jadechoghari
commited on
Update inference.py
Browse files- inference.py +80 -322
inference.py
CHANGED
@@ -1,340 +1,98 @@
|
|
1 |
-
import
|
|
|
|
|
2 |
from PIL import Image
|
3 |
-
|
4 |
-
|
5 |
-
from functools import partial
|
6 |
-
from typing import Optional, Callable
|
7 |
-
import ast
|
8 |
-
import math
|
9 |
-
import numpy as np
|
10 |
-
DEFAULT_REGION_FEA_TOKEN = "<region_fea>"
|
11 |
-
DEFAULT_IMAGE_TOKEN = "<image>"
|
12 |
-
DEFAULT_IM_START_TOKEN = "<im_start>"
|
13 |
-
DEFAULT_IM_END_TOKEN = "<im_end>"
|
14 |
-
VOCAB_IMAGE_W = 1000 # 224
|
15 |
-
VOCAB_IMAGE_H = 1000 # 224
|
16 |
-
IMAGE_TOKEN_INDEX = -200
|
17 |
|
18 |
-
|
19 |
-
# define the task categories
|
20 |
-
box_in_tasks = ['widgetcaptions', 'taperception', 'ocr', 'icon_recognition', 'widget_classification', 'example_0']
|
21 |
-
box_out_tasks = ['widget_listing', 'find_text', 'find_icons', 'find_widget', 'conversation_interaction']
|
22 |
-
no_box_tasks = ['screen2words', 'detailed_description', 'conversation_perception', 'gpt4']
|
23 |
-
|
24 |
-
def get_bbox_coor(box, ratio_w, ratio_h):
|
25 |
-
return box[0] * ratio_w, box[1] * ratio_h, box[2] * ratio_w, box[3] * ratio_h
|
26 |
-
|
27 |
-
def tokenizer_image_token(prompt, tokenizer, image_token_index=IMAGE_TOKEN_INDEX, return_tensors=None):
|
28 |
-
if '<image>' in prompt:
|
29 |
-
prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split('<image>')]
|
30 |
-
input_ids = []
|
31 |
-
for i, chunk in enumerate(prompt_chunks):
|
32 |
-
input_ids.extend(chunk)
|
33 |
-
if i < len(prompt_chunks) - 1:
|
34 |
-
input_ids.append(image_token_index)
|
35 |
-
else:
|
36 |
-
input_ids = tokenizer(prompt).input_ids
|
37 |
-
# if return_tensors == 'pt':
|
38 |
-
# import torch
|
39 |
-
# input_ids = torch.tensor(input_ids).unsqueeze(0)
|
40 |
-
|
41 |
-
return input_ids
|
42 |
-
|
43 |
-
|
44 |
-
def expand2square(pil_img, background_color):
|
45 |
-
width, height = pil_img.size
|
46 |
-
if width == height:
|
47 |
-
return pil_img
|
48 |
-
elif width > height:
|
49 |
-
result = Image.new(pil_img.mode, (width, width), background_color)
|
50 |
-
result.paste(pil_img, (0, (width - height) // 2))
|
51 |
-
return result
|
52 |
-
else:
|
53 |
-
result = Image.new(pil_img.mode, (height, height), background_color)
|
54 |
-
result.paste(pil_img, ((height - width) // 2, 0))
|
55 |
-
return result
|
56 |
-
|
57 |
-
def select_best_resolution(original_size, possible_resolutions):
|
58 |
-
"""
|
59 |
-
Selects the best resolution from a list of possible resolutions based on the original size.
|
60 |
-
|
61 |
-
Args:
|
62 |
-
original_size (tuple): The original size of the image in the format (width, height).
|
63 |
-
possible_resolutions (list): A list of possible resolutions in the format [(width1, height1), (width2, height2), ...].
|
64 |
-
|
65 |
-
Returns:
|
66 |
-
tuple: The best fit resolution in the format (width, height).
