|
import ast |
|
import json |
|
import logging |
|
import math |
|
import os |
|
import random |
|
import h5py |
|
from dataclasses import dataclass |
|
from qa_mdt.audioldm_train.modules.clap.training.params import parse_args |
|
import braceexpand |
|
import numpy as np |
|
import pandas as pd |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import torchvision.datasets as datasets |
|
import torchvision.transforms |
|
import webdataset as wds |
|
from PIL import Image |
|
from torch.utils.data import Dataset, DataLoader, SubsetRandomSampler |
|
from torch.utils.data.distributed import DistributedSampler |
|
from functools import partial |
|
import soundfile as sf |
|
import io |
|
from pathlib import Path |
|
import wget |
|
|
|
from qa_mdt.audioldm_train.modules.clap.open_clip.utils import ( |
|
get_tar_path_from_dataset_name, |
|
dataset_split, |
|
) |
|
from qa_mdt.audioldm_train.modules.clap.open_clip.utils import load_p, load_class_label |
|
import tempfile |
|
import copy |
|
|
|
try: |
|
import horovod.torch as hvd |
|
except ImportError: |
|
hvd = None |
|
|
|
try: |
|
import torchaudio |
|
except ImportError: |
|
torchaudio = None |
|
|
|
from qa_mdt.audioldm_train.modules.clap.open_clip import tokenize |
|
|
|
|
|
def tokenizer(text): |
|
return tokenize(text).squeeze(0) |
|
|
|
|
|
from transformers import RobertaTokenizer |
|
with open('offset_pretrained_checkpoints.json', 'r') as config_file: |
|
config_data = json.load(config_file) |
|
|
|
tokenize = RobertaTokenizer.from_pretrained(config_data["roberta-base"]) |
|
|
|
|
|
def tokenizer(text): |
|
result = tokenize( |
|
text, |
|
padding="max_length", |
|
truncation=True, |
|
max_length=77, |
|
return_tensors="pt", |
|
) |
|
return {k: v.squeeze(0) for k, v in result.items()} |
|
|
|
|
|
|
|
_AUDIOSET_MAP_PATH = os.path.join(Path(__file__).parent, "audioset_textmap.npy") |
|
_AUDIOSET_MAP = np.load(_AUDIOSET_MAP_PATH, allow_pickle=True) |
|
|
|
|
|
def int16_to_float32(x): |
|
return (x / 32767.0).astype(np.float32) |
|
|
|
|
|
def float32_to_int16(x): |
|
x = np.clip(x, a_min=-1.0, a_max=1.0) |
|
return (x * 32767.0).astype(np.int16) |
|
|
|
|
|
|
|
class ToyDataset(Dataset): |
|
def __init__(self, index_path, ipc, config, eval_mode=False): |
|
"""Toy Dataset for testing the audioset input with text labels |
|
Parameters |
|
---------- |
|
index_path: str |
|
the link to the h5 file of each audio |
|
idc: str |
|
the link to the npy file, the number of samples in each class |
|
config: dict |
|
the audio cfg file |
|
eval_model (bool): to indicate if the dataset is a testing dataset |
|
""" |
|
self.audio_cfg = config["audio_cfg"] |
|
self.text_cfg = config["text_cfg"] |
|
self.fp = h5py.File(index_path, "r") |
|
self.ipc = np.load(ipc, allow_pickle=True) |
|
self.total_size = len(self.fp["audio_name"]) |
|
self.classes_num = self.audio_cfg["class_num"] |
|
self.eval_mode = eval_mode |
|
|
|
if not eval_mode: |
|
self.generate_queue() |
|
else: |
|
self.queue = [] |
|
for i in range(self.total_size): |
|
target = self.fp["target"][i] |
|
if np.sum(target) > 0: |
|
self.queue.append(i) |
|
self.total_size = len(self.queue) |
|
logging.info("total dataset size: %d" % (self.total_size)) |
|
logging.info("class num: %d" % (self.classes_num)) |
|
|
|
def time_shifting(self, x): |
