jadechoghari's picture
add initial files
96e64e9 verified
raw
history blame
28.4 kB
# Copyright (c) 2024 NVIDIA CORPORATION.
# Licensed under the MIT license.
# Adapted from https://github.com/jik876/hifi-gan under the MIT license.
# LICENSE is in incl_licenses directory.
import warnings
warnings.simplefilter(action="ignore", category=FutureWarning)
import itertools
import os
import time
import argparse
import json
import torch
import torch.nn.functional as F
from torch.utils.tensorboard import SummaryWriter
from torch.utils.data import DistributedSampler, DataLoader
import torch.multiprocessing as mp
from torch.distributed import init_process_group
from torch.nn.parallel import DistributedDataParallel
from env import AttrDict, build_env
from meldataset import MelDataset, mel_spectrogram, get_dataset_filelist, MAX_WAV_VALUE
from bigvgan import BigVGAN
from discriminators import (
MultiPeriodDiscriminator,
MultiResolutionDiscriminator,
MultiBandDiscriminator,
MultiScaleSubbandCQTDiscriminator,
)
from loss import (
feature_loss,
generator_loss,
discriminator_loss,
MultiScaleMelSpectrogramLoss,
)
from utils import (
plot_spectrogram,
plot_spectrogram_clipped,
scan_checkpoint,
load_checkpoint,
save_checkpoint,
save_audio,
)
import torchaudio as ta
from pesq import pesq
from tqdm import tqdm
import auraloss
torch.backends.cudnn.benchmark = False
def train(rank, a, h):
if h.num_gpus > 1:
# initialize distributed
init_process_group(
backend=h.dist_config["dist_backend"],
init_method=h.dist_config["dist_url"],
world_size=h.dist_config["world_size"] * h.num_gpus,
rank=rank,
)
# Set seed and device
torch.cuda.manual_seed(h.seed)
torch.cuda.set_device(rank)
device = torch.device(f"cuda:{rank:d}")
# Define BigVGAN generator
generator = BigVGAN(h).to(device)
# Define discriminators. MPD is used by default
mpd = MultiPeriodDiscriminator(h).to(device)
# Define additional discriminators. BigVGAN-v1 uses UnivNet's MRD as default
# New in BigVGAN-v2: option to switch to new discriminators: MultiBandDiscriminator / MultiScaleSubbandCQTDiscriminator
if h.get("use_mbd_instead_of_mrd", False): # Switch to MBD
print(
"[INFO] using MultiBandDiscriminator of BigVGAN-v2 instead of MultiResolutionDiscriminator"
)
# Variable name is kept as "mrd" for backward compatibility & minimal code change
mrd = MultiBandDiscriminator(h).to(device)
elif h.get("use_cqtd_instead_of_mrd", False): # Switch to CQTD
print(
"[INFO] using MultiScaleSubbandCQTDiscriminator of BigVGAN-v2 instead of MultiResolutionDiscriminator"
)
mrd = MultiScaleSubbandCQTDiscriminator(h).to(device)
else: # Fallback to original MRD in BigVGAN-v1
mrd = MultiResolutionDiscriminator(h).to(device)
# New in BigVGAN-v2: option to switch to multi-scale L1 mel loss
if h.get("use_multiscale_melloss", False):
print(
"[INFO] using multi-scale Mel l1 loss of BigVGAN-v2 instead of the original single-scale loss"
)
fn_mel_loss_multiscale = MultiScaleMelSpectrogramLoss(
sampling_rate=h.sampling_rate
) # NOTE: accepts waveform as input
else:
fn_mel_loss_singlescale = F.l1_loss
# Print the model & number of parameters, and create or scan the latest checkpoint from checkpoints directory
if rank == 0:
print(generator)
print(mpd)
print(mrd)
print(f"Generator params: {sum(p.numel() for p in generator.parameters())}")
print(f"Discriminator mpd params: {sum(p.numel() for p in mpd.parameters())}")
print(f"Discriminator mrd params: {sum(p.numel() for p in mrd.parameters())}")
os.makedirs(a.checkpoint_path, exist_ok=True)
print(f"Checkpoints directory: {a.checkpoint_path}")
if os.path.isdir(a.checkpoint_path):
# New in v2.1: If the step prefix pattern-based checkpoints are not found, also check for renamed files in Hugging Face Hub to resume training
cp_g = scan_checkpoint(
