|
import torch |
|
import torch.nn as nn |
|
|
|
from transformers import CLIPVisionModel, CLIPImageProcessor, CLIPVisionConfig |
|
|
|
|
|
import math |
|
import numpy as np |
|
from typing import Dict |
|
from transformers.image_utils import PILImageResampling, ChannelDimension |
|
from transformers.image_processing_utils import get_size_dict |
|
from transformers.image_transforms import ( |
|
get_resize_output_image_size, |
|
resize, |
|
) |
|
from typing import List, Optional, Tuple, Union |
|
|
|
|
|
class CLIPImageProcessor_Ferret(CLIPImageProcessor): |
|
def resize( |
|
self, |
|
image: np.ndarray, |
|
size: Dict[str, int], |
|
resample: PILImageResampling = PILImageResampling.BICUBIC, |
|
data_format: Optional[Union[str, ChannelDimension]] = None, |
|
**kwargs, |
|
) -> np.ndarray: |
|
""" |
|
Resize an image. The shortest edge of the image is resized to size["shortest_edge"], with the longest edge |
|
resized to keep the input aspect ratio. |
|
Args: |
|
image (`np.ndarray`): |
|
Image to resize. |
|
size (`Dict[str, int]`): |
|
Size of the output image. |
|
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`): |
|
Resampling filter to use when resiizing the image. |
|
data_format (`str` or `ChannelDimension`, *optional*): |
|
The channel dimension format of the image. If not provided, it will be the same as the input image. |
|
""" |
|
size = get_size_dict(size, default_to_square=True, height_width_order=True) |
|
|
|
|
|
|
|
|
|
output_size = get_resize_output_image_size(image, size=(size["height"], size["width"]), default_to_square=True) |
|
return resize(image, size=output_size, resample=resample, data_format=data_format, **kwargs) |
|
|
|
|
|
class CLIPVisionTower(nn.Module): |
|
def __init__(self, vision_tower, args, delay_load=False): |
|
super().__init__() |
|
|
|
self.is_loaded = False |
|
|
|
self.preprocess_type = getattr(args, 'version', 'ferret_v1') |
|
self.vision_tower_name = vision_tower |
|
self.select_layer = args.mm_vision_select_layer |
|
self.select_feature = getattr(args, 'mm_vision_select_feature', 'patch') |
|
|
|
if not delay_load: |
|
self.load_model() |
|
elif getattr(args, 'unfreeze_mm_vision_tower', False): |
|
self.load_model() |
|
else: |
|
self.cfg_only = CLIPVisionConfig.from_pretrained(self.vision_tower_name) |
|
|
|
def load_model(self, device_map=None): |
|
if self.is_loaded: |
|
print('{} is already loaded, `load_model` called again, skipping.'.format(self.vision_tower_name)) |
|
return |
|
|
|
if "ferret" in self.preprocess_type: |
|
self.image_processor = CLIPImageProcessor_Ferret.from_pretrained(self.vision_tower_name) |
|
else: |
|
self.image_processor = CLIPImageProcessor.from_pretrained(self.vision_tower_name) |
|
|
|
self.vision_tower = CLIPVisionModel.from_pretrained(self.vision_tower_name, device_map=device_map) |
|
self.vision_tower.requires_grad_(False) |
|
|
|
self.is_loaded = True |
|
|
|
def feature_select(self, image_forward_outs): |
|
image_features = image_forward_outs.hidden_states[self.select_layer] |
|
if self.select_feature == 'patch': |
|
image_features = image_features[:, 1:] |
|
elif self.select_feature == 'cls_patch': |
|
image_features = image_features |
|
else: |
|
raise ValueError(f'Unexpected select feature: {self.select_feature}') |
|
return image_features |
|
|
|
|
|
def forward(self, images): |
|
if type(images) is list: |
|
image_features = [] |
|
for image in images: |
|
image_forward_out = self.vision_tower(image.to(device=self.device, dtype=self.dtype).unsqueeze(0), output_hidden_states=True) |