|
frame_num = len(x) |
|
shift_len = random.randint(0, frame_num - 1) |
|
new_sample = np.concatenate([x[shift_len:], x[:shift_len]], axis=0) |
|
return new_sample |
|
|
|
def generate_queue(self): |
|
self.queue = [] |
|
while len(self.queue) < self.total_size: |
|
class_set = [*range(self.classes_num)] |
|
random.shuffle(class_set) |
|
self.queue += [ |
|
self.ipc[d][random.randint(0, len(self.ipc[d]) - 1)] for d in class_set |
|
] |
|
self.queue = self.queue[: self.total_size] |
|
|
|
logging.info("queue regenerated:%s" % (self.queue[-5:])) |
|
|
|
def crop_wav(self, x): |
|
crop_size = self.audio_cfg["crop_size"] |
|
crop_pos = random.randint(0, len(x) - crop_size - 1) |
|
return x[crop_pos : crop_pos + crop_size] |
|
|
|
def prompt_text(self, target): |
|
events = _AUDIOSET_MAP[np.where(target > 0)] |
|
event_text = "The sounds of " + ", ".join(events[:-1]) + " and " + events[-1] |
|
text = tokenize(event_text)[0] |
|
return text |
|
|
|
def __getitem__(self, index): |
|
"""Load waveform, text, and target of an audio clip |
|
|
|
Parameters |
|
---------- |
|
index: int |
|
the index number |
|
Return |
|
------ |
|
output: dict { |
|
"hdf5_path": str, |
|
"index_in_hdf5": int, |
|
"audio_name": str, |
|
"waveform": list (audio_length,), |
|
"target": list (class_num, ), |
|
"text": torch.tensor (context_length,) |
|
} |
|
the output dictionary |
|
""" |
|
s_index = self.queue[index] |
|
|
|
audio_name = self.fp["audio_name"][s_index].decode() |
|
|
|
hdf5_path = ( |
|
self.fp["hdf5_path"][s_index] |
|
.decode() |
|
.replace( |
|
"../workspace", |
|
"/home/la/kechen/Research/ke_zsasp/workspace", |
|
) |
|
) |
|
r_idx = self.fp["index_in_hdf5"][s_index] |
|
target = self.fp["target"][s_index].astype(np.float32) |
|
text = self.prompt_text(target) |
|
with h5py.File(hdf5_path, "r") as f: |
|
waveform = int16_to_float32(f["waveform"][r_idx])[ |
|
: self.audio_cfg["clip_samples"] |
|
] |
|
assert ( |
|
len(waveform) == self.audio_cfg["clip_samples"] |
|
), "The sample length is not match" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
mel_spec = get_mel(torch.from_numpy(waveform), self.audio_cfg)[None, :, :] |
|
mel_spec = ( |
|
torch.cat( |
|
[mel_spec, mel_spec.clone(), mel_spec.clone(), mel_spec.clone()], dim=0 |
|
) |
|
.cpu() |
|
.numpy() |
|
) |
|
longer = random.choice([True, False]) |
|
if longer == False: |
|
mel_spec[1:, :, :] = 0.0 |
|
data_dict = { |
|
"hdf5_path": hdf5_path, |
|
"index_in_hdf5": r_idx, |
|
"audio_name": audio_name, |
|
"waveform": waveform, |
|
"class_label": target, |
|
"text": text, |
|
"longer": longer, |
|
"mel_fusion": mel_spec, |
|
} |
|
return data_dict |
|
|
|
def __len__(self): |
|
return self.total_size |
|
|
|
|
|
class CsvDataset(Dataset): |
|
def __init__(self, input_filename, transforms, img_key, caption_key, sep="\t"): |
|
logging.debug(f"Loading csv data from {input_filename}.") |
|
df = pd.read_csv(input_filename, sep=sep) |
|
|
|
self.images = df[img_key].tolist() |
|
self.captions = df[caption_key].tolist() |
|
self.transforms = transforms |
|
logging.debug("Done loading data.") |
|
|
|
def __len__(self): |
|
return len(self.captions) |
|
|
|
def __getitem__(self, idx): |
|
images = self.transforms(Image.open(str(self.images[idx]))) |
|
texts = tokenize([str(self.captions[idx])])[0] |
|
