=(imgs.shape[0], h * w, p**2 * 1)) |
|
|
|
|
|
|
|
else: |
|
h = imgs.shape[2] // p |
|
w = imgs.shape[3] // p |
|
|
|
x = imgs.reshape(shape=(imgs.shape[0], 1, h, p, w, p)) |
|
x = torch.einsum("nchpwq->nhwpqc", x) |
|
x = x.reshape(shape=(imgs.shape[0], h * w, p**2 * 1)) |
|
else: |
|
h = w = imgs.shape[2] // p |
|
x = imgs.reshape(shape=(imgs.shape[0], 3, h, p, w, p)) |
|
x = torch.einsum("nchpwq->nhwpqc", x) |
|
x = x.reshape(shape=(imgs.shape[0], h * w, p**2 * 3)) |
|
|
|
return x |
|
|
|
def unpatchify(self, x): |
|
""" |
|
x: (N, L, patch_size**2 *3) |
|
specs: (N, 1, H, W) |
|
""" |
|
p = self.patch_embed.patch_size[0] |
|
h = 1024 // p |
|
w = 128 // p |
|
x = x.reshape(shape=(x.shape[0], h, w, p, p, 1)) |
|
x = torch.einsum("nhwpqc->nchpwq", x) |
|
specs = x.reshape(shape=(x.shape[0], 1, h * p, w * p)) |
|
return specs |
|
|
|
def random_masking(self, x, mask_ratio): |
|
""" |
|
Perform per-sample random masking by per-sample shuffling. |
|
Per-sample shuffling is done by argsort random noise. |
|
x: [N, L, D], sequence |
|
""" |
|
N, L, D = x.shape |
|
len_keep = int(L * (1 - mask_ratio)) |
|
|
|
noise = torch.rand(N, L, device=x.device) |
|
|
|
|
|
ids_shuffle = torch.argsort( |
|
noise, dim=1 |
|
) |
|
ids_restore = torch.argsort(ids_shuffle, dim=1) |
|
|
|
|
|
ids_keep = ids_shuffle[:, :len_keep] |
|
x_masked = torch.gather(x, dim=1, index=ids_keep.unsqueeze(-1).repeat(1, 1, D)) |
|
|
|
|
|
mask = torch.ones([N, L], device=x.device) |
|
mask[:, :len_keep] = 0 |
|
|
|
mask = torch.gather(mask, dim=1, index=ids_restore) |
|
|
|
return x_masked, mask, ids_restore |
|
|
|
def random_masking_2d(self, x, mask_t_prob, mask_f_prob): |
|
""" |
|
2D: Spectrogram (msking t and f under mask_t_prob and mask_f_prob) |
|
Perform per-sample random masking by per-sample shuffling. |
|
Per-sample shuffling is done by argsort random noise. |
|
x: [N, L, D], sequence |
|
""" |
|
N, L, D = x.shape |
|
if self.use_custom_patch: |
|
T = 101 |
|
F = 12 |
|
else: |
|
T = 64 |
|
F = 8 |
|
|
|
len_keep_t = int(T * (1 - mask_t_prob)) |
|
len_keep_f = int(F * (1 - mask_f_prob)) |
|
|
|
|
|
noise_t = torch.rand(N, T, device=x.device) |
|
|
|
ids_shuffle_t = torch.argsort( |
|
noise_t, dim=1 |
|
) |
|
ids_restore_t = torch.argsort(ids_shuffle_t, dim=1) |
|
ids_keep_t = ids_shuffle_t[:, :len_keep_t] |
|
|
|
noise_f = torch.rand(N, F, device=x.device) |
|
ids_shuffle_f = torch.argsort( |
|
noise_f, dim=1 |
|
) |
|
ids_restore_f = torch.argsort(ids_shuffle_f, dim=1) |
|
ids_keep_f = ids_shuffle_f[:, :len_keep_f] |
|
|
|
|
|
|
|
mask_f = torch.ones(N, F, device=x.device) |
|
mask_f[:, :len_keep_f] = 0 |
|
mask_f = ( |
|
torch.gather(mask_f, dim=1, index=ids_restore_f) |
|
.unsqueeze(1) |
|
.repeat(1, T, 1) |
|
) |
|
|
|
mask_t = torch.ones(N, T, device=x.device) |
|
mask_t[:, :len_keep_t] = 0 |
|
mask_t = ( |
|
torch.gather(mask_t, dim=1, index=ids_restore_t) |