|
67 |
-
"""
|
68 |
-
original_width, original_height = original_size
|
69 |
-
best_fit = None
|
70 |
-
max_effective_resolution = 0
|
71 |
-
min_wasted_resolution = float('inf')
|
72 |
-
|
73 |
-
for width, height in possible_resolutions:
|
74 |
-
scale = min(width / original_width, height / original_height)
|
75 |
-
downscaled_width, downscaled_height = int(original_width * scale), int(original_height * scale)
|
76 |
-
effective_resolution = min(downscaled_width * downscaled_height, original_width * original_height)
|
77 |
-
wasted_resolution = (width * height) - effective_resolution
|
78 |
-
|
79 |
-
if effective_resolution > max_effective_resolution or (effective_resolution == max_effective_resolution and wasted_resolution < min_wasted_resolution):
|
80 |
-
max_effective_resolution = effective_resolution
|
81 |
-
min_wasted_resolution = wasted_resolution
|
82 |
-
best_fit = (width, height)
|
83 |
-
|
84 |
-
return best_fit
|
85 |
-
|
86 |
-
def divide_to_patches(image, patch_size):
|
87 |
"""
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
Returns:
|
95 |
-
list: A list of PIL.Image.Image objects representing the patches.
|
96 |
"""
|
97 |
-
|
98 |
-
|
99 |
-
for i in range(0, height, patch_size):
|
100 |
-
for j in range(0, width, patch_size):
|
101 |
-
box = (j, i, j + patch_size, i + patch_size)
|
102 |
-
patch = image.crop(box)
|
103 |
-
patches.append(patch)
|
104 |
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
Resize and pad an image to a target resolution while maintaining aspect ratio.
|
109 |
-
Args:
|
110 |
-
image (PIL.Image.Image): The input image.
|
111 |
-
target_resolution (tuple): The target resolution (width, height) of the image.
|
112 |
-
Returns:
|
113 |
-
PIL.Image.Image: The resized and padded image.
|
114 |
-
"""
|
115 |
-
original_width, original_height = image.size
|
116 |
-
target_width, target_height = target_resolution
|
117 |
|
118 |
-
|
119 |
-
|
120 |
-
|
|
|
|
|
121 |
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
else:
|
126 |
-
new_height = target_height
|
127 |
-
new_width = min(math.ceil(original_width * scale_h), target_width)
|
128 |
|
129 |
-
|
130 |
-
resized_image = image.resize((new_width, new_height))
|
131 |
|
132 |
-
|
133 |
-
paste_x = (target_width - new_width) // 2
|
134 |
-
paste_y = (target_height - new_height) // 2
|
135 |
-
new_image.paste(resized_image, (paste_x, paste_y))
|
136 |
-
else:
|
137 |
-
new_image = image.resize((target_width, target_height))
|
138 |
|
139 |
-
return
|
140 |
|
141 |
-
def
|
142 |
"""
|
143 |
-
|
144 |
-
|
145 |
-
Args:
|
146 |
-
image (PIL.Image.Image): The input image to be processed.
|
147 |
-
processor: The image processor object.
|
148 |
-
grid_pinpoints (str): A string representation of a list of possible resolutions.
|
149 |
-
|
150 |
-
Returns:
|
151 |
-
torch.Tensor: A tensor containing the processed image patches.
|
152 |
"""
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
|
|
|
|
|
|
157 |
|
158 |
-
|
159 |
-
|
160 |
-
# FIXME: not sure if do_pad or undo_pad may affect the referring side
|
161 |
-
image_padded = resize_and_pad_image(image, best_resolution, is_pad=False)
|
162 |
-
|
163 |
-
patches = divide_to_patches(image_padded, processor.crop_size['height'])
|
164 |
-
|
165 |
-
if image_process_func:
|
166 |
-
resized_image_h, resized_image_w = image_process_func.keywords['size']
|
167 |
-
image_original_resize = image.resize((resized_image_w, resized_image_h))
|
168 |
-
image_patches = [image_original_resize] + patches
|
169 |
-
image_patches = [image_process_func(image_patch)['pixel_values'][0]
|
170 |
-
for image_patch in image_patches]
|
171 |
-
else:
|
172 |
-
image_original_resize = image.resize((processor.size['shortest_edge'], processor.size['shortest_edge']))
|
173 |
-
image_patches = [image_original_resize] + patches
|
174 |
-
image_patches = [processor.preprocess(image_patch, return_tensors='pt')['pixel_values'][0]
|
175 |
-
for image_patch in image_patches]
|
176 |
-
|
177 |
-
return torch.stack(image_patches, dim=0)
|
178 |
-
|
179 |
-
|
180 |
-
def process_images(images, image_processor, model_cfg, image_process_func: Optional[Callable] = None):
|
181 |
-
image_aspect_ratio = getattr(model_cfg, "image_aspect_ratio", None)
|
182 |
-
new_images = []
|
183 |
-
if image_aspect_ratio == 'pad':
|
184 |
-
for image in images:
|
185 |
-
image = expand2square(image, tuple(int(x*255) for x in image_processor.image_mean))
|
186 |
-
image = image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
|
187 |
-
new_images.append(image)
|
188 |
-
elif image_aspect_ratio == "anyres":
|
189 |
-
# image_processor(images, return_tensors='pt', do_resize=True, do_center_crop=False, size=[image_h, image_w])['pixel_values']
|
190 |
-
for image in images:
|
191 |
-
image = process_anyres_image(image, image_processor, model_cfg.image_grid_pinpoints, image_process_func=image_process_func)
|
192 |
-
new_images.append(image)
|
193 |
-
else:
|
194 |
-
return image_processor(images, return_tensors='pt')['pixel_values']
|
195 |
-
if all(x.shape == new_images[0].shape for x in new_images):
|
196 |
-
new_images = torch.stack(new_images, dim=0)
|
197 |
-
return new_images
|
198 |
-
# function to generate the mask
|
199 |
-
def generate_mask_for_feature(coor, raw_w, raw_h, mask=None):
|
200 |
-
"""
|
201 |
-
Generates a region mask based on provided coordinates.