return images, texts |
|
|
|
|
|
@dataclass |
|
class DataInfo: |
|
dataloader: DataLoader |
|
sampler: DistributedSampler |
|
|
|
|
|
def preprocess_txt(text): |
|
return tokenize([str(text)])[0] |
|
|
|
|
|
def get_dataset_size(shards, sizefilepath_=None, is_local=True): |
|
if isinstance(shards, list): |
|
size_list = [] |
|
for s in shards: |
|
size_list.append( |
|
get_dataset_size(s, sizefilepath_=sizefilepath_, is_local=is_local)[0] |
|
) |
|
else: |
|
if not is_local: |
|
for n in dataset_split.keys(): |
|
if n in shards.split("/"): |
|
break |
|
for s in dataset_split[n]: |
|
if s in shards.split("/"): |
|
break |
|
sizefilepath_ = f"./json_files/{n}/{s}/sizes.json" |
|
shards_list = list(braceexpand.braceexpand(shards)) |
|
dir_path = os.path.dirname(shards) |
|
if sizefilepath_ is not None: |
|
sizes = json.load(open(sizefilepath_, "r")) |
|
total_size = sum( |
|
[ |
|
int(sizes[os.path.basename(shard.replace(".tar -", ".tar"))]) |
|
for shard in shards_list |
|
] |
|
) |
|
else: |
|
sizes_filename = os.path.join(dir_path, "sizes.json") |
|
len_filename = os.path.join(dir_path, "__len__") |
|
if os.path.exists(sizes_filename): |
|
sizes = json.load(open(sizes_filename, "r")) |
|
total_size = sum( |
|
[int(sizes[os.path.basename(shard)]) for shard in shards_list] |
|
) |
|
elif os.path.exists(len_filename): |
|
|
|
total_size = ast.literal_eval(open(len_filename, "r").read()) |
|
else: |
|
raise Exception( |
|
"Cannot find sizes file for dataset. Please specify the path to the file." |
|
) |
|
|
|
|
|
|
|
|
|
|
|
num_shards = len(shards_list) |
|
if isinstance(shards, list): |
|
return sum(size_list), len(shards) |
|
else: |
|
return total_size, num_shards |
|
|
|
|
|
def get_imagenet(args, preprocess_fns, split): |
|
assert split in ["train", "val", "v2"] |
|
is_train = split == "train" |
|
preprocess_train, preprocess_val = preprocess_fns |
|
|
|
if split == "v2": |
|
from imagenetv2_pytorch import ImageNetV2Dataset |
|
|
|
dataset = ImageNetV2Dataset(location=args.imagenet_v2, transform=preprocess_val) |
|
else: |
|
if is_train: |
|
data_path = args.imagenet_train |
|
preprocess_fn = preprocess_train |
|
else: |
|
data_path = args.imagenet_val |
|
preprocess_fn = preprocess_val |
|
assert data_path |
|
|
|
dataset = datasets.ImageFolder(data_path, transform=preprocess_fn) |
|
|
|
if is_train: |
|
idxs = np.zeros(len(dataset.targets)) |
|
target_array = np.array(dataset.targets) |
|
k = 50 |
|
for c in range(1000): |
|
m = target_array == c |
|
n = len(idxs[m]) |
|
arr = np.zeros(n) |
|
arr[:k] = 1 |
|
np.random.shuffle(arr) |
|
idxs[m] = arr |
|
|
|
idxs = idxs.astype("int") |
|
sampler = SubsetRandomSampler(np.where(idxs)[0]) |
|
else: |
|
sampler = None |
|
|
|
dataloader = torch.utils.data.DataLoader( |
|
dataset, |
|
batch_size=args.batch_size, |
|
num_workers=args.workers, |
|
sampler=sampler, |
|
) |
|
|
|
return DataInfo(dataloader, sampler) |
|
|
|
|
|
def count_samples(dataloader): |
|
os.environ["WDS_EPOCH"] = "0" |
|
n_elements, n_batches = 0, 0 |
|
for images, texts in dataloader: |
|
n_batches += 1 |
|
n_elements += len(images) |
|
assert len(images) == len(texts) |
|
return n_elements, n_batches |
|
|
|
|
|
def filter_no_caption(sample): |
|
return "txt" in sample |
|
|
|
|
|
def log_and_continue(exn): |
|
