jabot commited on
Commit
895adac
1 Parent(s): 8dbe8c3

Upload test training of LunarLander-v2 using PPO to jabot/PPO_LunarLanderV2

Browse files
PPO_LunarLanderV2_10000000Steps.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a0e5eec4b8ffa3b059a6b7a0f28ce1f3603adcc6047fffb3dd90f3c180c3aef8
3
+ size 323982
PPO_LunarLanderV2_10000000Steps/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
PPO_LunarLanderV2_10000000Steps/data ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb972859830>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb9728598c0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb972859950>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb9728599e0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fb972859a70>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fb972859b00>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb972859b90>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fb972859c20>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb972859cb0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb972859d40>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb972859dd0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fb9728a78a0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {
23
+ "net_arch": [
24
+ 128,
25
+ {
26
+ "vf": [
27
+ 64,
28
+ 32,
29
+ 32
30
+ ],
31
+ "pi": [
32
+ 64,
33
+ 32,
34
+ 32
35
+ ]
36
+ }
37
+ ]
38
+ },
39
+ "observation_space": {
40
+ ":type:": "<class 'gym.spaces.box.Box'>",
41
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
42
+ "dtype": "float32",
43
+ "_shape": [
44
+ 8
45
+ ],
46
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
47
+ "high": "[inf inf inf inf inf inf inf inf]",
48
+ "bounded_below": "[False False False False False False False False]",
49
+ "bounded_above": "[False False False False False False False False]",
50
+ "_np_random": null
51
+ },
52
+ "action_space": {
53
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
54
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
55
+ "n": 4,
56
+ "_shape": [],
57
+ "dtype": "int64",
58
+ "_np_random": null
59
+ },
60
+ "n_envs": 64,
61
+ "num_timesteps": 10092544,
62
+ "_total_timesteps": 10000000,
63
+ "_num_timesteps_at_start": 0,
64
+ "seed": null,
65
+ "action_noise": null,
66
+ "start_time": 1652349173.1414554,
67
+ "learning_rate": {
68
+ ":type:": "<class 'function'>",
69
+ ":serialized:": "gAWVUgIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsCSxNDGHwAZAFrBXIMiABTAIgAZAIbAFMAZABTAJRORz/gAAAAAAAATegDh5QpjBJwcm9ncmVzc19yZW1haW5pbmeUhZSMHzxpcHl0aG9uLWlucHV0LTEyLWIxYmEwNjk1Mzg3OD6UjARmdW5jlEsYQwYAAQgBBAaUjA1pbml0aWFsX3ZhbHVllIWUKXSUUpR9lCiMC19fcGFja2FnZV9flE6MCF9fbmFtZV9flIwIX19tYWluX1+UdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHX2UfZQoaBZoDowMX19xdWFsbmFtZV9flIwcc3RlcHNfc2NoZWR1bGUuPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
70
+ },
71
+ "tensorboard_log": null,
72
+ "lr_schedule": {
73
+ ":type:": "<class 'function'>",
74
+ ":serialized:": "gAWVUgIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsCSxNDGHwAZAFrBXIMiABTAIgAZAIbAFMAZABTAJRORz/gAAAAAAAATegDh5QpjBJwcm9ncmVzc19yZW1haW5pbmeUhZSMHzxpcHl0aG9uLWlucHV0LTEyLWIxYmEwNjk1Mzg3OD6UjARmdW5jlEsYQwYAAQgBBAaUjA1pbml0aWFsX3ZhbHVllIWUKXSUUpR9lCiMC19fcGFja2FnZV9flE6MCF9fbmFtZV9flIwIX19tYWluX1+UdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHX2UfZQoaBZoDowMX19xdWFsbmFtZV9flIwcc3RlcHNfc2NoZWR1bGUuPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
75
+ },
76
+ "_last_obs": {
77
+ ":type:": "<class 'numpy.ndarray'>",
78
+ ":serialized:": "gAWVdQgAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYACAAAAAAAAHrjE74o0aw/kvTYvtlq576JlY6+H+KjvgAAAAAAAAAAANGePaQcADoLr8C+3980voGglroS7VO/AAAAAAAAAABmcpa79uRRusqbMblwv4m0hlUxOti9TjgAAIA/AACAPzPjfLuubYu6iLoos+f/8q4tVII6+dXKMwAAgD8AAIA/M7PkunDXtT+M/TS+hR3dPrTyBDv6/CM9AAAAAAAAAADNV/m84bCIukqlPz6f0R65JgeKOYD+FbgAAIA/AACAPyAsXL525i8/gzvRPapuSL85nq++42aKPQAAAAAAAAAAJv+TvewxqT/SK1O+cvwBv0nFZ72jAVC+AAAAAAAAAAAAncO8KRATunTcxbT3J1kvH7RSuvQOvjMAAIA/AACAPzMYQb0X8Z0/Rqm3vjaKTb93EvO8KU00vgAAAAAAAAAADb1DvmQx4j7j21Q+w2oXv2V8lr50OSU+AAAAAAAAAACmsTU+xWtWPk6lpr7p+wC//iYtPt5LvL0AAAAAAAAAAPPX4L3qxz0/ImI6vqezPr9KLIi+2l7vvQAAAAAAAAAAM1lWvHv2tj1Na+88aoTbvgcwM7vS4c09AAAAAAAAAACa2TY8LinavOu+4b6byUU9cIzvPQtKgjsAAIA/AACAPwA8Pr37G5A77kqzvD1pv75mNqa92vnAPAAAgD8AAAAAmq1wvWM4ET0oroA+RQWuvj4X5z0//4w+AAAAAAAAAACANRY9nMpDvFPW170wvLG8KgB+vS0mjL0AAIA/AACAP2ZzZD0cpya8qZi2vg7hWDsZMI29MonbvQAAgD8AAIA/ZmAgvF6lgz0SbXK9vH7MviVzYr0SvXa9AAAAAAAAAAAAfPU7KXwMOey+I7ix+qCztKb8OnEqRTcAAIA/AACAP5piqTwUIpG6FPiMue8P3bJl9+66MCChOAAAgD8AAIA/8zYfvg155z66va49UPIuv/eoib7Qp+89AAAAAAAAAACaXP28KZB6upIDKTxCmbI8HH6OuLTzmT0AAIA/AACAPwDq0zwKfT+7KEcTvgAdjz2OhYe78NjIPAAAgD8AAIA/TYwoPQpzTLs233e+wKQVPf1YsTxQZvu9AACAPwAAgD9Aq9c9z/6HP+MsPD5bvi+/Z1RuPj6bhj0AAAAAAAAAAJrRxDu4vu25f/BAuTfJ9bMCA+a65nBmOAAAgD8AAIA/ZteHvI/CHbpUCEA+T5RquJauuDuahGO3AACAPwAAgD8AHNq8KVg0ukavLTmt0SM00aPmOcAyTrgAAIA/AACAP21icD5lvRw/EvrGPcewG78YYMc+4LkfvAAAAAAAAAAAGn52PRRklLryNDQ1sOGLMAS/ObqOMVC0AACAPwAAgD8zdKQ8GAq2P4o8Hj4JBrO9g/MTPO4wAD4AAAAAAAAAAPPkpL3oN50/KtQev6aiUr+v+E061YROvgAAAAAAAAAAQNAvPgsIfj9lqyA/XlZOv9kJQT4RaaA+AAAAAAAAAABm5oy6nzG1P9r8Bb2pCi89iInduinWsLwAAAAAAAAAADORCbzXlVi7AYSOPPMKITx3V9k8zWkOvQAAgD8AAIA/Jt+oPYDDNT9jUTE+bW59v2CGBT76GVc8AAAAAAAAAADAmTQ+UDD/PrUFzz16Yyi/0X98PmoIlj0AAAAAAAAAAADWDbzJMQk/83ZjPcxVTr9PqQ690uiWPQAAAAAAAAAAze4FPOG8jroC+Y41XsDHL89xuToaX7a0AACAPwAAgD/Gr6Q+BCaLP9z5lz5DXiG/w5YFP7U49D0AAAAAAAAAABoTu70rmCk/Uwi8vWvIVL+kKzy+wqPRvAAAAAAAAAAA7U8CvqW3sz9wdL++jhjLvlaaIL6Vd5G+AAAAAAAAAAAtyUS+T297PkQeAz/UOQ2/B8MfvaUwqT4AAAAAAAAAAOZXAT6TVqs/q/OyPqoqDb9r33s+xtfdPQAAAAAAAAAAABDWOqQgVLs5BQE+VbGCOzFfXjyEuIO8AACAPwAAgD9mSdu80qLnu56KYjwM7hs8yFhFvSADCD0AAIA/AACAP0YFOL7Mle0+4coCPvMQO7+fs6i+HhNDPgAAAAAAAAAALTYPPgTr5D3G9E2+lRKlvuEtWD7WmZO9AAAAAAAAAADNXGg9YX7IvMLnyr5l81u9JcETPiKWgz4AAIA/AAAAAJpp77rXDC272HK2u/pfUT006Ca8DnqBOwAAgD8AAIA/mkeOPbUALD9f/So+pmZ/v2NVtD3zhVk7AAAAAAAAAABGwSU+H3eHPqWxUb4r6yK/YrP9PXgVHzwAAAAAAAAAALPhNr4b+LU+3p8DP27TJb9RsP69/32ePgAAAAAAAAAAJgakPbsQvT96DJY+g8gpvvpC3j2sPJc+AAAAAAAAAABmGMQ9V3wqPso6t70xdi2/wrEWPtiVNj0AAAAAAAAAAKakoL4NsUQ/QhkWPtfEOb+fVuq+LcpxPgAAAAAAAAAAmkrmvKdkLj/AdcG5modZv3jevr3Jeim7AAAAAAAAAADza809++6AO7Pu+r6O65e+gOkVvQU9+rsAAAAAAAAAAAAGaDzXoyC1EtwjvsA5Bz0WUVi7cI7TuwAAgD8AAIA/ZjA5vK6FuLrVEfW8v+fpMU9pJTqDBmszAACAPwAAgD8zoU08XJMnuvthGbMLdXqwvpyQud5DtTMAAIA/AACAP8DwsL2HpqA/yqMHv63/Jb/rH1S9NYZ1vgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYktASwiGlIwBQ5R0lFKULg=="
79
+ },
80
+ "_last_episode_starts": {
81
+ ":type:": "<class 'numpy.ndarray'>",
82
+ ":serialized:": "gAWVswAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZAAAAAAAAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiS0CFlIwBQ5R0lFKULg=="
83
+ },
84
+ "_last_original_obs": null,
85
+ "_episode_num": 0,
86
+ "use_sde": false,
87
+ "sde_sample_freq": -1,
88
+ "_current_progress_remaining": -0.009254400000000107,
89
+ "ep_info_buffer": {
90
+ ":type:": "<class 'collections.deque'>",
91
+ ":serialized:": "gAWVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIGAtD5DQ7ckCUhpRSlIwBbJRLrowBdJRHQLtz1lTWGyp1fZQoaAZoCWgPQwhPIy2V9xpxQJSGlFKUaBVLumgWR0C7c+N9c8kldX2UKGgGaAloD0MIqJAr9ezBckCUhpRSlGgVS7hoFkdAu3P3UAksz3V9lChoBmgJaA9DCBRa1v1jNnNAlIaUUpRoFUuzaBZHQLt0Dqmj0th1fZQoaAZoCWgPQwhCQSlauXVyQJSGlFKUaBVLrmgWR0C7dA5eJHiFdX2UKGgGaAloD0MITWpoA/BQcUCUhpRSlGgVS5xoFkdAu3QPp0OmSHV9lChoBmgJaA9DCFmIDoGjaXJAlIaUUpRoFUuCaBZHQLt0G/PgNw11fZQoaAZoCWgPQwhqoWRyqq9wQJSGlFKUaBVLq2gWR0C7dCWACnxbdX2UKGgGaAloD0MISMMpc/OhcUCUhpRSlGgVS71oFkdAu3RAJE6T4nV9lChoBmgJaA9DCDfeHRmrST1AlIaUUpRoFUtYaBZHQLt0RIZqEe11fZQoaAZoCWgPQwjuzW+YaFRyQJSGlFKUaBVLhWgWR0C7dExY/3WXdX2UKGgGaAloD0MIlzjyQKSfcUCUhpRSlGgVS69oFkdAu3RRWzWwvHV9lChoBmgJaA9DCDEnaJPD6HJAlIaUUpRoFUupaBZHQLt0UI2wV0t1fZQoaAZoCWgPQwh2btqMEyBzQJSGlFKUaBVLtmgWR0C7dIVE/jbSdX2UKGgGaAloD0MIdCmuKvtxb0CUhpRSlGgVS55oFkdAu3SH6j323HV9lChoBmgJaA9DCGYRiq3gAHNAlIaUUpRoFUvMaBZHQLt0lSZ0CBB1fZQoaAZoCWgPQwjysbtAiSZ0QJSGlFKUaBVLvGgWR0C7dJmZuyeJdX2UKGgGaAloD0MIf2snSkLUc0CUhpRSlGgVS8poFkdAu3Seqebut3V9lChoBmgJaA9DCHFyv0ORBHJAlIaUUpRoFUucaBZHQLt0roIOYpl1fZQoaAZoCWgPQwiwkLkyaPpwQJSGlFKUaBVLpmgWR0C7dMW1lXijdX2UKGgGaAloD0MI7ZqQ1lh7c0CUhpRSlGgVS7RoFkdAu3TRiobXH3V9lChoBmgJaA9DCLLXuz/em3FAlIaUUpRoFUupaBZHQLt01eQuEmJ1fZQoaAZoCWgPQwhhGRu6GRtwQJSGlFKUaBVLn2gWR0C7dOACW/rTdX2UKGgGaAloD0MInDI338htc0CUhpRSlGgVS81oFkdAu3Tw3vQWvnV9lChoBmgJaA9DCKpkAKhiR3FAlIaUUpRoFUuxaBZHQLt1AhybQTp1fZQoaAZoCWgPQwjKpfEL7xJxQJSGlFKUaBVLp2gWR0C7dQ/GhmGudX2UKGgGaAloD0MIhzHp72XMckCUhpRSlGgVS8VoFkdAu3VApvxYrHV9lChoBmgJaA9DCLwH6L4cGXJAlIaUUpRoFUujaBZHQLt1ULYPGyZ1fZQoaAZoCWgPQwigM2lTtWZyQJSGlFKUaBVLrmgWR0C7dVMPSUkfdX2UKGgGaAloD0MI51YIqzGOckCUhpRSlGgVS9NoFkdAu3VaaEzwdHV9lChoBmgJaA9DCKSIDKu4/nFAlIaUUpRoFUu2aBZHQLt1Xbb1yvN1fZQoaAZoCWgPQwibOo+Kf4ZzQJSGlFKUaBVLw2gWR0C7dXdc4YJmdX2UKGgGaAloD0MI6NoX0Eskc0CUhpRSlGgVS9poFkdAu3V1zGPxQXV9lChoBmgJaA9DCD3WjAzyL3JAlIaUUpRoFUuLaBZHQLt1kD1Gsmx1fZQoaAZoCWgPQwiXHk31pBJ0QJSGlFKUaBVLw2gWR0C7dbAQg9vCdX2UKGgGaAloD0MI9kGWBdOPcUCUhpRSlGgVS69oFkdAu3XBtMwlB3V9lChoBmgJaA9DCECiCRSxdnNAlIaUUpRoFUuuaBZHQLt10L9deIF1fZQoaAZoCWgPQwiscTYdQZ1wQJSGlFKUaBVLqmgWR0C7ddrYTTOPdX2UKGgGaAloD0MIMjogCbvVc0CUhpRSlGgVS9poFkdAu3XZXcQAdXV9lChoBmgJaA9DCLnBUIcVR29AlIaUUpRoFUuxaBZHQLt15GwzLwF1fZQoaAZoCWgPQwgibk4lQ3JwQJSGlFKUaBVLnmgWR0C7dfXggow3dX2UKGgGaAloD0MIxR7axwq9c0CUhpRSlGgVS6hoFkdAu3X1HhCMP3V9lChoBmgJaA9DCOVGkbXGdXJAlIaUUpRoFUuZaBZHQLt1/uvUz9F1fZQoaAZoCWgPQwh8gVmhCKNxQJSGlFKUaBVLu2gWR0C7dg20JF9bdX2UKGgGaAloD0MI8iTpmkmXcUCUhpRSlGgVS55oFkdAu3YM/qxC6nV9lChoBmgJaA9DCNE8gEW+WnFAlIaUUpRoFUuqaBZHQLt2FgK4QSV1fZQoaAZoCWgPQwiNQpJZPeNzQJSGlFKUaBVLwGgWR0C7dhXoX9BKdX2UKGgGaAloD0MIc0nVdhM4c0CUhpRSlGgVS6toFkdAu3YbNliBoXV9lChoBmgJaA9DCH3NctmodnJAlIaUUpRoFUunaBZHQLt2K9P1tfp1fZQoaAZoCWgPQwiUpdb7jbhwQJSGlFKUaBVLm2gWR0C7djY/qxC6dX2UKGgGaAloD0MIF/VJ7jAWc0CUhpRSlGgVS75oFkdAu3Y4bNr0rnV9lChoBmgJaA9DCHnOFhCapnBAlIaUUpRoFUuRaBZHQLt2QUlAu7J1fZQoaAZoCWgPQwjt1jIZznpyQJSGlFKUaBVLiWgWR0C7dkWqYJE6dX2UKGgGaAloD0MIYoGv6BaxcUCUhpRSlGgVS7xoFkdAu3ZR0EHMU3V9lChoBmgJaA9DCPZE14UfKHNAlIaUUpRoFUugaBZHQLt2UJx//ed1fZQoaAZoCWgPQwj4GoLjshpyQJSGlFKUaBVL42gWR0C7dlSAtnPFdX2UKGgGaAloD0MIKnPzjaj2cECUhpRSlGgVS7hoFkdAu3Zn47A+IXV9lChoBmgJaA9DCE1p/S2B5nBAlIaUUpRoFUulaBZHQLt2a6SDAah1fZQoaAZoCWgPQwhBEYsYdjtzQJSGlFKUaBVLumgWR0C7dnJlJ6IFdX2UKGgGaAloD0MIxty1hLzHcECUhpRSlGgVS6loFkdAu3aMqFyq/HV9lChoBmgJaA9DCJeqtMV18HFAlIaUUpRoFUuvaBZHQLt2peIVM251fZQoaAZoCWgPQwijPV5IBwRxQJSGlFKUaBVLsmgWR0C7drXbAUL2dX2UKGgGaAloD0MIyqgyjDvMcECUhpRSlGgVS6VoFkdAu3bStRvWH3V9lChoBmgJaA9DCPkQVI1ehHJAlIaUUpRoFUvRaBZHQLt20eP7vXt1fZQoaAZoCWgPQwjw/Q3aa9xyQJSGlFKUaBVLz2gWR0C7dtFLi++NdX2UKGgGaAloD0MIgy9MpkoidECUhpRSlGgVS7poFkdAu3bXTy8SPHV9lChoBmgJaA9DCHjy6bEtemFAlIaUUpRoFU3oA2gWR0C7duGLpA2RdX2UKGgGaAloD0MIgLvs152dc0CUhpRSlGgVS61oFkdAu3b1r0rbxnV9lChoBmgJaA9DCLX7VYDv2nJAlIaUUpRoFUuhaBZHQLt3CTUy57R1fZQoaAZoCWgPQwgNchdhyiRyQJSGlFKUaBVLv2gWR0C7dwumR/3GdX2UKGgGaAloD0MInRGlvcFsckCUhpRSlGgVS7RoFkdAu3ccMspXqHV9lChoBmgJaA9DCIS4cvYOlXJAlIaUUpRoFUuZaBZHQLt3HvWH1vl1fZQoaAZoCWgPQwieXb71ocZxQJSGlFKUaBVLumgWR0C7dyRGH58CdX2UKGgGaAloD0MIC0Pk9LWccUCUhpRSlGgVS5doFkdAu3ciIGhVVHV9lChoBmgJaA9DCPKwUGuaWHJAlIaUUpRoFUudaBZHQLt3LBi1Aqx1fZQoaAZoCWgPQwiWW1oNSVdxQJSGlFKUaBVLmGgWR0C7dymXC0ngdX2UKGgGaAloD0MIzjl4JrQic0CUhpRSlGgVS7BoFkdAu3dB24d6s3V9lChoBmgJaA9DCEbSbvRxtHFAlIaUUpRoFUu4aBZHQLt3W5/smfJ1fZQoaAZoCWgPQwhhjEgU2sNyQJSGlFKUaBVLmGgWR0C7d150OmSAdX2UKGgGaAloD0MI7N/1mTNsckCUhpRSlGgVS79oFkdAu3dts2vSt3V9lChoBmgJaA9DCIzXvKozdnBAlIaUUpRoFUuWaBZHQLt3f5sCT2Z1fZQoaAZoCWgPQwgwRiQKLdlzQJSGlFKUaBVLz2gWR0C7d4qpHZsbdX2UKGgGaAloD0MIlDE+zN6NcUCUhpRSlGgVS69oFkdAu3eRrnDBM3V9lChoBmgJaA9DCKkyjLuBCnRAlIaUUpRoFUvLaBZHQLt3ljDsMRZ1fZQoaAZoCWgPQwieCyO96EdxQJSGlFKUaBVLrmgWR0C7d7juWrwOdX2UKGgGaAloD0MI9GxWfe6+ckCUhpRSlGgVS71oFkdAu3e39KmKqHV9lChoBmgJaA9DCJgYy/RL2HFAlIaUUpRoFUu0aBZHQLt3w2QGOdZ1fZQoaAZoCWgPQwiaWyGshnBzQJSGlFKUaBVLuWgWR0C7d8uRxLkCdX2UKGgGaAloD0MI1cxaCkhucECUhpRSlGgVS51oFkdAu3fLUjLSu3V9lChoBmgJaA9DCAiu8gQCjHJAlIaUUpRoFUu0aBZHQLt3311GLDR1fZQoaAZoCWgPQwi3QliNpQByQJSGlFKUaBVLhWgWR0C7d+CiItUXdX2UKGgGaAloD0MIyf/k7942c0CUhpRSlGgVS6doFkdAu3fmcYqG13V9lChoBmgJaA9DCBnHSPaIF3JAlIaUUpRoFUuiaBZHQLt394lhPTJ1fZQoaAZoCWgPQwj/lZUmpW1yQJSGlFKUaBVLnGgWR0C7d/pKzzErdX2UKGgGaAloD0MINlZintWocUCUhpRSlGgVS4toFkdAu3gYCbMHKXV9lChoBmgJaA9DCLyzdtvFynNAlIaUUpRoFUu8aBZHQLt4Jdy1eBx1fZQoaAZoCWgPQwibx2Ewv7VyQJSGlFKUaBVLm2gWR0C7eCSf+S8rdX2UKGgGaAloD0MIAS8zbJT0ckCUhpRSlGgVS7hoFkdAu3goacZtN3V9lChoBmgJaA9DCH4YITza1nFAlIaUUpRoFUuQaBZHQLt4RTG5tnB1fZQoaAZoCWgPQwiALa9cbw1zQJSGlFKUaBVLoGgWR0C7eE6FRHf/dWUu"
92
+ },
93
+ "ep_success_buffer": {
94
+ ":type:": "<class 'collections.deque'>",
95
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
96
+ },
97
+ "_n_updates": 1232,
98
+ "n_steps": 2048,
99
+ "gamma": 0.999,
100
+ "gae_lambda": 0.98,
101
+ "ent_coef": 0.01,
102
+ "vf_coef": 0.5,
103
+ "max_grad_norm": 0.5,
104
+ "batch_size": 256,
105
+ "n_epochs": 16,
106
+ "clip_range": {
107
+ ":type:": "<class 'function'>",
108
+ ":serialized:": "gAWVXQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsDSxNDEHwAiAGIABgAFACIABcAUwCUToWUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjB88aXB5dGhvbi1pbnB1dC0xMi1iMWJhMDY5NTM4Nzg+lIwEZnVuY5RLBEMCAAGUjAtmaW5hbF92YWx1ZZSMDWluaXRpYWxfdmFsdWWUhpQpdJRSlH2UKIwLX19wYWNrYWdlX1+UTowIX19uYW1lX1+UjAhfX21haW5fX5R1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlGgaKVKUhpR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMHWxpbmVhcl9zY2hlZHVsZS48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/uZmZmZmZmoWUUpRoL0c/4AAAAAAAAIWUUpSGlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