|
202 |
-
Handles both point and box input.
|
203 |
-
"""
|
204 |
-
if mask is not None:
|
205 |
-
assert mask.shape[0] == raw_w and mask.shape[1] == raw_h
|
206 |
-
coor_mask = np.zeros((raw_w, raw_h))
|
207 |
-
|
208 |
-
# if it's a point (2 coordinates)
|
209 |
-
if len(coor) == 2:
|
210 |
-
span = 5 # Define the span for the point
|
211 |
-
x_min = max(0, coor[0] - span)
|
212 |
-
x_max = min(raw_w, coor[0] + span + 1)
|
213 |
-
y_min = max(0, coor[1] - span)
|
214 |
-
y_max = min(raw_h, coor[1] + span + 1)
|
215 |
-
coor_mask[int(x_min):int(x_max), int(y_min):int(y_max)] = 1
|
216 |
-
assert (coor_mask == 1).any(), f"coor: {coor}, raw_w: {raw_w}, raw_h: {raw_h}"
|
217 |
-
|
218 |
-
# if it's a box (4 coordinates)
|
219 |
-
elif len(coor) == 4:
|
220 |
-
coor_mask[coor[0]:coor[2]+1, coor[1]:coor[3]+1] = 1
|
221 |
-
if mask is not None:
|
222 |
-
coor_mask = coor_mask * mask
|
223 |
-
|
224 |
-
# convert to torch tensor and ensure it contains non-zero values
|
225 |
-
coor_mask = torch.from_numpy(coor_mask)
|
226 |
-
assert len(coor_mask.nonzero()) != 0, "Generated mask is empty :("
|
227 |
-
|
228 |
-
|
229 |
-
return coor_mask
|
230 |
-
|
231 |
-
|
232 |
-
def infer_single_prompt(image_path, prompt, model_path, region=None, model_name="ferret_gemma", conv_mode="ferret_gemma_instruct", add_region_feature=False):
|
233 |
-
img = Image.open(image_path).convert('RGB')
|
234 |
-
|
235 |
-
# this loads the model, image processor and tokenizer
|
236 |
-
tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, None, model_name)
|
237 |
-
# define the image size required by clip
|
238 |
-
image_size = {"height": 336, "width": 336}
|
239 |
-
|
240 |
-
if "<image>" in prompt:
|
241 |
-
prompt = prompt.split('\n')[1]
|
242 |
-
|
243 |
-
if model.config.mm_use_im_start_end:
|
244 |
-
prompt = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + prompt
|
245 |
-
else:
|
246 |
-
prompt = DEFAULT_IMAGE_TOKEN + '\n' + prompt
|
247 |
-
|
248 |
-
# generate the prompt per template requirement
|
249 |
-
conv = conv_templates[conv_mode].copy()
|
250 |
-
conv.append_message(conv.roles[0], prompt)
|
251 |
-
conv.append_message(conv.roles[1], None)
|
252 |
-
prompt_input = conv.get_prompt()
|
253 |
-
|
254 |
-
input_ids = tokenizer(prompt_input, return_tensors='pt')['input_ids'].cuda()
|
255 |
-
|
256 |
-
# raw_w, raw_h = img.size # check if shouldnt be width and height
|
257 |
-
raw_w = image_size["width"]
|
258 |
-
raw_h = image_size["height"]
|
259 |
-
if model.config.image_aspect_ratio == "square_nocrop":
|
260 |
-
image_tensor = image_processor.preprocess(img, return_tensors='pt', do_resize=True,
|
261 |
-
do_center_crop=False, size=[raw_h, raw_w])['pixel_values'][0]
|
262 |
-
elif model.config.image_aspect_ratio == "anyres":
|
263 |
-
image_process_func = partial(image_processor.preprocess, return_tensors='pt', do_resize=True, do_center_crop=False, size=[raw_h, raw_h])
|
264 |
-
image_tensor = process_images([img], image_processor, model.config, image_process_func=image_process_func)[0]