a.checkpoint_path, prefix="g_", renamed_file="bigvgan_generator.pt"
)
cp_do = scan_checkpoint(
a.checkpoint_path,
prefix="do_",
renamed_file="bigvgan_discriminator_optimizer.pt",
)
# Load the latest checkpoint if exists
steps = 0
if cp_g is None or cp_do is None:
state_dict_do = None
last_epoch = -1
else:
state_dict_g = load_checkpoint(cp_g, device)
state_dict_do = load_checkpoint(cp_do, device)
generator.load_state_dict(state_dict_g["generator"])
mpd.load_state_dict(state_dict_do["mpd"])
mrd.load_state_dict(state_dict_do["mrd"])
steps = state_dict_do["steps"] + 1
last_epoch = state_dict_do["epoch"]
# Initialize DDP, optimizers, and schedulers
if h.num_gpus > 1:
generator = DistributedDataParallel(generator, device_ids=[rank]).to(device)
mpd = DistributedDataParallel(mpd, device_ids=[rank]).to(device)
mrd = DistributedDataParallel(mrd, device_ids=[rank]).to(device)
optim_g = torch.optim.AdamW(
generator.parameters(), h.learning_rate, betas=[h.adam_b1, h.adam_b2]
)
optim_d = torch.optim.AdamW(
itertools.chain(mrd.parameters(), mpd.parameters()),
h.learning_rate,
betas=[h.adam_b1, h.adam_b2],
)
if state_dict_do is not None:
optim_g.load_state_dict(state_dict_do["optim_g"])
optim_d.load_state_dict(state_dict_do["optim_d"])
scheduler_g = torch.optim.lr_scheduler.ExponentialLR(
optim_g, gamma=h.lr_decay, last_epoch=last_epoch
)
scheduler_d = torch.optim.lr_scheduler.ExponentialLR(
optim_d, gamma=h.lr_decay, last_epoch=last_epoch
)
# Define training and validation datasets
"""
unseen_validation_filelist will contain sample filepaths outside the seen training & validation dataset
Example: trained on LibriTTS, validate on VCTK
"""
training_filelist, validation_filelist, list_unseen_validation_filelist = (
get_dataset_filelist(a)
)
trainset = MelDataset(
training_filelist,
h,
h.segment_size,
h.n_fft,
h.num_mels,
h.hop_size,
h.win_size,
h.sampling_rate,
h.fmin,
h.fmax,
shuffle=False if h.num_gpus > 1 else True,
fmax_loss=h.fmax_for_loss,
device=device,
fine_tuning=a.fine_tuning,
base_mels_path=a.input_mels_dir,
is_seen=True,
)
train_sampler = DistributedSampler(trainset) if h.num_gpus > 1 else None
train_loader = DataLoader(
trainset,
num_workers=h.num_workers,
shuffle=False,
sampler=train_sampler,
batch_size=h.batch_size,
pin_memory=True,
drop_last=True,
)
if rank == 0:
validset = MelDataset(
validation_filelist,
h,
h.segment_size,
h.n_fft,
h.num_mels,
h.hop_size,
h.win_size,
h.sampling_rate,
h.fmin,
h.fmax,
False,
False,
fmax_loss=h.fmax_for_loss,
device=device,
fine_tuning=a.fine_tuning,
base_mels_path=a.input_mels_dir,
is_seen=True,
)
validation_loader = DataLoader(
validset,
num_workers=1,
shuffle=False,
sampler=None,
batch_size=1,
pin_memory=True,
drop_last=True,
)
list_unseen_validset = []
list_unseen_validation_loader = []
for i in range(len(list_unseen_validation_filelist)):
unseen_validset = MelDataset(
list_unseen_validation_filelist[i],
h,
h.segment_size,
h.n_fft,
h.num_mels,
h.hop_size,
h.win_size,
h.sampling_rate,
h.fmin,
h.fmax,
False,
False,
fmax_loss=h.fmax_for_loss,
device=device,
fine_tuning=a.fine_tuning,
base_mels_path=a.input_mels_dir,
is_seen=False,
)
unseen_validation_loader = DataLoader(
unseen_validset,
num_workers=1,
shuffle=False,
sampler=None,
batch_size=1,
pin_memory=True,
drop_last=True,
)
list_unseen_validset.append(unseen_validset)
list_unseen_validation_loader.append(unseen_validation_loader)
# Tensorboard logger
sw = SummaryWriter(os.path.join(a.checkpoint_path, "logs"))
if a.save_audio: # Also save audio to disk if --save_audio is set to True
os.makedirs(os.path.join(a.checkpoint_path, "samples"), exist_ok=True)
"""
Validation loop, "mode" parameter is automatically defined as (seen or unseen)_(name of the dataset).
