|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import warnings |
|
|
|
warnings.simplefilter(action="ignore", category=FutureWarning) |
|
import itertools |
|
import os |
|
import time |
|
import argparse |
|
import json |
|
import torch |
|
import torch.nn.functional as F |
|
from torch.utils.tensorboard import SummaryWriter |
|
from torch.utils.data import DistributedSampler, DataLoader |
|
import torch.multiprocessing as mp |
|
from torch.distributed import init_process_group |
|
from torch.nn.parallel import DistributedDataParallel |
|
from env import AttrDict, build_env |
|
from meldataset import MelDataset, mel_spectrogram, get_dataset_filelist, MAX_WAV_VALUE |
|
|
|
from bigvgan import BigVGAN |
|
from discriminators import ( |
|
MultiPeriodDiscriminator, |
|
MultiResolutionDiscriminator, |
|
MultiBandDiscriminator, |
|
MultiScaleSubbandCQTDiscriminator, |
|
) |
|
from loss import ( |
|
feature_loss, |
|
generator_loss, |
|
discriminator_loss, |
|
MultiScaleMelSpectrogramLoss, |
|
) |
|
|
|
from utils import ( |
|
plot_spectrogram, |
|
plot_spectrogram_clipped, |
|
scan_checkpoint, |
|
load_checkpoint, |
|
save_checkpoint, |
|
save_audio, |
|
) |
|
import torchaudio as ta |
|
from pesq import pesq |
|
from tqdm import tqdm |
|
import auraloss |
|
|
|
torch.backends.cudnn.benchmark = False |
|
|
|
|
|
def train(rank, a, h): |
|
if h.num_gpus > 1: |
|
|
|
init_process_group( |
|
backend=h.dist_config["dist_backend"], |
|
init_method=h.dist_config["dist_url"], |
|
world_size=h.dist_config["world_size"] * h.num_gpus, |
|
rank=rank, |
|
) |
|
|
|
|
|
torch.cuda.manual_seed(h.seed) |
|
torch.cuda.set_device(rank) |
|
device = torch.device(f"cuda:{rank:d}") |
|
|
|
|
|
generator = BigVGAN(h).to(device) |
|
|
|
|
|
mpd = MultiPeriodDiscriminator(h).to(device) |
|
|
|
|
|
|
|
if h.get("use_mbd_instead_of_mrd", False): |
|
print( |
|
"[INFO] using MultiBandDiscriminator of BigVGAN-v2 instead of MultiResolutionDiscriminator" |
|
) |
|
|
|
mrd = MultiBandDiscriminator(h).to(device) |
|
elif h.get("use_cqtd_instead_of_mrd", False): |
|
print( |
|
"[INFO] using MultiScaleSubbandCQTDiscriminator of BigVGAN-v2 instead of MultiResolutionDiscriminator" |
|
) |
|
mrd = MultiScaleSubbandCQTDiscriminator(h).to(device) |
|
else: |
|
mrd = MultiResolutionDiscriminator(h).to(device) |
|
|
|
|
|
if h.get("use_multiscale_melloss", False): |
|
print( |
|
"[INFO] using multi-scale Mel l1 loss of BigVGAN-v2 instead of the original single-scale loss" |
|
) |
|
fn_mel_loss_multiscale = MultiScaleMelSpectrogramLoss( |
|
sampling_rate=h.sampling_rate |
|
) |
|
else: |
|
fn_mel_loss_singlescale = F.l1_loss |
|
|
|
|
|
if rank == 0: |
|
print(generator) |
|
print(mpd) |
|
print(mrd) |
|
print(f"Generator params: {sum(p.numel() for p in generator.parameters())}") |
|
print(f"Discriminator mpd params: {sum(p.numel() for p in mpd.parameters())}") |