"""Call in an exception handler to ignore any exception, isssue a warning, and continue.""" |
|
logging.warning(f"Handling webdataset error ({repr(exn)}). Ignoring.") |
|
return True |
|
|
|
|
|
_SHARD_SHUFFLE_SIZE = 2000 |
|
_SHARD_SHUFFLE_INITIAL = 500 |
|
_SAMPLE_SHUFFLE_SIZE = 5000 |
|
_SAMPLE_SHUFFLE_INITIAL = 1000 |
|
|
|
|
|
def sample_prop(sizefile, inputs, proportion, is_local=True): |
|
""" |
|
Sample a proportion of the data. |
|
""" |
|
file_path_dict = { |
|
os.path.split(inputs[i])[1]: os.path.split(inputs[i])[0] |
|
for i in range(len(inputs)) |
|
} |
|
sampled_filepath_dict = {} |
|
sampled_size_dict = {} |
|
if not is_local: |
|
if os.path.exists("sizes.json"): |
|
os.remove("sizes.json") |
|
wget.download(sizefile, "sizes.json") |
|
sizefile = "sizes.json" |
|
with open(sizefile, "r", encoding="UTF-8") as f: |
|
load_dict = json.load(f) |
|
L = int(len(file_path_dict) * proportion) |
|
subkeys = random.sample(file_path_dict.keys(), L) |
|
for k in subkeys: |
|
sampled_size_dict[k] = load_dict[k] |
|
sampled_filepath_dict[k] = file_path_dict[k] |
|
return ( |
|
sum(sampled_size_dict.values()), |
|
L, |
|
[os.path.join(v, k) for k, v in sampled_filepath_dict.items()], |
|
sampled_size_dict, |
|
) |
|
|
|
|
|
def get_mel(audio_data, audio_cfg): |
|
|
|
mel = torchaudio.transforms.MelSpectrogram( |
|
sample_rate=audio_cfg["sample_rate"], |
|
n_fft=audio_cfg["window_size"], |
|
win_length=audio_cfg["window_size"], |
|
hop_length=audio_cfg["hop_size"], |
|
center=True, |
|
pad_mode="reflect", |
|
power=2.0, |
|
norm=None, |
|
onesided=True, |
|
n_mels=64, |
|
f_min=audio_cfg["fmin"], |
|
f_max=audio_cfg["fmax"], |
|
).to(audio_data.device) |
|
mel = mel(audio_data) |
|
|
|
mel = torchaudio.transforms.AmplitudeToDB(top_db=None)(mel) |
|
return mel.T |
|
|
|
|
|
def get_audio_features( |
|
audio_data, mel, max_len, data_truncating, data_filling, audio_cfg |
|
): |
|
""" |
|
Calculate and add audio features to sample. |
|
Sample: a dict containing all the data of current sample. |
|
audio_data: a tensor of shape (T) containing audio data. |
|
max_len: the maximum length of audio data. |
|
data_truncating: the method of truncating data. |
|
data_filling: the method of filling data. |
|
audio_cfg: a dict containing audio configuration. Comes from model_cfg['audio_cfg']. |
|
""" |
|
sample = {} |
|
|
|
assert audio_data.size(-1) > max_len, str(audio_data.size()) |
|
|
|
|
|
chunk_frames = ( |
|
max_len // audio_cfg["hop_size"] + 1 |
|
) |
|
mel = mel[:chunk_frames] |
|
|
|
audio_data = audio_data[..., :max_len] |
|
sample["mel_fusion"] = mel |
|
longer = torch.tensor([True]) |
|
|
|
sample["longer"] = longer |
|
sample["waveform"] = audio_data |
|
|
|
return sample |
|
|
|
|
|
def preprocess( |
|
sample, |
|
audio_ext, |
|
text_ext, |
|
max_len, |
|
audio_cfg, |
|
class_index_dict=None, |
|
data_filling="pad", |
|
data_truncating="rand_trunc", |
|
text_augment_selection=None, |
|
): |
|
""" |
|
Preprocess a single sample for wdsdataloader. |
|
""" |
|
audio_data, orig_sr = sf.read(io.BytesIO(sample[audio_ext])) |
|
audio_data = int16_to_float32(float32_to_int16(audio_data)) |
|
audio_data = torch.tensor(audio_data).float() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sample = get_audio_features( |
|
sample, audio_data, max_len, data_truncating, data_filling, audio_cfg |