If the name of the dataset contains "nonspeech", it skips PESQ calculation to prevent errors
"""
def validate(rank, a, h, loader, mode="seen"):
assert rank == 0, "validate should only run on rank=0"
generator.eval()
torch.cuda.empty_cache()
val_err_tot = 0
val_pesq_tot = 0
val_mrstft_tot = 0
# Modules for evaluation metrics
pesq_resampler = ta.transforms.Resample(h.sampling_rate, 16000).cuda()
loss_mrstft = auraloss.freq.MultiResolutionSTFTLoss(device="cuda")
if a.save_audio: # Also save audio to disk if --save_audio is set to True
os.makedirs(
os.path.join(a.checkpoint_path, "samples", f"gt_{mode}"),
exist_ok=True,
)
os.makedirs(
os.path.join(a.checkpoint_path, "samples", f"{mode}_{steps:08d}"),
exist_ok=True,
)
with torch.no_grad():
print(f"step {steps} {mode} speaker validation...")
# Loop over validation set and compute metrics
for j, batch in enumerate(tqdm(loader)):
x, y, _, y_mel = batch
y = y.to(device)
if hasattr(generator, "module"):
y_g_hat = generator.module(x.to(device))
else:
y_g_hat = generator(x.to(device))
y_mel = y_mel.to(device, non_blocking=True)
y_g_hat_mel = mel_spectrogram(
y_g_hat.squeeze(1),
h.n_fft,
h.num_mels,
h.sampling_rate,
h.hop_size,
h.win_size,
h.fmin,
h.fmax_for_loss,
)
min_t = min(y_mel.size(-1), y_g_hat_mel.size(-1))
val_err_tot += F.l1_loss(y_mel[...,:min_t], y_g_hat_mel[...,:min_t]).item()
# PESQ calculation. only evaluate PESQ if it's speech signal (nonspeech PESQ will error out)
if (
not "nonspeech" in mode
): # Skips if the name of dataset (in mode string) contains "nonspeech"
# Resample to 16000 for pesq
y_16k = pesq_resampler(y)
y_g_hat_16k = pesq_resampler(y_g_hat.squeeze(1))
y_int_16k = (y_16k[0] * MAX_WAV_VALUE).short().cpu().numpy()
y_g_hat_int_16k = (
(y_g_hat_16k[0] * MAX_WAV_VALUE).short().cpu().numpy()
)
val_pesq_tot += pesq(16000, y_int_16k, y_g_hat_int_16k, "wb")
# MRSTFT calculation
min_t = min(y.size(-1), y_g_hat.size(-1))
val_mrstft_tot += loss_mrstft(y_g_hat[...,:min_t], y[...,:min_t]).item()
# Log audio and figures to Tensorboard
if j % a.eval_subsample == 0: # Subsample every nth from validation set
if steps >= 0:
sw.add_audio(f"gt_{mode}/y_{j}", y[0], steps, h.sampling_rate)
if (
a.save_audio
): # Also save audio to disk if --save_audio is set to True
save_audio(
y[0],
os.path.join(
a.checkpoint_path,
"samples",
f"gt_{mode}",
f"{j:04d}.wav",
),
h.sampling_rate,
)
sw.add_figure(
f"gt_{mode}/y_spec_{j}",
plot_spectrogram(x[0]),
steps,
)
sw.add_audio(
f"generated_{mode}/y_hat_{j}",
y_g_hat[0],
steps,
h.sampling_rate,
)
if (
a.save_audio
): # Also save audio to disk if --save_audio is set to True
save_audio(
y_g_hat[0, 0],
os.path.join(
a.checkpoint_path,
"samples",
f"{mode}_{steps:08d}",
f"{j:04d}.wav",
),
h.sampling_rate,
)
# Spectrogram of synthesized audio
y_hat_spec = mel_spectrogram(
y_g_hat.squeeze(1),
h.n_fft,
h.num_mels,
h.sampling_rate,
h.hop_size,
h.win_size,
h.fmin,
h.fmax,
)
sw.add_figure(
f"generated_{mode}/y_hat_spec_{j}",
plot_spectrogram(y_hat_spec.squeeze(0).cpu().numpy()),
steps,
)
"""
Visualization of spectrogram difference between GT and synthesized audio, difference higher than 1 is clipped for better visualization.