|
.unsqueeze(1) |
|
.repeat(1, F, 1) |
|
.permute(0, 2, 1) |
|
) |
|
mask = 1 - (1 - mask_t) * (1 - mask_f) |
|
|
|
|
|
id2res = torch.Tensor(list(range(N * T * F))).reshape(N, T, F).to(x.device) |
|
id2res = id2res + 999 * mask |
|
id2res2 = torch.argsort(id2res.flatten(start_dim=1)) |
|
ids_keep = id2res2.flatten(start_dim=1)[:, : len_keep_f * len_keep_t] |
|
x_masked = torch.gather(x, dim=1, index=ids_keep.unsqueeze(-1).repeat(1, 1, D)) |
|
|
|
ids_restore = torch.argsort(id2res2.flatten(start_dim=1)) |
|
mask = mask.flatten(start_dim=1) |
|
|
|
return x_masked, mask, ids_restore |
|
|
|
def forward_encoder(self, x, mask_ratio, mask_2d=False): |
|
|
|
x = self.patch_embed(x) |
|
|
|
x = x + self.pos_embed[:, 1:, :] |
|
|
|
|
|
if mask_2d: |
|
x, mask, ids_restore = self.random_masking_2d( |
|
x, mask_t_prob=self.mask_t_prob, mask_f_prob=self.mask_f_prob |
|
) |
|
else: |
|
x, mask, ids_restore = self.random_masking(x, mask_ratio) |
|
|
|
|
|
cls_token = self.cls_token + self.pos_embed[:, :1, :] |
|
cls_tokens = cls_token.expand(x.shape[0], -1, -1) |
|
x = torch.cat((cls_tokens, x), dim=1) |
|
|
|
|
|
for blk in self.blocks: |
|
x = blk(x) |
|
x = self.norm(x) |
|
|
|
return x, mask, ids_restore, None |
|
|
|
def forward_encoder_no_random_mask_no_average(self, x): |
|
|
|
x = self.patch_embed(x) |
|
|
|
x = x + self.pos_embed[:, 1:, :] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cls_token = self.cls_token + self.pos_embed[:, :1, :] |
|
cls_tokens = cls_token.expand(x.shape[0], -1, -1) |
|
x = torch.cat((cls_tokens, x), dim=1) |
|
|
|
|
|
for blk in self.blocks: |
|
x = blk(x) |
|
x = self.norm(x) |
|
|
|
return x |
|
|
|
def forward_encoder_no_mask(self, x): |
|
|
|
x = self.patch_embed(x) |
|
|
|
|
|
x = x + self.pos_embed[:, 1:, :] |
|
|
|
|
|
|
|
|
|
cls_token = self.cls_token + self.pos_embed[:, :1, :] |
|
cls_tokens = cls_token.expand(x.shape[0], -1, -1) |
|
x = torch.cat((cls_tokens, x), dim=1) |
|
|
|
|
|
contextual_embs = [] |
|
for n, blk in enumerate(self.blocks): |
|
x = blk(x) |
|
if n > self.contextual_depth: |
|
contextual_embs.append(self.norm(x)) |
|
|
|
contextual_emb = torch.stack(contextual_embs, dim=0).mean(dim=0) |
|
|
|
return contextual_emb |
|
|
|
def forward_decoder(self, x, ids_restore): |
|
|
|
x = self.decoder_embed(x) |
|
|
|
|
|
mask_tokens = self.mask_token.repeat( |
|
x.shape[0], ids_restore.shape[1] + 1 - x.shape[1], 1 |
|
) |
|
x_ = torch.cat([x[:, 1:, :], mask_tokens], dim=1) |
|
x_ = torch.gather( |
|
x_, dim=1, index=ids_restore.unsqueeze(-1).repeat(1, 1, x.shape[2]) |
|
) |
|
x = torch.cat([x[:, :1, :], x_], dim=1) |
|
|
|
|
|
x = x + self.decoder_pos_embed |
|
|
|
if self.decoder_mode != 0: |
|
B, L, D = x.shape |
|
x = x[:, 1:, :] |
|
if self.use_custom_patch: |
|
x = x.reshape(B, 101, 12, D) |
|
x = torch.cat([x, x[:, -1, :].unsqueeze(1)], dim=1) |
|
x = x.reshape(B, 1224, D) |
|