|
265 |
-
else:
|
266 |
-
image_tensor = process_images([img], image_processor, model.config)[0]
|
267 |
-
|
268 |
-
images = image_tensor.unsqueeze(0).to(torch.float16).cuda()
|
269 |
|
|
|
|
|
270 |
|
271 |
-
|
272 |
-
# region mask logic (if region is provided)
|
273 |
-
region_masks = None
|
274 |
-
if add_region_feature and region is not None:
|
275 |
-
# box_in is true
|
276 |
-
raw_w, raw_h = img.size
|
277 |
-
ratio_w = VOCAB_IMAGE_W * 1.0 / raw_w
|
278 |
-
ratio_h = VOCAB_IMAGE_H * 1.0 / raw_h
|
279 |
-
# preprocess the region
|
280 |
-
box_x1, box_y1, box_x2, box_y2 = region
|
281 |
-
box_x1_textvocab, box_y1_textvocab, box_x2_textvocab, box_y2_textvocab = get_bbox_coor(box=region, ratio_h=ratio_h, ratio_w=ratio_w)
|
282 |
-
region_coordinate_raw = [box_x1, box_y1, box_x2, box_y2]
|
283 |
-
|
284 |
-
region_masks = generate_mask_for_feature(region_coordinate_raw, raw_w, raw_h).unsqueeze(0).cuda().half()
|
285 |
-
region_masks = [[region_mask_i.cuda().half() for region_mask_i in region_masks]]
|
286 |
-
prompt_input = prompt_input.replace("<bbox_location0>", f"[{box_x1_textvocab}, {box_y1_textvocab}, {box_x2_textvocab}, {box_y2_textvocab}] {DEFAULT_REGION_FEA_TOKEN}")
|
287 |
-
|
288 |
-
# tokenize prompt
|
289 |
-
# input_ids = tokenizer(prompt_input, return_tensors='pt')['input_ids'].cuda()
|
290 |
-
|
291 |
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
)
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
315 |
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
Handles task types: box_in_tasks, box_out_tasks, no_box_tasks.
|
321 |
-
"""
|
322 |
-
if region is not None:
|
323 |
-
add_region_feature=True
|
324 |
-
if task in box_in_tasks and region is None:
|
325 |
-
raise ValueError(f"Task {task} requires a bounding box region.")
|
326 |
-
|
327 |
-
if task in box_in_tasks:
|
328 |
-
print(f"Processing {task} with bounding box region.")
|
329 |
-
return infer_single_prompt(image_path, prompt, model_path, region, add_region_feature=add_region_feature)
|
330 |
-
|
331 |
-
elif task in box_out_tasks:
|
332 |
-
print(f"Processing {task} without bounding box region.")
|
333 |
-
return infer_single_prompt(image_path, prompt, model_path)
|
334 |
-
|
335 |
-
elif task in no_box_tasks:
|
336 |
-
print(f"Processing {task} without image or bounding box.")
|
337 |
-
return infer_single_prompt(image_path, prompt, model_path)
|
338 |
-
|
339 |
-
else:
|
340 |
-
raise ValueError(f"Unknown task type: {task}")
|
|
|
1 |
+
import subprocess
|
2 |
+
import os
|
3 |
+
import subprocess
|
4 |
from PIL import Image
|
5 |
+
import re
|
6 |
+
import json
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
+
def process_inference_results(results):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
"""
|
10 |
+
Process the inference results by:
|
11 |
+
1. Adding bounding boxes on the image based on the coordinates in 'text'.
|
12 |
+
2. Extracting and returning the text prompt.
|
13 |
+
|
14 |
+
:param results: List of inference results with bounding boxes in 'text'.