|
) |
|
del sample[audio_ext] |
|
|
|
try: |
|
json_dict_raw = json.loads(sample[text_ext].decode("utf-8")) |
|
except: |
|
print("sample[__url__]:", sample["__url__"]) |
|
|
|
|
|
if text_augment_selection is None or text_augment_selection == "none": |
|
texts = json_dict_raw["text"] |
|
elif text_augment_selection == "all": |
|
if "text_augment_all" in json_dict_raw.keys(): |
|
texts = json_dict_raw["text_augment_all"] |
|
else: |
|
texts = json_dict_raw["text"] |
|
elif text_augment_selection == "augment_only": |
|
if "text_augment_all" in json_dict_raw.keys(): |
|
if json_dict_raw["text_augment_t5"] is None: |
|
texts = json_dict_raw["text"] |
|
else: |
|
texts = json_dict_raw["text_augment_t5"] |
|
else: |
|
texts = json_dict_raw["text"] |
|
else: |
|
raise NotImplementedError( |
|
f"text_augment_selection {text_augment_selection} not implemented" |
|
) |
|
sample["full_text"] = texts |
|
|
|
if isinstance(texts, list) and isinstance(texts[0], str) and len(texts) > 1: |
|
texts = random.choice(texts) |
|
sample["raw_text"] = texts |
|
sample["text"] = tokenizer(texts) |
|
if class_index_dict is not None: |
|
|
|
|
|
|
|
|
|
|
|
sample["class_label"] = np.zeros(len(class_index_dict.keys())) |
|
for x in json_dict_raw["tag"]: |
|
sample["class_label"][class_index_dict[x]] = 1 |
|
sample["class_label"] = torch.tensor(sample["class_label"]).float() |
|
del sample[text_ext] |
|
sample["audio_name"] = sample["__key__"].split("/")[-1] + "." + audio_ext |
|
sample["text_name"] = sample["__key__"].split("/")[-1] + "." + text_ext |
|
sample["audio_orig_sr"] = orig_sr |
|
return sample |
|
|
|
|
|
def collate_fn(batch): |
|
""" |
|
Collate function for wdsdataloader. |
|
batch: a list of dict, each dict is a sample |
|
""" |
|
|
|
batch_dict = {} |
|
for k in batch[0].keys(): |
|
if isinstance(batch[0][k], dict): |
|
batch_dict[k] = {} |
|
for kk in batch[0][k].keys(): |
|
tmp = [] |
|
for i in range(len(batch)): |
|
tmp.append(batch[i][k][kk]) |
|
batch_dict[k][kk] = torch.vstack(tmp) |
|
elif isinstance(batch[0][k], torch.Tensor): |
|
batch_dict[k] = torch.stack([sample[k] for sample in batch]) |
|
elif isinstance(batch[0][k], np.ndarray): |
|
batch_dict[k] = torch.tensor(np.stack([sample[k] for sample in batch])) |
|
else: |
|
batch_dict[k] = [sample[k] for sample in batch] |
|
return batch_dict |
|
|
|
|
|
def get_wds_dataset( |
|
args, |
|
model_cfg, |
|
is_train, |
|
audio_ext="flac", |
|
text_ext="json", |
|
max_len=480000, |
|
proportion=1.0, |
|
sizefilepath_=None, |
|
is_local=None, |
|
): |
|
""" |
|
Get a dataset for wdsdataloader. |
|
""" |
|
if is_local is None and (not args.remotedata is None): |
|
is_local = not args.remotedata |
|
|
|
input_shards = args.train_data if is_train else args.val_data |
|
assert input_shards is not None |
|
|
|
if not sizefilepath_ is None: |
|
sizefilepath = sizefilepath_ |
|
else: |
|
sizefilepath = os.path.join(os.path.dirname(input_shards[0]), "sizes.json") |
|
|
|
if proportion != 1.0: |
|
num_samples, num_shards, input_shards, _ = sample_prop( |
|
sizefilepath, input_shards, proportion, is_local=is_local |
|
) |
|
else: |
|
num_samples, num_shards = get_dataset_size( |
|
input_shards, sizefilepath_=sizefilepath_, is_local=is_local |
|
) |
|
|
|
if not num_samples: |
|
if is_train: |