|
print(f"Discriminator mrd params: {sum(p.numel() for p in mrd.parameters())}") |
|
os.makedirs(a.checkpoint_path, exist_ok=True) |
|
print(f"Checkpoints directory: {a.checkpoint_path}") |
|
|
|
if os.path.isdir(a.checkpoint_path): |
|
|
|
cp_g = scan_checkpoint( |
|
a.checkpoint_path, prefix="g_", renamed_file="bigvgan_generator.pt" |
|
) |
|
cp_do = scan_checkpoint( |
|
a.checkpoint_path, |
|
prefix="do_", |
|
renamed_file="bigvgan_discriminator_optimizer.pt", |
|
) |
|
|
|
|
|
steps = 0 |
|
if cp_g is None or cp_do is None: |
|
state_dict_do = None |
|
last_epoch = -1 |
|
else: |
|
state_dict_g = load_checkpoint(cp_g, device) |
|
state_dict_do = load_checkpoint(cp_do, device) |
|
generator.load_state_dict(state_dict_g["generator"]) |
|
mpd.load_state_dict(state_dict_do["mpd"]) |
|
mrd.load_state_dict(state_dict_do["mrd"]) |
|
steps = state_dict_do["steps"] + 1 |
|
last_epoch = state_dict_do["epoch"] |
|
|
|
|
|
if h.num_gpus > 1: |
|
generator = DistributedDataParallel(generator, device_ids=[rank]).to(device) |
|
mpd = DistributedDataParallel(mpd, device_ids=[rank]).to(device) |
|
mrd = DistributedDataParallel(mrd, device_ids=[rank]).to(device) |
|
|
|
optim_g = torch.optim.AdamW( |
|
generator.parameters(), h.learning_rate, betas=[h.adam_b1, h.adam_b2] |
|
) |
|
optim_d = torch.optim.AdamW( |
|
itertools.chain(mrd.parameters(), mpd.parameters()), |
|
h.learning_rate, |
|
betas=[h.adam_b1, h.adam_b2], |
|
) |
|
|
|
if state_dict_do is not None: |
|
optim_g.load_state_dict(state_dict_do["optim_g"]) |
|
optim_d.load_state_dict(state_dict_do["optim_d"]) |
|
|
|
scheduler_g = torch.optim.lr_scheduler.ExponentialLR( |
|
optim_g, gamma=h.lr_decay, last_epoch=last_epoch |
|
) |
|
scheduler_d = torch.optim.lr_scheduler.ExponentialLR( |
|
optim_d, gamma=h.lr_decay, last_epoch=last_epoch |
|
) |
|
|
|
|
|
|
|
""" |
|
unseen_validation_filelist will contain sample filepaths outside the seen training & validation dataset |
|
Example: trained on LibriTTS, validate on VCTK |
|
""" |
|
training_filelist, validation_filelist, list_unseen_validation_filelist = ( |
|
get_dataset_filelist(a) |
|
) |
|
|
|
trainset = MelDataset( |
|
training_filelist, |
|
h, |
|
h.segment_size, |
|
h.n_fft, |
|
h.num_mels, |
|
h.hop_size, |
|
h.win_size, |
|
h.sampling_rate, |
|
h.fmin, |
|
h.fmax, |
|
shuffle=False if h.num_gpus > 1 else True, |
|
fmax_loss=h.fmax_for_loss, |
|
device=device, |
|
fine_tuning=a.fine_tuning, |
|
base_mels_path=a.input_mels_dir, |
|
is_seen=True, |
|
) |
|
|
|
train_sampler = DistributedSampler(trainset) if h.num_gpus > 1 else None |
|
|
|
train_loader = DataLoader( |
|
trainset, |
|
num_workers=h.num_workers, |
|
shuffle=False, |
|
sampler=train_sampler, |
|
batch_size=h.batch_size, |
|
pin_memory=True, |
|
drop_last=True, |
|
) |
|
|
|
if rank == 0: |
|
validset = MelDataset( |
|
validation_filelist, |