109
+ },
110
+ "clip_range_vf": null,
111
+ "normalize_advantage": true,
112
+ "target_kl": null
113
+ }
PPO_LunarLanderV2_10000000Steps/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1e54c270082756b47b0dfbdef4eb5b96fdaebd38ebe416a1e0fca35c69a73096
3
+ size 202617
PPO_LunarLanderV2_10000000Steps/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:afc4f1ff61ceea23af3c4dd70a204fb017d68a7b5e48b38055288b6eb91de898
3
+ size 102447
PPO_LunarLanderV2_10000000Steps/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
PPO_LunarLanderV2_10000000Steps/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
README.md CHANGED
@@ -10,7 +10,7 @@ model-index:
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
- value: 283.01 +/- 16.05
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
 
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
+ value: 293.18 +/- 13.38
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb972859830>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb9728598c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb972859950>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb9728599e0>", "_build": "<function ActorCriticPolicy._build at 0x7fb972859a70>", "forward": "<function ActorCriticPolicy.forward at 0x7fb972859b00>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb972859b90>", "_predict": "<function ActorCriticPolicy._predict at 0x7fb972859c20>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb972859cb0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb972859d40>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb972859dd0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fb9728a78a0>"}, "verbose": 1, "policy_kwargs": {"net_arch": [128, {"vf": [64, 32, 32], "pi": [64, 32, 32]}]}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 64, "num_timesteps": 8126464, "_total_timesteps": 8000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652342597.40362, "learning_rate": {":type:": "<class 'function'>", ":serialized:": "gAWVkAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsCSxNDOHwAZAFrBXIMiABTAHwAZAJrBXIciABkAxsAUwB8AGQEawVyLIgAZAUbAFMAiABkBhsAUwBkAFMAlChORz/gAAAAAAAARz/JmZmZmZmaSwpHP7mZmZmZmZpLZE3oA3SUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjB48aXB5dGhvbi1pbnB1dC03LTkwNjViZTQ0M2U5YT6UjARmdW5jlEsYQw4AAQgBBAEIAQgBCAEIApSMDWluaXRpYWxfdmFsdWWUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UTowIX19uYW1lX1+UjAhfX21haW5fX5R1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgdfZR9lChoFmgOjAxfX3F1YWxuYW1lX1+UjBxzdGVwc19zY2hlZHVsZS48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVkAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsCSxNDOHwAZAFrBXIMiABTAHwAZAJrBXIciABkAxsAUwB8AGQEawVyLIgAZAUbAFMAiABkBhsAUwBkAFMAlChORz/gAAAAAAAARz/JmZmZmZmaSwpHP7mZmZmZmZpLZE3oA3SUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjB48aXB5dGhvbi1pbnB1dC03LTkwNjViZTQ0M2U5YT6UjARmdW5jlEsYQw4AAQgBBAEIAQgBCAEIApSMDWluaXRpYWxfdmFsdWWUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UTowIX19uYW1lX1+UjAhfX21haW5fX5R1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgdfZR9lChoFmgOjAxfX3F1YWxuYW1lX1+UjBxzdGVwc19zY2hlZHVsZS48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQgAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYACAAAAAAAAA2ilz2x+a8/E0JwPoYB3L62lv89UNgaPgAAAAAAAAAAzSCpvIrwpz8yE/W9vYX1vi/Bib3JSxK+AAAAAAAAAAAmepq9do/uPvMc3z0DJ0W/6MHTvfXFkD0AAAAAAAAAAJoO/b0jG3c9DRfoPuAHnr7yA7w8XcY9PgAAAAAAAAAAMzc2vKBVqT8tce69LWMKv4FK47zVBZ+9AAAAAAAAAAD9goM+6rVSP5PoET1tkzW/iIblPlcFR70AAAAAAAAAAJqZvzx7VJq62PCeOommnTV5Bvc6XnS3uQAAgD8AAIA/jR23PWWLdT6tr6e+mgMnvwBHmT2Ojou+AAAAAAAAAAAAHo08J+qvP4FdET8GdhG/VM5ivFI/Qb0AAAAAAAAAAA3+sr0x+U8+8zYWPulFKb+Gx/a9+dLGPQAAAAAAAAAAM5exPLgKsD8sISI+Fa6OvtBCYbt64a09AAAAAAAAAAAzO8K74ViVukXPDLQz3XmvLBqbuma7ujMAAIA/AACAPzMzV7opmA+6VPKJNSDQhrJhGcy7c2ietAAAgD8AAIA/MyMXu3vUkroKHW01d/5FL7+xFDuxIKy0AACAPwAAgD+NhoC9OOr2u0KA3D7ZgYg7T/+3vPwAHD0AAIA/AACAPzNWyT3XMT08vRvqvl1Jar5C7yy+1yiwPgAAgD8AAAAAzYOSPJyLE7y7Vwe+MRiWvQZJbD0qbFG+AAAAAAAAgD/N7BK6XH9iuqr6dD3cPLSwR50AOwoYy7MAAIA/AACAP2ZmobhSqKq5GLE9M6+jkCs3gw87njLQswAAgD8AAIA/zU3NPK4RqLpLor290+WnPHHP3Tt4BJG9AACAPwAAgD+aqa88FOCNuiqJgLd1/H+yzomSuvV+lTYAAIA/AACAP7OkPr3YFMI9Xga2PeEKz74udfi9E35tvQAAAAAAAAAATcNBPu9WPz+xx7091Cs1v+ONyz7DUWq9AAAAAAAAAABmFn+7QycBvJbQ7zzVrqE8SUpPPauehr0AAIA/AACAP+B6ir6YhgQ/LmuLvRNFNL/3qcy+VlDTPAAAAAAAAAAAZnfLPO5Jh7y73+e9NY+QPerFkT1mnn+8AACAPwAAgD8Ax8U8rWnDPn