|
num_samples = args.train_num_samples |
|
if not num_samples: |
|
raise RuntimeError( |
|
"Currently, number of dataset samples must be specified for training dataset. " |
|
"Please specify via `--train-num-samples` if no dataset length info present." |
|
) |
|
else: |
|
num_samples = ( |
|
args.val_num_samples or 0 |
|
) |
|
|
|
pipeline = [wds.SimpleShardList(input_shards)] |
|
|
|
|
|
if is_train or args.parallel_eval: |
|
pipeline.extend( |
|
[ |
|
wds.detshuffle( |
|
bufsize=_SHARD_SHUFFLE_SIZE, |
|
initial=_SHARD_SHUFFLE_INITIAL, |
|
seed=args.seed, |
|
), |
|
wds.split_by_node, |
|
wds.split_by_worker, |
|
|
|
wds.tarfile_to_samples(handler=log_and_continue), |
|
wds.shuffle( |
|
bufsize=_SAMPLE_SHUFFLE_SIZE, |
|
initial=_SAMPLE_SHUFFLE_INITIAL, |
|
rng=random.Random(args.seed), |
|
), |
|
|
|
] |
|
) |
|
else: |
|
pipeline.extend( |
|
[ |
|
wds.split_by_worker, |
|
|
|
wds.tarfile_to_samples(handler=log_and_continue), |
|
] |
|
) |
|
pipeline.append( |
|
wds.map( |
|
partial( |
|
preprocess, |
|
audio_ext=audio_ext, |
|
text_ext=text_ext, |
|
max_len=max_len, |
|
audio_cfg=model_cfg["audio_cfg"], |
|
class_index_dict=copy.deepcopy(args.class_index_dict), |
|
data_filling=args.data_filling, |
|
data_truncating=args.data_truncating, |
|
text_augment_selection=args.text_augment_selection, |
|
) |
|
), |
|
) |
|
|
|
pipeline.append( |
|
wds.batched( |
|
args.batch_size, |
|
partial=not (is_train or args.parallel_eval), |
|
collation_fn=collate_fn, |
|
) |
|
) |
|
|
|
dataset = wds.DataPipeline(*pipeline) |
|
if is_train or args.parallel_eval: |
|
|
|
|
|
|
|
global_batch_size = args.batch_size * args.world_size |
|
num_batches = math.ceil(num_samples / global_batch_size) |
|
num_workers = max(1, args.workers) |
|
num_worker_batches = math.ceil( |
|
num_batches / num_workers |
|
) |
|
num_batches = num_worker_batches * num_workers |
|
num_samples = num_batches * global_batch_size |
|
dataset = dataset.with_epoch( |
|
num_worker_batches |
|
) |
|
else: |
|
|
|
num_batches = math.ceil(num_samples / args.batch_size) |
|
|
|
kwargs = {} |
|
if args.horovod: |
|
kwargs["multiprocessing_context"] = "forkserver" |
|
|
|
dataloader = wds.WebLoader( |
|
dataset, batch_size=None, shuffle=False, num_workers=args.workers, **kwargs |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dataloader.num_batches = num_batches |
|
dataloader.num_samples = num_samples |
|
|
|
return DataInfo(dataloader, None) |
|
|
|
|
|
def wds_batch_list2dict( |
|
batch, |
|
keys=[ |
|
"__url__", |
|
"__key__", |
|
"waveform", |
|
"text", |
|
"raw_text", |
|
"audio_name", |
|
"text_name", |
|
"audio_orig_sr", |
|
], |
|
): |
|
""" |
|
Return a dictionary of the batch, with keys as the names of the fields. |
|
""" |
|
assert len(keys) == len( |
|
batch |
|
), "batch must have same number of keys as keys argument" |
|
return {keys[i]: batch[i] for i in range(len(batch))} |
|
|
|
|
|
def get_csv_dataset(args, preprocess_fn, is_train): |
|
input_filename = args.train_data if is_train else args.val_data |
|
assert input_filename |
|
dataset = CsvDataset( |
|
input_filename, |
|
preprocess_fn, |
|
img_key=args.csv_img_key, |
|
caption_key=args.csv_caption_key, |
|
sep=args.csv_separator, |
|
) |
|
num_samples = len(dataset) |
|
sampler = DistributedSampler(dataset) if args.distributed and is_train else None |