|
h, |
|
h.segment_size, |
|
h.n_fft, |
|
h.num_mels, |
|
h.hop_size, |
|
h.win_size, |
|
h.sampling_rate, |
|
h.fmin, |
|
h.fmax, |
|
False, |
|
False, |
|
fmax_loss=h.fmax_for_loss, |
|
device=device, |
|
fine_tuning=a.fine_tuning, |
|
base_mels_path=a.input_mels_dir, |
|
is_seen=True, |
|
) |
|
validation_loader = DataLoader( |
|
validset, |
|
num_workers=1, |
|
shuffle=False, |
|
sampler=None, |
|
batch_size=1, |
|
pin_memory=True, |
|
drop_last=True, |
|
) |
|
|
|
list_unseen_validset = [] |
|
list_unseen_validation_loader = [] |
|
for i in range(len(list_unseen_validation_filelist)): |
|
unseen_validset = MelDataset( |
|
list_unseen_validation_filelist[i], |
|
h, |
|
h.segment_size, |
|
h.n_fft, |
|
h.num_mels, |
|
h.hop_size, |
|
h.win_size, |
|
h.sampling_rate, |
|
h.fmin, |
|
h.fmax, |
|
False, |
|
False, |
|
fmax_loss=h.fmax_for_loss, |
|
device=device, |
|
fine_tuning=a.fine_tuning, |
|
base_mels_path=a.input_mels_dir, |
|
is_seen=False, |
|
) |
|
unseen_validation_loader = DataLoader( |
|
unseen_validset, |
|
num_workers=1, |
|
shuffle=False, |
|
sampler=None, |
|
batch_size=1, |
|
pin_memory=True, |
|
drop_last=True, |
|
) |
|
list_unseen_validset.append(unseen_validset) |
|
list_unseen_validation_loader.append(unseen_validation_loader) |
|
|
|
|
|
sw = SummaryWriter(os.path.join(a.checkpoint_path, "logs")) |
|
if a.save_audio: |
|
os.makedirs(os.path.join(a.checkpoint_path, "samples"), exist_ok=True) |
|
|
|
""" |
|
Validation loop, "mode" parameter is automatically defined as (seen or unseen)_(name of the dataset). |
|
If the name of the dataset contains "nonspeech", it skips PESQ calculation to prevent errors |
|
""" |
|
|
|
def validate(rank, a, h, loader, mode="seen"): |
|
assert rank == 0, "validate should only run on rank=0" |
|
generator.eval() |
|
torch.cuda.empty_cache() |
|
|
|
val_err_tot = 0 |
|
val_pesq_tot = 0 |
|
val_mrstft_tot = 0 |
|
|
|
|
|
pesq_resampler = ta.transforms.Resample(h.sampling_rate, 16000).cuda() |
|
loss_mrstft = auraloss.freq.MultiResolutionSTFTLoss(device="cuda") |
|
|
|
if a.save_audio: |
|
os.makedirs( |
|
os.path.join(a.checkpoint_path, "samples", f"gt_{mode}"), |
|
exist_ok=True, |
|
) |
|
os.makedirs( |
|
os.path.join(a.checkpoint_path, "samples", f"{mode}_{steps:08d}"), |
|
exist_ok=True, |
|
) |
|
|
|
with torch.no_grad(): |
|
print(f"step {steps} {mode} speaker validation...") |
|
|
|
|
|
for j, batch in enumerate(tqdm(loader)): |
|
x, y, _, y_mel = batch |
|
y = y.to(device) |
|
if hasattr(generator, "module"): |
|
y_g_hat = generator.module(x.to(device)) |
|
else: |
|
y_g_hat = generator(x.to(device)) |
|
y_mel = y_mel.to(device, non_blocking=True) |
|
y_g_hat_mel = mel_spectrogram( |
|
y_g_hat.squeeze(1), |
|
h.n_fft, |
|
h.num_mels, |
|
h.sampling_rate, |
|
h.hop_size, |
|
h.win_size, |
|
h.fmin, |
|
h.fmax_for_loss, |
|
) |
|