|
15 |
+
:return: (image, text)
|
|
|
|
|
16 |
"""
|
17 |
+
processed_images = []
|
18 |
+
extracted_texts = []
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
+
for result in results:
|
21 |
+
image_path = result['image_path']
|
22 |
+
img = Image.open(image_path).convert("RGB")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
+
# this no more than extracts bounding box coordinates from the 'text'
|
25 |
+
bbox_str = re.search(r'\[\[([0-9,\s]+)\]\]', result['text'])
|
26 |
+
if bbox_str:
|
27 |
+
bbox = [int(coord) for coord in bbox_str.group(1).split(',')]
|
28 |
+
x1, y1, x2, y2 = bbox
|
29 |
|
30 |
+
# Draw the bounding box on the image (optional if needed later)
|
31 |
+
# draw = ImageDraw.Draw(img)
|
32 |
+
# draw.rectangle([x1, y1, x2, y2], outline="red", width=3)
|
|
|
|
|
|
|
33 |
|
34 |
+
extracted_texts.append(result['text'])
|
|
|
35 |
|
36 |
+
processed_images.append(img)
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
+
return processed_images[0], extracted_texts[0]
|
39 |
|
40 |
+
def inference_and_run(image_path, prompt, conv_mode="ferret_gemma_instruct", model_path="jadechoghari/Ferret-UI-Gemma2b", box=None):
|
41 |
"""
|
42 |
+
Run the inference and capture the errors for debugging.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
"""
|
44 |
+
data_input = [{
|
45 |
+
"id": 0,
|
46 |
+
"image": os.path.basename(image_path),
|
47 |
+
"image_h": Image.open(image_path).height,
|
48 |
+
"image_w": Image.open(image_path).width,
|
49 |
+
"conversations": [{"from": "human", "value": f"<image>\n{prompt}"}]
|
50 |
+
}]
|
51 |
|
52 |
+
if box:
|
53 |
+
data_input[0]["box_x1y1x2y2"] = [[box]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
+
with open("eval.json", "w") as json_file:
|
56 |
+
json.dump(data_input, json_file)
|
57 |
|
58 |
+
print("eval.json file created successfully.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
+
cmd = [
|
61 |
+
"python", "-m", "model_UI",
|
62 |
+
"--model_path", model_path,
|
63 |
+
"--data_path", "eval.json",
|
64 |
+
"--image_path", ".",
|
65 |
+
"--answers_file", "eval_output.jsonl",
|
66 |
+
"--num_beam", "1",
|
67 |
+
"--max_new_tokens", "1024",
|
68 |
+
"--conv_mode", conv_mode
|
69 |
+
]
|
70 |
+
|
71 |
+
if box:
|
72 |
+
cmd.extend(["--region_format", "box", "--add_region_feature"])
|
73 |
+
|
74 |
+
result = subprocess.run(cmd, check=True, capture_output=True, text=True)
|
75 |
+
print(f"Subprocess output:\n{result.stdout}")
|
76 |
+
print(f"Subprocess error (if any):\n{result.stderr}")
|
77 |
+
print(f"Inference completed. Output written to eval_output.jsonl")
|
78 |
+
|
79 |
+
output_folder = 'eval_output.jsonl'
|
80 |
+
if os.path.exists(output_folder):
|
81 |
+
json_files = [f for f in os.listdir(output_folder) if f.endswith(".jsonl")]
|
82 |
+
if json_files:
|
83 |
+
output_file_path = os.path.join(output_folder, json_files[0])
|
84 |
+
with open(output_file_path, "r") as output_file:
|
85 |
+
results = [json.loads(line) for line in output_file]
|
86 |
+
|
87 |
+
return process_inference_results(results)
|
88 |
+
else:
|
89 |
+
print("No output JSONL files found.")
|
90 |
+
return None, None
|
91 |
+
else:
|
92 |
+
print("Output folder not found.")
|
93 |
+
return None, None
|
94 |
|
95 |
+
except subprocess.CalledProcessError as e:
|
96 |
+
print(f"Error occurred during inference:\n{e}")
|
97 |
+
print(f"Subprocess output:\n{e.output}")
|
98 |
+
return None, None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|