"""
spec_delta = torch.clamp(
torch.abs(x[0] - y_hat_spec.squeeze(0).cpu()),
min=1e-6,
max=1.0,
)
sw.add_figure(
f"delta_dclip1_{mode}/spec_{j}",
plot_spectrogram_clipped(spec_delta.numpy(), clip_max=1.0),
steps,
)
val_err = val_err_tot / (j + 1)
val_pesq = val_pesq_tot / (j + 1)
val_mrstft = val_mrstft_tot / (j + 1)
# Log evaluation metrics to Tensorboard
sw.add_scalar(f"validation_{mode}/mel_spec_error", val_err, steps)
sw.add_scalar(f"validation_{mode}/pesq", val_pesq, steps)
sw.add_scalar(f"validation_{mode}/mrstft", val_mrstft, steps)
generator.train()
# If the checkpoint is loaded, start with validation loop
if steps != 0 and rank == 0 and not a.debug:
if not a.skip_seen:
validate(
rank,
a,
h,
validation_loader,
mode=f"seen_{train_loader.dataset.name}",
)
for i in range(len(list_unseen_validation_loader)):
validate(
rank,
a,
h,
list_unseen_validation_loader[i],
mode=f"unseen_{list_unseen_validation_loader[i].dataset.name}",
)
# Exit the script if --evaluate is set to True
if a.evaluate:
exit()
# Main training loop
generator.train()
mpd.train()
mrd.train()
for epoch in range(max(0, last_epoch), a.training_epochs):
if rank == 0:
start = time.time()
print(f"Epoch: {epoch + 1}")
if h.num_gpus > 1:
train_sampler.set_epoch(epoch)
for i, batch in enumerate(train_loader):
if rank == 0:
start_b = time.time()
x, y, _, y_mel = batch
x = x.to(device, non_blocking=True)
y = y.to(device, non_blocking=True)
y_mel = y_mel.to(device, non_blocking=True)
y = y.unsqueeze(1)
y_g_hat = generator(x)
y_g_hat_mel = mel_spectrogram(
y_g_hat.squeeze(1),
h.n_fft,
h.num_mels,
h.sampling_rate,
h.hop_size,
h.win_size,
h.fmin,
h.fmax_for_loss,
)
optim_d.zero_grad()
# MPD
y_df_hat_r, y_df_hat_g, _, _ = mpd(y, y_g_hat.detach())
loss_disc_f, losses_disc_f_r, losses_disc_f_g = discriminator_loss(
y_df_hat_r, y_df_hat_g
)
# MRD
y_ds_hat_r, y_ds_hat_g, _, _ = mrd(y, y_g_hat.detach())
loss_disc_s, losses_disc_s_r, losses_disc_s_g = discriminator_loss(
y_ds_hat_r, y_ds_hat_g
)
loss_disc_all = loss_disc_s + loss_disc_f
# Set clip_grad_norm value
clip_grad_norm = h.get("clip_grad_norm", 1000.0) # Default to 1000
# Whether to freeze D for initial training steps
if steps >= a.freeze_step:
loss_disc_all.backward()
grad_norm_mpd = torch.nn.utils.clip_grad_norm_(
mpd.parameters(), clip_grad_norm
)
grad_norm_mrd = torch.nn.utils.clip_grad_norm_(
mrd.parameters(), clip_grad_norm
)
optim_d.step()
else:
print(
f"[WARNING] skipping D training for the first {a.freeze_step} steps"
)
grad_norm_mpd = 0.0
grad_norm_mrd = 0.0
# Generator
optim_g.zero_grad()
# L1 Mel-Spectrogram Loss
lambda_melloss = h.get(
"lambda_melloss", 45.0
) # Defaults to 45 in BigVGAN-v1 if not set
if h.get("use_multiscale_melloss", False): # uses wav <y, y_g_hat> for loss
loss_mel = fn_mel_loss_multiscale(y, y_g_hat) * lambda_melloss
else: # Uses mel <y_mel, y_g_hat_mel> for loss
loss_mel = fn_mel_loss_singlescale(y_mel, y_g_hat_mel) * lambda_melloss
# MPD loss
y_df_hat_r, y_df_hat_g, fmap_f_r, fmap_f_g = mpd(y, y_g_hat)