min_t = min(y_mel.size(-1), y_g_hat_mel.size(-1)) |
|
val_err_tot += F.l1_loss(y_mel[...,:min_t], y_g_hat_mel[...,:min_t]).item() |
|
|
|
|
|
if ( |
|
not "nonspeech" in mode |
|
): |
|
|
|
|
|
y_16k = pesq_resampler(y) |
|
y_g_hat_16k = pesq_resampler(y_g_hat.squeeze(1)) |
|
y_int_16k = (y_16k[0] * MAX_WAV_VALUE).short().cpu().numpy() |
|
y_g_hat_int_16k = ( |
|
(y_g_hat_16k[0] * MAX_WAV_VALUE).short().cpu().numpy() |
|
) |
|
val_pesq_tot += pesq(16000, y_int_16k, y_g_hat_int_16k, "wb") |
|
|
|
|
|
min_t = min(y.size(-1), y_g_hat.size(-1)) |
|
val_mrstft_tot += loss_mrstft(y_g_hat[...,:min_t], y[...,:min_t]).item() |
|
|
|
|
|
if j % a.eval_subsample == 0: |
|
if steps >= 0: |
|
sw.add_audio(f"gt_{mode}/y_{j}", y[0], steps, h.sampling_rate) |
|
if ( |
|
a.save_audio |
|
): |
|
save_audio( |
|
y[0], |
|
os.path.join( |
|
a.checkpoint_path, |
|
"samples", |
|
f"gt_{mode}", |
|
f"{j:04d}.wav", |
|
), |
|
h.sampling_rate, |
|
) |
|
sw.add_figure( |
|
f"gt_{mode}/y_spec_{j}", |
|
plot_spectrogram(x[0]), |
|
steps, |
|
) |
|
|
|
sw.add_audio( |
|
f"generated_{mode}/y_hat_{j}", |
|
y_g_hat[0], |
|
steps, |
|
h.sampling_rate, |
|
) |
|
if ( |
|
a.save_audio |
|
): |
|
save_audio( |
|
y_g_hat[0, 0], |
|
os.path.join( |
|
a.checkpoint_path, |
|
"samples", |
|
f"{mode}_{steps:08d}", |
|
f"{j:04d}.wav", |
|
), |
|
h.sampling_rate, |
|
) |
|
|
|
y_hat_spec = mel_spectrogram( |
|
y_g_hat.squeeze(1), |
|
h.n_fft, |
|
h.num_mels, |
|
h.sampling_rate, |
|
h.hop_size, |
|
h.win_size, |
|
h.fmin, |
|
h.fmax, |
|
) |
|
sw.add_figure( |
|
f"generated_{mode}/y_hat_spec_{j}", |
|
plot_spectrogram(y_hat_spec.squeeze(0).cpu().numpy()), |
|
steps, |
|
) |
|
|
|
""" |
|
Visualization of spectrogram difference between GT and synthesized audio, difference higher than 1 is clipped for better visualization. |
|
""" |
|
spec_delta = torch.clamp( |
|
torch.abs(x[0] - y_hat_spec.squeeze(0).cpu()), |
|
min=1e-6, |
|
max=1.0, |
|
) |
|
sw.add_figure( |
|
f"delta_dclip1_{mode}/spec_{j}", |
|
plot_spectrogram_clipped(spec_delta.numpy(), clip_max=1.0), |
|
steps, |
|
) |
|
|
|
val_err = val_err_tot / (j + 1) |
|
val_pesq = val_pesq_tot / (j + 1) |
|
val_mrstft = val_mrstft_tot / (j + 1) |
|
|
|
sw.add_scalar(f"validation_{mode}/mel_spec_error", val_err, steps) |
|
sw.add_scalar(f"validation_{mode}/pesq", val_pesq, steps) |
|
sw.add_scalar(f"validation_{mode}/mrstft", val_mrstft, steps) |
|
|
|
generator.train() |
|
|
|
|
|
if steps != 0 and rank == 0 and not a.debug: |
|
if not a.skip_seen: |
|
validate( |
|
rank, |
|
a, |
|
h, |
|
validation_loader, |
|
mode=f"seen_{train_loader.dataset.name}", |
|
) |
|
for i in range(len(list_unseen_validation_loader)): |
|
validate( |
|
rank, |
|
a, |
|
h, |
|
list_unseen_validation_loader[i], |
|
mode=f"unseen_{list_unseen_validation_loader[i].dataset.name}", |
|
) |
|
|
|
if a.evaluate: |
|
exit() |
|
|
|
|
|
generator.train() |