|
image_feature = self.feature_select(image_forward_out).to(image.dtype) |
|
image_features.append(image_feature) |
|
else: |
|
image_forward_outs = self.vision_tower(images.to(device=self.device, dtype=self.dtype), output_hidden_states=True) |
|
image_features = self.feature_select(image_forward_outs).to(images.dtype) |
|
|
|
return image_features |
|
|
|
@property |
|
def dummy_feature(self): |
|
return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype) |
|
|
|
@property |
|
def dtype(self): |
|
return self.vision_tower.dtype |
|
|
|
@property |
|
def device(self): |
|
return self.vision_tower.device |
|
|
|
@property |
|
def config(self): |
|
if self.is_loaded: |
|
return self.vision_tower.config |
|
else: |
|
return self.cfg_only |
|
|
|
@property |
|
def hidden_size(self): |
|
return self.config.hidden_size |
|
|
|
@property |
|
def num_patches_per_side(self): |
|
return self.config.image_size // self.config.patch_size |
|
|
|
@property |
|
def num_patches(self): |
|
return (self.config.image_size // self.config.patch_size) ** 2 |
|
|
|
|
|
|
|
class CLIPVisionTowerS2(CLIPVisionTower): |
|
def __init__(self, vision_tower, args, delay_load=False): |
|
super().__init__(vision_tower, args, delay_load) |
|
|
|
self.s2_scales = getattr(args, 's2_scales', '336,672,1008') |
|
self.s2_scales = list(map(int, self.s2_scales.split(','))) |
|
self.s2_scales.sort() |
|
self.s2_split_size = self.s2_scales[0] |
|
self.s2_image_size = self.s2_scales[-1] |
|
|
|
try: |
|
from s2wrapper import forward as multiscale_forward |
|
except ImportError: |
|
raise ImportError('Package s2wrapper not found! Please install by running: \npip install git+https://github.com/bfshi/scaling_on_scales.git') |
|
self.multiscale_forward = multiscale_forward |
|
|
|
|
|
if not delay_load or getattr(args, 'unfreeze_mm_vision_tower', False): |
|
self.image_processor.size['shortest_edge'] = self.s2_image_size |
|
self.image_processor.crop_size['height'] = self.image_processor.crop_size['width'] = self.s2_image_size |
|
|
|
def load_model(self, device_map=None): |
|
if self.is_loaded: |
|
print('{} is already loaded, `load_model` called again, skipping.'.format(self.vision_tower_name)) |
|
return |
|
|
|
self.image_processor = CLIPImageProcessor.from_pretrained(self.vision_tower_name) |
|
self.vision_tower = CLIPVisionModel.from_pretrained(self.vision_tower_name, device_map=device_map) |
|
self.vision_tower.requires_grad_(False) |
|
|
|
self.image_processor.size['shortest_edge'] = self.s2_image_size |
|
self.image_processor.crop_size['height'] = self.image_processor.crop_size['width'] = self.s2_image_size |
|
|
|
self.is_loaded = True |
|
|
|
@torch.no_grad() |
|
def forward_feature(self, images): |
|
image_forward_outs = self.vision_tower(images.to(device=self.device, dtype=self.dtype), output_hidden_states=True) |
|
image_features = self.feature_select(image_forward_outs).to(images.dtype) |
|
return image_features |
|
|
|
@torch.no_grad() |
|
def forward(self, images): |
|
if type(images) is list: |
|
image_features = [] |
|
for image in images: |
|
image_feature = self.multiscale_forward(self.forward_feature, image.unsqueeze(0), img_sizes=self.s2_scales, max_split_size=self.s2_split_size) |
|
image_features.append(image_feature) |
|
else: |
|
image_features = self.multiscale_forward(self.forward_feature, images, img_sizes=self.s2_scales, max_split_size=self.s2_split_size) |
|
|
|
return image_features |
|
|
|
@property |
|
def hidden_size(self): |
|
return self.config.hidden_size * len(self.s2_scales) |