loss_fm_f = feature_loss(fmap_f_r, fmap_f_g)
loss_gen_f, losses_gen_f = generator_loss(y_df_hat_g)
# MRD loss
y_ds_hat_r, y_ds_hat_g, fmap_s_r, fmap_s_g = mrd(y, y_g_hat)
loss_fm_s = feature_loss(fmap_s_r, fmap_s_g)
loss_gen_s, losses_gen_s = generator_loss(y_ds_hat_g)
if steps >= a.freeze_step:
loss_gen_all = (
loss_gen_s + loss_gen_f + loss_fm_s + loss_fm_f + loss_mel
)
else:
print(
f"[WARNING] using regression loss only for G for the first {a.freeze_step} steps"
)
loss_gen_all = loss_mel
loss_gen_all.backward()
grad_norm_g = torch.nn.utils.clip_grad_norm_(
generator.parameters(), clip_grad_norm
)
optim_g.step()
if rank == 0:
# STDOUT logging
if steps % a.stdout_interval == 0:
mel_error = (
loss_mel.item() / lambda_melloss
) # Log training mel regression loss to stdout
print(
f"Steps: {steps:d}, "
f"Gen Loss Total: {loss_gen_all:4.3f}, "
f"Mel Error: {mel_error:4.3f}, "
f"s/b: {time.time() - start_b:4.3f} "
f"lr: {optim_g.param_groups[0]['lr']:4.7f} "
f"grad_norm_g: {grad_norm_g:4.3f}"
)
# Checkpointing
if steps % a.checkpoint_interval == 0 and steps != 0:
checkpoint_path = f"{a.checkpoint_path}/g_{steps:08d}"
save_checkpoint(
checkpoint_path,
{
"generator": (
generator.module if h.num_gpus > 1 else generator
).state_dict()
},
)
checkpoint_path = f"{a.checkpoint_path}/do_{steps:08d}"
save_checkpoint(
checkpoint_path,
{
"mpd": (mpd.module if h.num_gpus > 1 else mpd).state_dict(),
"mrd": (mrd.module if h.num_gpus > 1 else mrd).state_dict(),
"optim_g": optim_g.state_dict(),
"optim_d": optim_d.state_dict(),
"steps": steps,
"epoch": epoch,
},
)
# Tensorboard summary logging
if steps % a.summary_interval == 0:
mel_error = (
loss_mel.item() / lambda_melloss
) # Log training mel regression loss to tensorboard
sw.add_scalar("training/gen_loss_total", loss_gen_all.item(), steps)
sw.add_scalar("training/mel_spec_error", mel_error, steps)
sw.add_scalar("training/fm_loss_mpd", loss_fm_f.item(), steps)
sw.add_scalar("training/gen_loss_mpd", loss_gen_f.item(), steps)
sw.add_scalar("training/disc_loss_mpd", loss_disc_f.item(), steps)
sw.add_scalar("training/grad_norm_mpd", grad_norm_mpd, steps)
sw.add_scalar("training/fm_loss_mrd", loss_fm_s.item(), steps)
sw.add_scalar("training/gen_loss_mrd", loss_gen_s.item(), steps)
sw.add_scalar("training/disc_loss_mrd", loss_disc_s.item(), steps)
sw.add_scalar("training/grad_norm_mrd", grad_norm_mrd, steps)
sw.add_scalar("training/grad_norm_g", grad_norm_g, steps)
sw.add_scalar(
"training/learning_rate_d", scheduler_d.get_last_lr()[0], steps
)
sw.add_scalar(
"training/learning_rate_g", scheduler_g.get_last_lr()[0], steps
)
sw.add_scalar("training/epoch", epoch + 1, steps)
# Validation
if steps % a.validation_interval == 0:
# Plot training input x so far used
for i_x in range(x.shape[0]):
sw.add_figure(
f"training_input/x_{i_x}",
plot_spectrogram(x[i_x].cpu()),
steps,
)
sw.add_audio(
f"training_input/y_{i_x}",
y[i_x][0],
steps,
h.sampling_rate,
)
# Seen and unseen speakers validation loops
if not a.debug and steps != 0:
validate(
rank,
a,
h,
validation_loader,
mode=f"seen_{train_loader.dataset.name}",
)
for i in range(len(list_unseen_validation_loader)):
validate(
rank,
a,
h,
list_unseen_validation_loader[i],
mode=f"unseen_{list_unseen_validation_loader[i].dataset.name}",
)
steps += 1
# BigVGAN-v2 learning rate scheduler is changed from epoch-level to step-level
scheduler_g.step()
scheduler_d.step()
if rank == 0:
print(
f"Time taken for epoch {epoch + 1} is {int(time.time() - start)} sec\n"
)
def main():
print("Initializing Training Process..")
parser = argparse.ArgumentParser()
parser.add_argument("--group_name", default=None)
parser.add_argument("--input_wavs_dir", default="LibriTTS")
parser.add_argument("--input_mels_dir", default="ft_dataset")
parser.add_argument(
"--input_training_file", default="tests/LibriTTS/train-full.txt"
)
parser.add_argument(
"--input_validation_file", default="tests/LibriTTS/val-full.txt"
)
parser.add_argument(
"--list_input_unseen_wavs_dir",
nargs="+",
default=["tests/LibriTTS", "tests/LibriTTS"],
)
parser.add_argument(
"--list_input_unseen_validation_file",
nargs="+",
default=["tests/LibriTTS/dev-clean.txt", "tests/LibriTTS/dev-other.txt"],
)
parser.add_argument("--checkpoint_path", default="exp/bigvgan")
parser.add_argument("--config", default="")
parser.add_argument("--training_epochs", default=100000, type=int)
parser.add_argument("--stdout_interval", default=5, type=int)
parser.add_argument("--checkpoint_interval", default=50000, type=int)
parser.add_argument("--summary_interval", default=100, type=int)
parser.add_argument("--validation_interval", default=50000, type=int)
parser.add_argument(
"--freeze_step",
default=0,
type=int,
help="freeze D for the first specified steps. G only uses regression loss for these steps.",
)
parser.add_argument("--fine_tuning", default=False, type=bool)
parser.add_argument(
"--debug",
default=False,
type=bool,
help="debug mode. skips validation loop throughout training",
)
parser.add_argument(
"--evaluate",
default=False,
type=bool,
help="only run evaluation from checkpoint and exit",
)
parser.add_argument(
"--eval_subsample",
default=5,
type=int,
help="subsampling during evaluation loop",
)
parser.add_argument(
"--skip_seen",
default=False,
type=bool,
help="skip seen dataset. useful for test set inference",
)
parser.add_argument(
"--save_audio",
default=False,
type=bool,
help="save audio of test set inference to disk",
)
a = parser.parse_args()
with open(a.config) as f:
data = f.read()
json_config = json.loads(data)
h = AttrDict(json_config)
build_env(a.config, "config.json", a.checkpoint_path)
torch.manual_seed(h.seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(h.seed)
h.num_gpus = torch.cuda.device_count()
h.batch_size = int(h.batch_size / h.num_gpus)
print(f"Batch size per GPU: {h.batch_size}")
else:
pass
if h.num_gpus > 1:
mp.spawn(
train,
nprocs=h.num_gpus,
args=(
a,
h,
),
)
else:
train(0, a, h)
if __name__ == "__main__":
main()