|
mpd.train() |
|
mrd.train() |
|
for epoch in range(max(0, last_epoch), a.training_epochs): |
|
if rank == 0: |
|
start = time.time() |
|
print(f"Epoch: {epoch + 1}") |
|
|
|
if h.num_gpus > 1: |
|
train_sampler.set_epoch(epoch) |
|
|
|
for i, batch in enumerate(train_loader): |
|
if rank == 0: |
|
start_b = time.time() |
|
x, y, _, y_mel = batch |
|
|
|
x = x.to(device, non_blocking=True) |
|
y = y.to(device, non_blocking=True) |
|
y_mel = y_mel.to(device, non_blocking=True) |
|
y = y.unsqueeze(1) |
|
|
|
y_g_hat = generator(x) |
|
y_g_hat_mel = mel_spectrogram( |
|
y_g_hat.squeeze(1), |
|
h.n_fft, |
|
h.num_mels, |
|
h.sampling_rate, |
|
h.hop_size, |
|
h.win_size, |
|
h.fmin, |
|
h.fmax_for_loss, |
|
) |
|
|
|
optim_d.zero_grad() |
|
|
|
|
|
y_df_hat_r, y_df_hat_g, _, _ = mpd(y, y_g_hat.detach()) |
|
loss_disc_f, losses_disc_f_r, losses_disc_f_g = discriminator_loss( |
|
y_df_hat_r, y_df_hat_g |
|
) |
|
|
|
|
|
y_ds_hat_r, y_ds_hat_g, _, _ = mrd(y, y_g_hat.detach()) |
|
loss_disc_s, losses_disc_s_r, losses_disc_s_g = discriminator_loss( |
|
y_ds_hat_r, y_ds_hat_g |
|
) |
|
|
|
loss_disc_all = loss_disc_s + loss_disc_f |
|
|
|
|
|
clip_grad_norm = h.get("clip_grad_norm", 1000.0) |
|
|
|
|
|
if steps >= a.freeze_step: |
|
loss_disc_all.backward() |
|
grad_norm_mpd = torch.nn.utils.clip_grad_norm_( |
|
mpd.parameters(), clip_grad_norm |
|
) |
|
grad_norm_mrd = torch.nn.utils.clip_grad_norm_( |
|
mrd.parameters(), clip_grad_norm |
|
) |
|
optim_d.step() |
|
else: |
|
print( |
|
f"[WARNING] skipping D training for the first {a.freeze_step} steps" |
|
) |
|
grad_norm_mpd = 0.0 |
|
grad_norm_mrd = 0.0 |
|
|
|
|
|
optim_g.zero_grad() |
|
|
|
|
|
lambda_melloss = h.get( |
|
"lambda_melloss", 45.0 |
|
) |
|
if h.get("use_multiscale_melloss", False): |
|
loss_mel = fn_mel_loss_multiscale(y, y_g_hat) * lambda_melloss |
|
else: |
|
loss_mel = fn_mel_loss_singlescale(y_mel, y_g_hat_mel) * lambda_melloss |
|
|
|
|
|
y_df_hat_r, y_df_hat_g, fmap_f_r, fmap_f_g = mpd(y, y_g_hat) |
|
loss_fm_f = feature_loss(fmap_f_r, fmap_f_g) |
|
loss_gen_f, losses_gen_f = generator_loss(y_df_hat_g) |
|
|
|
|
|
y_ds_hat_r, y_ds_hat_g, fmap_s_r, fmap_s_g = mrd(y, y_g_hat) |
|
loss_fm_s = feature_loss(fmap_s_r, fmap_s_g) |
|
loss_gen_s, losses_gen_s = generator_loss(y_ds_hat_g) |
|
|
|
if steps >= a.freeze_step: |
|
loss_gen_all = ( |
|
loss_gen_s + loss_gen_f + loss_fm_s + loss_fm_f + loss_mel |
|
) |
|
else: |
|
print( |
|
f"[WARNING] using regression loss only for G for the first {a.freeze_step} steps" |
|
) |
|
loss_gen_all = loss_mel |
|
|
|
loss_gen_all.backward() |
|
grad_norm_g = torch.nn.utils.clip_grad_norm_( |
|
generator.parameters(), clip_grad_norm |
|
) |
|
optim_g.step() |
|
|
|
if rank == 0: |
|
|
|
if steps % a.stdout_interval == 0: |
|
mel_error = ( |
|
loss_mel.item() / lambda_melloss |
|
) |
|
print( |
|