|
shuffle = is_train and sampler is None |
|
|
|
dataloader = DataLoader( |
|
dataset, |
|
batch_size=args.batch_size, |
|
shuffle=shuffle, |
|
num_workers=args.workers, |
|
pin_memory=True, |
|
sampler=sampler, |
|
drop_last=is_train, |
|
) |
|
dataloader.num_samples = num_samples |
|
dataloader.num_batches = len(dataloader) |
|
|
|
return DataInfo(dataloader, sampler) |
|
|
|
|
|
def get_toy_dataset(args, model_cfg, is_train): |
|
index_path = args.train_data if is_train else args.val_data |
|
ipc_path = args.train_ipc if is_train else args.val_ipc |
|
assert index_path and ipc_path |
|
eval_mode = not is_train |
|
dataset = ToyDataset(index_path, ipc_path, model_cfg, eval_mode=eval_mode) |
|
|
|
num_samples = len(dataset) |
|
sampler = ( |
|
DistributedSampler(dataset, shuffle=False) |
|
if args.distributed and is_train |
|
else None |
|
) |
|
|
|
dataloader = DataLoader( |
|
dataset, |
|
batch_size=args.batch_size, |
|
shuffle=False, |
|
num_workers=args.workers, |
|
sampler=sampler, |
|
drop_last=is_train, |
|
) |
|
dataloader.num_samples = num_samples |
|
dataloader.num_batches = len(dataloader) |
|
|
|
return DataInfo(dataloader, sampler) |
|
|
|
|
|
def get_dataset_fn(data_path, dataset_type): |
|
if dataset_type == "webdataset": |
|
return get_wds_dataset |
|
elif dataset_type == "csv": |
|
return get_csv_dataset |
|
elif dataset_type == "auto": |
|
ext = data_path.split(".")[-1] |
|
if ext in ["csv", "tsv"]: |
|
return get_csv_dataset |
|
elif ext in ["tar"]: |
|
return get_wds_dataset |
|
else: |
|
raise ValueError( |
|
f"Tried to figure out dataset type, but failed for extention {ext}." |
|
) |
|
elif dataset_type == "toy": |
|
return get_toy_dataset |
|
else: |
|
raise ValueError(f"Unsupported dataset type: {dataset_type}") |
|
|
|
|
|
def get_data(args, model_cfg): |
|
data = {} |
|
|
|
args.class_index_dict = load_class_label(args.class_label_path) |
|
|
|
if args.datasetinfos is None: |
|
args.datasetinfos = ["train", "unbalanced_train", "balanced_train"] |
|
if args.dataset_type == "webdataset": |
|
args.train_data = get_tar_path_from_dataset_name( |
|
args.datasetnames, |
|
args.datasetinfos, |
|
islocal=not args.remotedata, |
|
proportion=args.dataset_proportion, |
|
dataset_path=args.datasetpath, |
|
full_dataset=args.full_train_dataset, |
|
) |
|
|
|
if args.full_train_dataset is None: |
|
args.full_train_dataset = [] |
|
if args.exclude_eval_dataset is None: |
|
args.exclude_eval_dataset = [] |
|
excluded_eval_datasets = args.full_train_dataset + args.exclude_eval_dataset |
|
|
|
val_dataset_names = ( |
|
[n for n in args.datasetnames if n not in excluded_eval_datasets] |
|
if excluded_eval_datasets |
|
else args.datasetnames |
|
) |
|
args.val_dataset_names = val_dataset_names |
|
args.val_data = get_tar_path_from_dataset_name( |
|
val_dataset_names, |
|
["valid", "test", "eval"], |
|
islocal=not args.remotedata, |
|
proportion=1, |
|
dataset_path=args.datasetpath, |
|
full_dataset=None, |
|
) |
|
|
|
if args.train_data: |
|
data["train"] = get_dataset_fn(args.train_data, args.dataset_type)( |
|
args, model_cfg, is_train=True |
|
) |
|
|
|
if args.val_data: |
|
data["val"] = get_dataset_fn(args.val_data, args.dataset_type)( |
|
args, model_cfg, is_train=False |
|
) |
|
|
|
return data |
|
|