if self.decoder_mode > 3: |
|
x = self.decoder_blocks(x) |
|
else: |
|
|
|
for blk in self.decoder_blocks: |
|
x = blk(x) |
|
x = self.decoder_norm(x) |
|
|
|
|
|
pred = self.decoder_pred(x) |
|
|
|
|
|
if self.decoder_mode != 0: |
|
if self.use_custom_patch: |
|
pred = pred.reshape(B, 102, 12, 256) |
|
pred = pred[:, :101, :, :] |
|
pred = pred.reshape(B, 1212, 256) |
|
else: |
|
pred = pred |
|
else: |
|
pred = pred[:, 1:, :] |
|
return pred, None, None |
|
|
|
def forward_loss(self, imgs, pred, mask, norm_pix_loss=False): |
|
""" |
|
imgs: [N, 3, H, W] |
|
pred: [N, L, p*p*3] |
|
mask: [N, L], 0 is keep, 1 is remove, |
|
""" |
|
target = self.patchify(imgs) |
|
if norm_pix_loss: |
|
mean = target.mean(dim=-1, keepdim=True) |
|
var = target.var(dim=-1, keepdim=True) |
|
target = (target - mean) / (var + 1.0e-6) ** 0.5 |
|
|
|
loss = (pred - target) ** 2 |
|
loss = loss.mean(dim=-1) |
|
|
|
loss = (loss * mask).sum() / mask.sum() |
|
return loss |
|
|
|
def forward(self, imgs, mask_ratio=0.8): |
|
emb_enc, mask, ids_restore, _ = self.forward_encoder( |
|
imgs, mask_ratio, mask_2d=self.mask_2d |
|
) |
|
pred, _, _ = self.forward_decoder(emb_enc, ids_restore) |
|
loss_recon = self.forward_loss( |
|
imgs, pred, mask, norm_pix_loss=self.norm_pix_loss |
|
) |
|
loss_contrastive = torch.FloatTensor([0.0]).cuda() |
|
return loss_recon, pred, mask, loss_contrastive |
|
|
|
|
|
def mae_vit_small_patch16_dec512d8b(**kwargs): |
|
model = MaskedAutoencoderViT( |
|
patch_size=16, |
|
embed_dim=384, |
|
depth=12, |
|
num_heads=6, |
|
decoder_embed_dim=512, |
|
decoder_num_heads=16, |
|
mlp_ratio=4, |
|
norm_layer=partial(nn.LayerNorm, eps=1e-6), |
|
**kwargs, |
|
) |
|
return model |
|
|
|
|
|
def mae_vit_base_patch16_dec512d8b(**kwargs): |
|
model = MaskedAutoencoderViT( |
|
patch_size=16, |
|
embed_dim=768, |
|
depth=12, |
|
num_heads=12, |
|
decoder_embed_dim=512, |
|
decoder_num_heads=16, |
|
mlp_ratio=4, |
|
norm_layer=partial(nn.LayerNorm, eps=1e-6), |
|
**kwargs, |
|
) |
|
return model |
|
|
|
|
|
def mae_vit_large_patch16_dec512d8b(**kwargs): |
|
model = MaskedAutoencoderViT( |
|
patch_size=16, |
|
embed_dim=1024, |
|
depth=24, |
|
num_heads=16, |
|
decoder_embed_dim=512, |
|
decoder_num_heads=16, |
|
mlp_ratio=4, |
|
norm_layer=partial(nn.LayerNorm, eps=1e-6), |
|
**kwargs, |
|
) |
|
return model |
|
|
|
|
|
def mae_vit_huge_patch14_dec512d8b(**kwargs): |
|
model = MaskedAutoencoderViT( |
|
patch_size=14, |
|
embed_dim=1280, |
|
depth=32, |
|
num_heads=16, |
|
decoder_embed_dim=512, |
|
decoder_num_heads=16, |
|
mlp_ratio=4, |
|
norm_layer=partial(nn.LayerNorm, eps=1e-6), |
|
**kwargs, |
|
) |
|
return model |
|
|
|
|
|
|
|
mae_vit_base_patch16 = mae_vit_base_patch16_dec512d8b |
|
mae_vit_large_patch16 = mae_vit_large_patch16_dec512d8b |
|
mae_vit_huge_patch14 = mae_vit_huge_patch14_dec512d8b |
|
mae_vit_small_patch16 = mae_vit_small_patch16_dec512d8b |
|
|