f"Steps: {steps:d}, " |
|
f"Gen Loss Total: {loss_gen_all:4.3f}, " |
|
f"Mel Error: {mel_error:4.3f}, " |
|
f"s/b: {time.time() - start_b:4.3f} " |
|
f"lr: {optim_g.param_groups[0]['lr']:4.7f} " |
|
f"grad_norm_g: {grad_norm_g:4.3f}" |
|
) |
|
|
|
|
|
if steps % a.checkpoint_interval == 0 and steps != 0: |
|
checkpoint_path = f"{a.checkpoint_path}/g_{steps:08d}" |
|
save_checkpoint( |
|
checkpoint_path, |
|
{ |
|
"generator": ( |
|
generator.module if h.num_gpus > 1 else generator |
|
).state_dict() |
|
}, |
|
) |
|
checkpoint_path = f"{a.checkpoint_path}/do_{steps:08d}" |
|
save_checkpoint( |
|
checkpoint_path, |
|
{ |
|
"mpd": (mpd.module if h.num_gpus > 1 else mpd).state_dict(), |
|
"mrd": (mrd.module if h.num_gpus > 1 else mrd).state_dict(), |
|
"optim_g": optim_g.state_dict(), |
|
"optim_d": optim_d.state_dict(), |
|
"steps": steps, |
|
"epoch": epoch, |
|
}, |
|
) |
|
|
|
|
|
if steps % a.summary_interval == 0: |
|
mel_error = ( |
|
loss_mel.item() / lambda_melloss |
|
) |
|
sw.add_scalar("training/gen_loss_total", loss_gen_all.item(), steps) |
|
sw.add_scalar("training/mel_spec_error", mel_error, steps) |
|
sw.add_scalar("training/fm_loss_mpd", loss_fm_f.item(), steps) |
|
sw.add_scalar("training/gen_loss_mpd", loss_gen_f.item(), steps) |
|
sw.add_scalar("training/disc_loss_mpd", loss_disc_f.item(), steps) |
|
sw.add_scalar("training/grad_norm_mpd", grad_norm_mpd, steps) |
|
sw.add_scalar("training/fm_loss_mrd", loss_fm_s.item(), steps) |
|
sw.add_scalar("training/gen_loss_mrd", loss_gen_s.item(), steps) |
|
sw.add_scalar("training/disc_loss_mrd", loss_disc_s.item(), steps) |
|
sw.add_scalar("training/grad_norm_mrd", grad_norm_mrd, steps) |
|
sw.add_scalar("training/grad_norm_g", grad_norm_g, steps) |
|
sw.add_scalar( |
|
"training/learning_rate_d", scheduler_d.get_last_lr()[0], steps |
|
) |
|
sw.add_scalar( |
|
"training/learning_rate_g", scheduler_g.get_last_lr()[0], steps |
|
) |
|
sw.add_scalar("training/epoch", epoch + 1, steps) |
|
|
|
|
|
if steps % a.validation_interval == 0: |
|
|
|
for i_x in range(x.shape[0]): |
|
sw.add_figure( |
|
f"training_input/x_{i_x}", |
|
plot_spectrogram(x[i_x].cpu()), |
|
steps, |
|
) |
|
sw.add_audio( |
|
f"training_input/y_{i_x}", |
|
y[i_x][0], |
|
steps, |
|
h.sampling_rate, |
|
) |
|
|
|
|
|
if not a.debug and steps != 0: |
|
validate( |
|
rank, |
|
a, |
|
h, |
|
validation_loader, |
|
mode=f"seen_{train_loader.dataset.name}", |
|
) |
|
for i in range(len(list_unseen_validation_loader)): |
|
validate( |
|
rank, |
|
a, |
|
h, |
|
list_unseen_validation_loader[i], |
|
mode=f"unseen_{list_unseen_validation_loader[i].dataset.name}", |
|
) |
|
steps += 1 |
|
|
|
|
|
scheduler_g.step() |
|
scheduler_d.step() |
|
|
|
if rank == 0: |
|
print( |
|
f"Time taken for epoch {epoch + 1} is {int(time.time() - start)} sec\n" |
|
) |
|
|
|
|
|
def main(): |
|
print("Initializing Training Process..") |