7Hnr1XQDm/atyLPf4npb0AAAAAAAAAAACSH71lQJ4/Y1VNvu60K7/G0em9xpdivgAAAAAAAAAAAJsaPVQ/lLwCKJO+d7Xqu0F6cz3dWPM9AACAPwAAgD8A47m9RzBiPvqvgT5EgDi/JUxsvUnxGD4AAAAAAAAAABDgpj4Qyo0/3Q3MPjJ8LL/O9xg/ek72PQAAAAAAAAAAZkJRvcVduT9zTfW+v6k9PXEAkbwEbx++AAAAAAAAAABaq+O9lrnAP0J74b7kZwa+I7QDvi3hM74AAAAAAAAAAM0Burzb8qE/FL0wvvHaL796FTK9E0v+vQAAAAAAAAAAoJ0TPk3OlD+TTbk+j9Etv/tutz6WOIU+AAAAAAAAAACaOje+BQAoP1qGLL41pT2/AqGqvrLM2LwAAAAAAAAAABpvLb4omrA91v4MP+XWp77NnX09lf8aPgAAAAAAAAAAugZLvnwIqj9Fzd2+HWUcv3CAw76SCYy+AAAAAAAAAACzcL290Dq/PxsjKb+Z1v89rA4pvcIpgr4AAAAAAAAAAI224z0Ge5U/Oo30PlS3Or+crFk+my3EPgAAAAAAAAAAgOXWvUM4qj9f27a+paH2vnzLVr6wdH++AAAAAAAAAABzAmo+x0Y7PviAfL4s7xK/twrKPqNFDr4AAAAAAAAAAJONTD6QcSw/J+IkPSfHNb9CtM4+zyy3vAAAAAAAAAAAmhTYvN86Mz9cU4y9Iqlpv3zpi7viuoG9AAAAAAAAAADNbC87HBk8vMbyR73l6Sg9/J9BPT5kmrwAAIA/AACAP8CXH75kNYM/Tdz7voWoXL8SDrW+tY1/vgAAAAAAAAAA2qS4vUJ8DT6eF5A+Zc8Qv/o/0L28a7s9AAAAAAAAAACQ87y+7XpeP2qJcr3sNSu/iOfnvlwVDD4AAAAAAAAAAJpxeTwclLk/7x7FPsYByT6qEY680aCwvQAAAAAAAAAAzZDkPClGZj2VZHu+RBTFvlVfOr3uVkK+AAAAAAAAAACaQns9zxcePRD6yr7DlqC+kxQbvuabsr4AAAAAAAAAAGYOrb7vDXE/JbGpvjSFL7+NmvW+YKFhPAAAAAAAAAAAZq96PYs9pD9/JBA/uf4vv2u6xTzmanA+AAAAAAAAAABNXRw+c1LxPlJV6r021C+/LeaXPg379r0AAAAAAAAAAIMJXr5XSXg+2pXOPiWbGL+e5h6+2kFVPgAAAAAAAAAAAKiYu0ZQtD8ym/G+fxrKvaQcsTvg6No9AAAAAAAAAABasQe+nEYhPQzwDz/Tdo2+Obr1PMa6Lz4AAAAAAAAAACa1yD3nxGc/aQ4SPn4GV796vn8+qeyWPQAAAAAAAAAAZvIrPPasaLqgX/C2Om2SMXLnlLpt8Ao2AACAPwAAgD9aF44+SWJFP05rdjuelCS/7wkBPyN5k70AAAAAAAAAAOZZGT0UqoU9/hOBvjzvzb5k7q29gYmJvgAAAAAAAAAAxrcLPl/WoD86inY+f4FFvzB6gz7qLoU+AAAAAAAAAABa4WY+aG12P1Pr2j5UwAm/lCXePie5Fj4AAAAAAAAAADN3J7xvfWk9rYtTPfvKyL5wG529BrEJvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYktASwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVswAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiS0CFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIbVM8LqpzcUCUhpRSlIwBbJRLs4wBdJRHQLfKTJO32El1fZQoaAZoCWgPQwhETl/PVzxxQJSGlFKUaBVLjWgWR0C3yk+801qGdX2UKGgGaAloD0MIHAx1WCEBc0CUhpRSlGgVS71oFkdAt8pao60Y0nV9lChoBmgJaA9DCCv3ArPCEnFAlIaUUpRoFUujaBZHQLfKXK3NLUV1fZQoaAZoCWgPQwjiAWVTbjVwQJSGlFKUaBVLoGgWR0C3yme+h4+sdX2UKGgGaAloD0MIELIsmPgvcUCUhpRSlGgVS49oFkdAt8pn2mHgxnV9lChoBmgJaA9DCJKtLqfEMnNAlIaUUpRoFUvHaBZHQLfKgIK+i8F1fZQoaAZoCWgPQwhSfecX5QxwQJSGlFKUaBVLmGgWR0C3yn6+BYmtdX2UKGgGaAloD0MIv0f99Qq/ckCUhpRSlGgVS4RoFkdAt8qTUz9CNXV9lChoBmgJaA9DCKzlzkywCXBAlIaUUpRoFUueaBZHQLfKmlolD4R1fZQoaAZoCWgPQwhl3xXBP1JyQJSGlFKUaBVLm2gWR0C3yp3QhOgydX2UKGgGaAloD0MIY7fPKrP+c0CUhpRSlGgVS89oFkdAt8qpQwblzXV9lChoBmgJaA9DCDIiUWiZSnBAlIaUUpRoFUuhaBZHQLfKu+ERJ3B1fZQoaAZoCWgPQwgBipElMwhzQJSGlFKUaBVLkmgWR0C3ysXWOIZZdX2UKGgGaAloD0MIvCAiNa0YcECUhpRSlGgVS5hoFkdAt8rU/4ZdfXV9lChoBmgJaA9DCN2adFuirXJAlIaUUpRoFUuPaBZHQLfK6s0YTCd1fZQoaAZoCWgPQwgEq+rl9ydzQJSGlFKUaBVLr2gWR0C3yub7oB7vdX2UKGgGaAloD0MIVwbVBieXcUCUhpRSlGgVS6BoFkdAt8sB39rGi3V9lChoBmgJaA9DCExuFFlrKnBAlIaUUpRoFUuXaBZHQLfLAd69kBl1fZQoaAZoCWgPQwhyw++mm4NzQJSGlFKUaBVLvmgWR0C3ywQxSHdodX2UKGgGaAloD0MIxccnZGeCckCUhpRSlGgVS6JoFkdAt8sK/M4cWHV9lChoBmgJaA9DCP93RIXqYnFAlIaUUpRoFUuraBZHQLfLE8BdUsF1fZQoaAZoCWgPQwg6zJcX4DpyQJSGlFKUaBVLpWgWR0C3yxuGKyfMdX2UKGgGaAloD0MIaTnQQ604c0CUhpRSlGgVS6hoFkdAt8sz6yjYZnV9lChoBmgJaA9DCKpjldJzWnFAlIaUUpRoFUuVaBZHQLfLMqLCN0h1fZQoaAZoCWgPQwgcfjfdMl9zQJSGlFKUaBVLmWgWR0C3y0kE5hjOdX2UKGgGaAloD0MImz3QCsxbckCUhpRSlGgVS5NoFkdAt8tP3dsSCnV9lChoBmgJaA9DCOp4zEAlgnRAlIaUUpRoFUu7aBZHQLfLVILgGbF1fZQoaAZoCWgPQwibOSS1EPVxQJSGlFKUaBVLjGgWR0C3y1P3BYV7dX2UKGgGaAloD0MISDfCoqJ/cECUhpRSlGgVS5RoFkdAt8tUTQE6k3V9lChoBmgJaA9DCOgwX15AeHFAlIaUUpRoFUulaBZHQLfLWikfs/p1fZQoaAZoCWgPQwgZAoBjj8FwQJSGlFKUaBVLmWgWR0C3y2tb9qDcdX2UKGgGaAloD0MIrwj+t1Jgc0CUhpRSlGgVS8poFkdAt8ttY9xIa3V9lChoBmgJaA9DCPRtwVLdVHRAlIaUUpRoFUutaBZHQLfLfB4D9wZ1fZQoaAZoCWgPQwiXx5qRgTRwQJSGlFKUaBVLkGgWR0C3y3npnpSrdX2UKGgGaAloD0MIEhWqm4t+cUCUhpRSlGgVS4loFkdAt8uBwtJ4B3V9lChoBmgJaA9DCA/Tvrm/l29AlIaUUpRoFUuRaBZHQLfLmc5sCT51fZQoaAZoCWgPQwhlqfV+489zQJSGlFKUaBVLwmgWR0C3y6ouoP07dX2UKGgGaAloD0MIomKcvwnzcUCUhpRSlGgVS7JoFkdAt8upzQu27XV9lChoBmgJaA9DCDnulA6W+HFAlIaUUpRoFUuQaBZHQLfLrNmUW2x1fZQoaAZoCWgPQwjLZDiejx5yQJSGlFKUaBVLj2gWR0C3y7yq2jO+dX2UKGgGaAloD0MI8Z9uoMAjdECUhpRSlGgVS7BoFkdAt8vGB5HEuXV9lChoBmgJaA9DCDZbecn/JHJAlIaUUpRoFUuZaBZHQLfL/k078vV1fZQoaAZoCWgPQwiPGaiMf8NwQJSGlFKUaBVLk2gWR0C3zAlFx4pudX2UKGgGaAloD0MIJ0pCIu0HckCUhpRSlGgVS3xoFkdAt8wMsg+yJXV9lChoBmgJaA9DCAEZOnZQwXFAlIaUUpRoFUunaBZHQLfMDIiTt9h1fZQoaAZoCWgPQwgA/5QqUZFyQJSGlFKUaBVLtmgWR0C3zBjneSB9dX2UKGgGaAloD0MI4443+S2wcECUhpRSlGgVS6RoFkdAt8w1/RVp9XV9lChoBmgJaA9DCAwEATK0DHJAlIaUUpRoFUutaBZHQLfMVcHGCI11fZQoaAZoCWgPQwhNLzGWaUtzQJSGlFKUaBVLymgWR0C3zFRA8jiXdX2UKGgGaAloD0MIm64num4Pc0CUhpRSlGgVS9FoFkdAt8x2Vv/BFnV9lChoBmgJaA9DCM+goX8CiHFAlIaUUpRoFUucaBZHQLfMe2tMfzV1fZQoaAZoCWgPQwjpQxfUtylxQJSGlFKUaBVLlWgWR0C3zHtmUW2xdX2UKGgGaAloD0MIxw+VRsxVckCUhpRSlGgVS7toFkdAt8x5OfukUXV9lChoBmgJaA9DCPcCs0IRx3FAlIaUUpRoFUuHaBZHQLfMf5oXbdt1fZQoaAZoCWgPQwhUqkTZm1NzQJSGlFKUaBVLwWgWR0C3zIsoYvWZdX2UKGgGaAloD0MIOlyrPez9ckCUhpRSlGgVS55oFkdAt8yU95hScnV9lChoBmgJaA9DCCO/foiNf3NAlIaUUpRoFUvDaBZHQLfMmOObRWt1fZQoaAZoCWgPQwiVYHE4c1hwQJSGlFKUaBVLn2gWR0C3zLQmVqvedX2UKGgGaAloD0MINL+aAwSZcUCUhpRSlGgVS59oFkdAt8y2qlxffHV9lChoBmgJaA9DCHwL68Y7f3NAlIaUUpRoFUvBaBZHQLfMyDqnm7t1fZQoaAZoCWgPQwgAVHHjluZxQJSGlFKUaBVLq2gWR0C3zNaJ66atdX2UKGgGaAloD0MIyjUFMruAckCUhpRSlGgVS5loFkdAt8zitRvWH3V9lChoBmgJaA9DCJHRAUmYDXRAlIaUUpRoFUvJaBZHQLfM5I4EOiF1fZQoaAZoCWgPQwgsSDMWjfRxQJSGlFKUaBVLiGgWR0C3zPsCHRCydX2UKGgGaAloD0MI/l915AjMcUCUhpRSlGgVS7loFkdAt8z/gm7aqXV9lChoBmgJaA9DCKWkh6EVf3JAlIaUUpRoFUuZaBZHQLfNDWgvlEJ1fZQoaAZoCWgPQwjvy5ntSuVxQJSGlFKUaBVLqGgWR0C3zRlar3j/dX2UKGgGaAloD0MIUdzxJv9IcUCUhpRSlGgVS55oFkdAt80s1cdHUnV9lChoBmgJaA9DCEDAWrVr/HJAlIaUUpRoFUu9aBZHQLfNO8OkLx91fZQoaAZoCWgPQwiFP8Ob9Y5yQJSGlFKUaBVLmmgWR0C3zUTBuXNUdX2UKGgGaAloD0MIcjJxq+DPc0CUhpRSlGgVS89oFkdAt81EbyYoiXV9lChoBmgJaA9DCE35EFQN6XJAlIaUUpRoFUveaBZHQLfNSlgc94h1fZQoaAZoCWgPQwi1UDI59S90QJSGlFKUaBVLz2gWR0C3zV61PWQPdX2UKGgGaAloD0MIT1yOV2Dsc0CUhpRSlGgVS7JoFkdAt81emsNlRXV9lChoBmgJaA9DCGsPe6FApXRAlIaUUpRoFUvWaBZHQLfNXmbb1yx1fZQoaAZoCWgPQwjV7IFWYAt0QJSGlFKUaBVL5GgWR0C3zVzuSfUXdX2UKGgGaAloD0MIJa/OMSDTc0CUhpRSlGgVS8poFkdAt81ygnMMZ3V9lChoBmgJaA9DCB40u+7tEnRAlIaUUpRoFUvFaBZHQLfNeObAk9l1fZQoaAZoCWgPQwgHX5hMldVyQJSGlFKUaBVLv2gWR0C3zYOBlMAWdX2UKGgGaAloD0MIgqj7AOQOckCUhpRSlGgVS6VoFkdAt82LSJCSinV9lChoBmgJaA9DCGCRXz8E7nFAlIaUUpRoFUukaBZHQLfNkTLW7OF1fZQoaAZoCWgPQwjImSZs/2VzQJSGlFKUaBVLo2gWR0C3zZ+X7cfvdX2UKGgGaAloD0MIelVntcBNc0CUhpRSlGgVS7loFkdAt82qCPIXCXV9lChoBmgJaA9DCJ2E0hfCsXNAlIaUUpRoFUucaBZHQLfNvsdkrgB1fZQoaAZoCWgPQwgzUYTULQtxQJSGlFKUaBVLlWgWR0C3zbrgjyFxdX2UKGgGaAloD0MIkzmWd5WJckCUhpRSlGgVS69oFkdAt83CRxLkCHV9lChoBmgJaA9DCF/Tg4IS63FAlIaUUpRoFUufaBZHQLfNzhGH58B1fZQoaAZoCWgPQwifHXBdMXhyQJSGlFKUaBVLumgWR0C3zdfoFFDwdX2UKGgGaAloD0MIPWNfsnG8b0CUhpRSlGgVS5FoFkdAt83npeNT+HV9lChoBmgJaA9DCCVbXU7J63JAlIaUUpRoFUuraBZHQLfN8L+xW1d1fZQoaAZoCWgPQwjzkv/Jnx9zQJSGlFKUaBVLrmgWR0C3zfTisGPgdX2UKGgGaAloD0MID7kZboB0cUCUhpRSlGgVS6doFkdAt837Xf642HV9lChoBmgJaA9DCOscA7IX+nFAlIaUUpRoFUu1aBZHQLfN+aScLBt1fZQoaAZoCWgPQwioN6PmqwJxQJSGlFKUaBVLpWgWR0C3zgF6eGwidX2UKGgGaAloD0MILliqC/g6cUCUhpRSlGgVS65oFkdAt83/vx6OYXV9lChoBmgJaA9DCEVnmUUoJ3NAlIaUUpRoFUumaBZHQLfOB8TBZZB1fZQoaAZoCWgPQwhcO1ESkmFyQJSGlFKUaBVLvWgWR0C3zhhQ79ycdX2UKGgGaAloD0MIcxO1NDfIc0CUhpRSlGgVS7ZoFkdAt84gAsCkoHV9lChoBmgJaA9DCBDmdi+3inNAlIaUUpRoFUvNaBZHQLfOIuwosqd1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 992, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 256, "n_epochs": 16, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVXAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsDSxNDEHwAiAGIABgAFACIABcAUwCUToWUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjB48aXB5dGhvbi1pbnB1dC03LTkwNjViZTQ0M2U5YT6UjARmdW5jlEsEQwIAAZSMC2ZpbmFsX3ZhbHVllIwNaW5pdGlhbF92YWx1ZZSGlCl0lFKUfZQojAtfX3BhY2thZ2VfX5ROjAhfX25hbWVfX5SMCF9fbWFpbl9flHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUaBopUpSGlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBdoDowMX19xdWFsbmFtZV9flIwdbGluZWFyX3NjaGVkdWxlLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz+5mZmZmZmahZRSlGgvRz/gAAAAAAAAhZRSlIaUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb972859830>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb9728598c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb972859950>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb9728599e0>", "_build": "<function ActorCriticPolicy._build at 0x7fb972859a70>", "forward": "<function ActorCriticPolicy.forward at 0x7fb972859b00>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb972859b90>", "_predict": "<function ActorCriticPolicy._predict at 0x7fb972859c20>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb972859cb0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb972859d40>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb972859dd0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fb9728a78a0>"}, "verbose": 1, "policy_kwargs": {"net_arch": [128, {"vf": [64, 32, 32], "pi": [64, 32, 32]}]}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 64, "num_timesteps": 10092544, "_total_timesteps": 