|
|
|
parser = argparse.ArgumentParser() |
|
|
|
parser.add_argument("--group_name", default=None) |
|
|
|
parser.add_argument("--input_wavs_dir", default="LibriTTS") |
|
parser.add_argument("--input_mels_dir", default="ft_dataset") |
|
parser.add_argument( |
|
"--input_training_file", default="tests/LibriTTS/train-full.txt" |
|
) |
|
parser.add_argument( |
|
"--input_validation_file", default="tests/LibriTTS/val-full.txt" |
|
) |
|
|
|
parser.add_argument( |
|
"--list_input_unseen_wavs_dir", |
|
nargs="+", |
|
default=["tests/LibriTTS", "tests/LibriTTS"], |
|
) |
|
parser.add_argument( |
|
"--list_input_unseen_validation_file", |
|
nargs="+", |
|
default=["tests/LibriTTS/dev-clean.txt", "tests/LibriTTS/dev-other.txt"], |
|
) |
|
|
|
parser.add_argument("--checkpoint_path", default="exp/bigvgan") |
|
parser.add_argument("--config", default="") |
|
|
|
parser.add_argument("--training_epochs", default=100000, type=int) |
|
parser.add_argument("--stdout_interval", default=5, type=int) |
|
parser.add_argument("--checkpoint_interval", default=50000, type=int) |
|
parser.add_argument("--summary_interval", default=100, type=int) |
|
parser.add_argument("--validation_interval", default=50000, type=int) |
|
|
|
parser.add_argument( |
|
"--freeze_step", |
|
default=0, |
|
type=int, |
|
help="freeze D for the first specified steps. G only uses regression loss for these steps.", |
|
) |
|
|
|
parser.add_argument("--fine_tuning", default=False, type=bool) |
|
|
|
parser.add_argument( |
|
"--debug", |
|
default=False, |
|
type=bool, |
|
help="debug mode. skips validation loop throughout training", |
|
) |
|
parser.add_argument( |
|
"--evaluate", |
|
default=False, |
|
type=bool, |
|
help="only run evaluation from checkpoint and exit", |
|
) |
|
parser.add_argument( |
|
"--eval_subsample", |
|
default=5, |
|
type=int, |
|
help="subsampling during evaluation loop", |
|
) |
|
parser.add_argument( |
|
"--skip_seen", |
|
default=False, |
|
type=bool, |
|
help="skip seen dataset. useful for test set inference", |
|
) |
|
parser.add_argument( |
|
"--save_audio", |
|
default=False, |
|
type=bool, |
|
help="save audio of test set inference to disk", |
|
) |
|
|
|
a = parser.parse_args() |
|
|
|
with open(a.config) as f: |
|
data = f.read() |
|
|
|
json_config = json.loads(data) |
|
h = AttrDict(json_config) |
|
|
|
build_env(a.config, "config.json", a.checkpoint_path) |
|
|
|
torch.manual_seed(h.seed) |
|
if torch.cuda.is_available(): |
|
torch.cuda.manual_seed(h.seed) |
|
h.num_gpus = torch.cuda.device_count() |
|
h.batch_size = int(h.batch_size / h.num_gpus) |
|
print(f"Batch size per GPU: {h.batch_size}") |
|
else: |
|
pass |
|
|
|
if h.num_gpus > 1: |
|
mp.spawn( |
|
train, |
|
nprocs=h.num_gpus, |
|
args=( |
|
a, |
|
h, |
|
), |
|
) |
|
else: |
|
train(0, a, h) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|