10000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652349173.1414554, "learning_rate": {":type:": "<class 'function'>", ":serialized:": "gAWVUgIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsCSxNDGHwAZAFrBXIMiABTAIgAZAIbAFMAZABTAJRORz/gAAAAAAAATegDh5QpjBJwcm9ncmVzc19yZW1haW5pbmeUhZSMHzxpcHl0aG9uLWlucHV0LTEyLWIxYmEwNjk1Mzg3OD6UjARmdW5jlEsYQwYAAQgBBAaUjA1pbml0aWFsX3ZhbHVllIWUKXSUUpR9lCiMC19fcGFja2FnZV9flE6MCF9fbmFtZV9flIwIX19tYWluX1+UdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHX2UfZQoaBZoDowMX19xdWFsbmFtZV9flIwcc3RlcHNfc2NoZWR1bGUuPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVUgIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsCSxNDGHwAZAFrBXIMiABTAIgAZAIbAFMAZABTAJRORz/gAAAAAAAATegDh5QpjBJwcm9ncmVzc19yZW1haW5pbmeUhZSMHzxpcHl0aG9uLWlucHV0LTEyLWIxYmEwNjk1Mzg3OD6UjARmdW5jlEsYQwYAAQgBBAaUjA1pbml0aWFsX3ZhbHVllIWUKXSUUpR9lCiMC19fcGFja2FnZV9flE6MCF9fbmFtZV9flIwIX19tYWluX1+UdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHX2UfZQoaBZoDowMX19xdWFsbmFtZV9flIwcc3RlcHNfc2NoZWR1bGUuPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQgAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYACAAAAAAAAHrjE74o0aw/kvTYvtlq576JlY6+H+KjvgAAAAAAAAAAANGePaQcADoLr8C+3980voGglroS7VO/AAAAAAAAAABmcpa79uRRusqbMblwv4m0hlUxOti9TjgAAIA/AACAPzPjfLuubYu6iLoos+f/8q4tVII6+dXKMwAAgD8AAIA/M7PkunDXtT+M/TS+hR3dPrTyBDv6/CM9AAAAAAAAAADNV/m84bCIukqlPz6f0R65JgeKOYD+FbgAAIA/AACAPyAsXL525i8/gzvRPapuSL85nq++42aKPQAAAAAAAAAAJv+TvewxqT/SK1O+cvwBv0nFZ72jAVC+AAAAAAAAAAAAncO8KRATunTcxbT3J1kvH7RSuvQOvjMAAIA/AACAPzMYQb0X8Z0/Rqm3vjaKTb93EvO8KU00vgAAAAAAAAAADb1DvmQx4j7j21Q+w2oXv2V8lr50OSU+AAAAAAAAAACmsTU+xWtWPk6lpr7p+wC//iYtPt5LvL0AAAAAAAAAAPPX4L3qxz0/ImI6vqezPr9KLIi+2l7vvQAAAAAAAAAAM1lWvHv2tj1Na+88aoTbvgcwM7vS4c09AAAAAAAAAACa2TY8LinavOu+4b6byUU9cIzvPQtKgjsAAIA/AACAPwA8Pr37G5A77kqzvD1pv75mNqa92vnAPAAAgD8AAAAAmq1wvWM4ET0oroA+RQWuvj4X5z0//4w+AAAAAAAAAACANRY9nMpDvFPW170wvLG8KgB+vS0mjL0AAIA/AACAP2ZzZD0cpya8qZi2vg7hWDsZMI29MonbvQAAgD8AAIA/ZmAgvF6lgz0SbXK9vH7MviVzYr0SvXa9AAAAAAAAAAAAfPU7KXwMOey+I7ix+qCztKb8OnEqRTcAAIA/AACAP5piqTwUIpG6FPiMue8P3bJl9+66MCChOAAAgD8AAIA/8zYfvg155z66va49UPIuv/eoib7Qp+89AAAAAAAAAACaXP28KZB6upIDKTxCmbI8HH6OuLTzmT0AAIA/AACAPwDq0zwKfT+7KEcTvgAdjz2OhYe78NjIPAAAgD8AAIA/TYwoPQpzTLs233e+wKQVPf1YsTxQZvu9AACAPwAAgD9Aq9c9z/6HP+MsPD5bvi+/Z1RuPj6bhj0AAAAAAAAAAJrRxDu4vu25f/BAuTfJ9bMCA+a65nBmOAAAgD8AAIA/ZteHvI/CHbpUCEA+T5RquJauuDuahGO3AACAPwAAgD8AHNq8KVg0ukavLTmt0SM00aPmOcAyTrgAAIA/AACAP21icD5lvRw/EvrGPcewG78YYMc+4LkfvAAAAAAAAAAAGn52PRRklLryNDQ1sOGLMAS/ObqOMVC0AACAPwAAgD8zdKQ8GAq2P4o8Hj4JBrO9g/MTPO4wAD4AAAAAAAAAAPPkpL3oN50/KtQev6aiUr+v+E061YROvgAAAAAAAAAAQNAvPgsIfj9lqyA/XlZOv9kJQT4RaaA+AAAAAAAAAABm5oy6nzG1P9r8Bb2pCi89iInduinWsLwAAAAAAAAAADORCbzXlVi7AYSOPPMKITx3V9k8zWkOvQAAgD8AAIA/Jt+oPYDDNT9jUTE+bW59v2CGBT76GVc8AAAAAAAAAADAmTQ+UDD/PrUFzz16Yyi/0X98PmoIlj0AAAAAAAAAAADWDbzJMQk/83ZjPcxVTr9PqQ690uiWPQAAAAAAAAAAze4FPOG8jroC+Y41XsDHL89xuToaX7a0AACAPwAAgD/Gr6Q+BCaLP9z5lz5DXiG/w5YFP7U49D0AAAAAAAAAABoTu70rmCk/Uwi8vWvIVL+kKzy+wqPRvAAAAAAAAAAA7U8CvqW3sz9wdL++jhjLvlaaIL6Vd5G+AAAAAAAAAAAtyUS+T297PkQeAz/UOQ2/B8MfvaUwqT4AAAAAAAAAAOZXAT6TVqs/q/OyPqoqDb9r33s+xtfdPQAAAAAAAAAAABDWOqQgVLs5BQE+VbGCOzFfXjyEuIO8AACAPwAAgD9mSdu80qLnu56KYjwM7hs8yFhFvSADCD0AAIA/AACAP0YFOL7Mle0+4coCPvMQO7+fs6i+HhNDPgAAAAAAAAAALTYPPgTr5D3G9E2+lRKlvuEtWD7WmZO9AAAAAAAAAADNXGg9YX7IvMLnyr5l81u9JcETPiKWgz4AAIA/AAAAAJpp77rXDC272HK2u/pfUT006Ca8DnqBOwAAgD8AAIA/mkeOPbUALD9f/So+pmZ/v2NVtD3zhVk7AAAAAAAAAABGwSU+H3eHPqWxUb4r6yK/YrP9PXgVHzwAAAAAAAAAALPhNr4b+LU+3p8DP27TJb9RsP69/32ePgAAAAAAAAAAJgakPbsQvT96DJY+g8gpvvpC3j2sPJc+AAAAAAAAAABmGMQ9V3wqPso6t70xdi2/wrEWPtiVNj0AAAAAAAAAAKakoL4NsUQ/QhkWPtfEOb+fVuq+LcpxPgAAAAAAAAAAmkrmvKdkLj/AdcG5modZv3jevr3Jeim7AAAAAAAAAADza809++6AO7Pu+r6O65e+gOkVvQU9+rsAAAAAAAAAAAAGaDzXoyC1EtwjvsA5Bz0WUVi7cI7TuwAAgD8AAIA/ZjA5vK6FuLrVEfW8v+fpMU9pJTqDBmszAACAPwAAgD8zoU08XJMnuvthGbMLdXqwvpyQud5DtTMAAIA/AACAP8DwsL2HpqA/yqMHv63/Jb/rH1S9NYZ1vgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYktASwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVswAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZAAAAAAAAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiS0CFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.009254400000000107, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIGAtD5DQ7ckCUhpRSlIwBbJRLrowBdJRHQLtz1lTWGyp1fZQoaAZoCWgPQwhPIy2V9xpxQJSGlFKUaBVLumgWR0C7c+N9c8kldX2UKGgGaAloD0MIqJAr9ezBckCUhpRSlGgVS7hoFkdAu3P3UAksz3V9lChoBmgJaA9DCBRa1v1jNnNAlIaUUpRoFUuzaBZHQLt0Dqmj0th1fZQoaAZoCWgPQwhCQSlauXVyQJSGlFKUaBVLrmgWR0C7dA5eJHiFdX2UKGgGaAloD0MITWpoA/BQcUCUhpRSlGgVS5xoFkdAu3QPp0OmSHV9lChoBmgJaA9DCFmIDoGjaXJAlIaUUpRoFUuCaBZHQLt0G/PgNw11fZQoaAZoCWgPQwhqoWRyqq9wQJSGlFKUaBVLq2gWR0C7dCWACnxbdX2UKGgGaAloD0MISMMpc/OhcUCUhpRSlGgVS71oFkdAu3RAJE6T4nV9lChoBmgJaA9DCDfeHRmrST1AlIaUUpRoFUtYaBZHQLt0RIZqEe11fZQoaAZoCWgPQwjuzW+YaFRyQJSGlFKUaBVLhWgWR0C7dExY/3WXdX2UKGgGaAloD0MIlzjyQKSfcUCUhpRSlGgVS69oFkdAu3RRWzWwvHV9lChoBmgJaA9DCDEnaJPD6HJAlIaUUpRoFUupaBZHQLt0UI2wV0t1fZQoaAZoCWgPQwh2btqMEyBzQJSGlFKUaBVLtmgWR0C7dIVE/jbSdX2UKGgGaAloD0MIdCmuKvtxb0CUhpRSlGgVS55oFkdAu3SH6j323HV9lChoBmgJaA9DCGYRiq3gAHNAlIaUUpRoFUvMaBZHQLt0lSZ0CBB1fZQoaAZoCWgPQwjysbtAiSZ0QJSGlFKUaBVLvGgWR0C7dJmZuyeJdX2UKGgGaAloD0MIf2snSkLUc0CUhpRSlGgVS8poFkdAu3Seqebut3V9lChoBmgJaA9DCHFyv0ORBHJAlIaUUpRoFUucaBZHQLt0roIOYpl1fZQoaAZoCWgPQwiwkLkyaPpwQJSGlFKUaBVLpmgWR0C7dMW1lXijdX2UKGgGaAloD0MI7ZqQ1lh7c0CUhpRSlGgVS7RoFkdAu3TRiobXH3V9lChoBmgJaA9DCLLXuz/em3FAlIaUUpRoFUupaBZHQLt01eQuEmJ1fZQoaAZoCWgPQwhhGRu6GRtwQJSGlFKUaBVLn2gWR0C7dOACW/rTdX2UKGgGaAloD0MInDI338htc0CUhpRSlGgVS81oFkdAu3Tw3vQWvnV9lChoBmgJaA9DCKpkAKhiR3FAlIaUUpRoFUuxaBZHQLt1AhybQTp1fZQoaAZoCWgPQwjKpfEL7xJxQJSGlFKUaBVLp2gWR0C7dQ/GhmGudX2UKGgGaAloD0MIhzHp72XMckCUhpRSlGgVS8VoFkdAu3VApvxYrHV9lChoBmgJaA9DCLwH6L4cGXJAlIaUUpRoFUujaBZHQLt1ULYPGyZ1fZQoaAZoCWgPQwigM2lTtWZyQJSGlFKUaBVLrmgWR0C7dVMPSUkfdX2UKGgGaAloD0MI51YIqzGOckCUhpRSlGgVS9NoFkdAu3VaaEzwdHV9lChoBmgJaA9DCKSIDKu4/nFAlIaUUpRoFUu2aBZHQLt1Xbb1yvN1fZQoaAZoCWgPQwibOo+Kf4ZzQJSGlFKUaBVLw2gWR0C7dXdc4YJmdX2UKGgGaAloD0MI6NoX0Eskc0CUhpRSlGgVS9poFkdAu3V1zGPxQXV9lChoBmgJaA9DCD3WjAzyL3JAlIaUUpRoFUuLaBZHQLt1kD1Gsmx1fZQoaAZoCWgPQwiXHk31pBJ0QJSGlFKUaBVLw2gWR0C7dbAQg9vCdX2UKGgGaAloD0MI9kGWBdOPcUCUhpRSlGgVS69oFkdAu3XBtMwlB3V9lChoBmgJaA9DCECiCRSxdnNAlIaUUpRoFUuuaBZHQLt10L9deIF1fZQoaAZoCWgPQwiscTYdQZ1wQJSGlFKUaBVLqmgWR0C7ddrYTTOPdX2UKGgGaAloD0MIMjogCbvVc0CUhpRSlGgVS9poFkdAu3XZXcQAdXV9lChoBmgJaA9DCLnBUIcVR29AlIaUUpRoFUuxaBZHQLt15GwzLwF1fZQoaAZoCWgPQwgibk4lQ3JwQJSGlFKUaBVLnmgWR0C7dfXggow3dX2UKGgGaAloD0MIxR7axwq9c0CUhpRSlGgVS6hoFkdAu3X1HhCMP3V9lChoBmgJaA9DCOVGkbXGdXJAlIaUUpRoFUuZaBZHQLt1/uvUz9F1fZQoaAZoCWgPQwh8gVmhCKNxQJSGlFKUaBVLu2gWR0C7dg20JF9bdX2UKGgGaAloD0MI8iTpmkmXcUCUhpRSlGgVS55oFkdAu3YM/qxC6nV9lChoBmgJaA9DCNE8gEW+WnFAlIaUUpRoFUuqaBZHQLt2FgK4QSV1fZQoaAZoCWgPQwiNQpJZPeNzQJSGlFKUaBVLwGgWR0C7dhXoX9BKdX2UKGgGaAloD0MIc0nVdhM4c0CUhpRSlGgVS6toFkdAu3YbNliBoXV9lChoBmgJaA9DCH3NctmodnJAlIaUUpRoFUunaBZHQLt2K9P1tfp1fZQoaAZoCWgPQwiUpdb7jbhwQJSGlFKUaBVLm2gWR0C7djY/qxC6dX2UKGgGaAloD0MIF/VJ7jAWc0CUhpRSlGgVS75oFkdAu3Y4bNr0rnV9lChoBmgJaA9DCHnOFhCapnBAlIaUUpRoFUuRaBZHQLt2QUlAu7J1fZQoaAZoCWgPQwjt1jIZznpyQJSGlFKUaBVLiWgWR0C7dkWqYJE6dX2UKGgGaAloD0MIYoGv6BaxcUCUhpRSlGgVS7xoFkdAu3ZR0EHMU3V9lChoBmgJaA9DCPZE14UfKHNAlIaUUpRoFUugaBZHQLt2UJx//ed1fZQoaAZoCWgPQwj4GoLjshpyQJSGlFKUaBVL42gWR0C7dlSAtnPFdX2UKGgGaAloD0MIKnPzjaj2cECUhpRSlGgVS7hoFkdAu3Zn47A+IXV9lChoBmgJaA9DCE1p/S2B5nBAlIaUUpRoFUulaBZHQLt2a6SDAah1fZQoaAZoCWgPQwhBEYsYdjtzQJSGlFKUaBVLumgWR0C7dnJlJ6IFdX2UKGgGaAloD0MIxty1hLzHcECUhpRSlGgVS6loFkdAu3aMqFyq/HV9lChoBmgJaA9DCJeqtMV18HFAlIaUUpRoFUuvaBZHQLt2peIVM251fZQoaAZoCWgPQwijPV5IBwRxQJSGlFKUaBVLsmgWR0C7drXbAUL2dX2UKGgGaAloD0MIyqgyjDvMcECUhpRSlGgVS6VoFkdAu3bStRvWH3V9lChoBmgJaA9DCPkQVI1ehHJAlIaUUpRoFUvRaBZHQLt20eP7vXt1fZQoaAZoCWgPQwjw/Q3aa9xyQJSGlFKUaBVLz2gWR0C7dtFLi++NdX2UKGgGaAloD0MIgy9MpkoidECUhpRSlGgVS7poFkdAu3bXTy8SPHV9lChoBmgJaA9DCHjy6bEtemFAlIaUUpRoFU3oA2gWR0C7duGLpA2RdX2UKGgGaAloD0MIgLvs152dc0CUhpRSlGgVS61oFkdAu3b1r0rbxnV9lChoBmgJaA9DCLX7VYDv2nJAlIaUUpRoFUuhaBZHQLt3CTUy57R1fZQoaAZoCWgPQwgNchdhyiRyQJSGlFKUaBVLv2gWR0C7dwumR/3GdX2UKGgGaAloD0MInRGlvcFsckCUhpRSlGgVS7RoFkdAu3ccMspXqHV9lChoBmgJaA9DCIS4cvYOlXJAlIaUUpRoFUuZaBZHQLt3HvWH1vl1fZQoaAZoCWgPQwieXb71ocZxQJSGlFKUaBVLumgWR0C7dyRGH58CdX2UKGgGaAloD0MIC0Pk9LWccUCUhpRSlGgVS5doFkdAu3ciIGhVVHV9lChoBmgJaA9DCPKwUGuaWHJAlIaUUpRoFUudaBZHQLt3LBi1Aqx1fZQoaAZoCWgPQwiWW1oNSVdxQJSGlFKUaBVLmGgWR0C7dymXC0ngdX2UKGgGaAloD0MIzjl4JrQic0CUhpRSlGgVS7BoFkdAu3dB24d6s3V9lChoBmgJaA9DCEbSbvRxtHFAlIaUUpRoFUu4aBZHQLt3W5/smfJ1fZQoaAZoCWgPQwhhjEgU2sNyQJSGlFKUaBVLmGgWR0C7d150OmSAdX2UKGgGaAloD0MI7N/1mTNsckCUhpRSlGgVS79oFkdAu3dts2vSt3V9lChoBmgJaA9DCIzXvKozdnBAlIaUUpRoFUuWaBZHQLt3f5sCT2Z1fZQoaAZoCWgPQwgwRiQKLdlzQJSGlFKUaBVLz2gWR0C7d4qpHZsbdX2UKGgGaAloD0MIlDE+zN6NcUCUhpRSlGgVS69oFkdAu3eRrnDBM3V9lChoBmgJaA9DCKkyjLuBCnRAlIaUUpRoFUvLaBZHQLt3ljDsMRZ1fZQoaAZoCWgPQwieCyO96EdxQJSGlFKUaBVLrmgWR0C7d7juWrwOdX2UKGgGaAloD0MI9GxWfe6+ckCUhpRSlGgVS71oFkdAu3e39KmKqHV9lChoBmgJaA9DCJgYy/RL2HFAlIaUUpRoFUu0aBZHQLt3w2QGOdZ1fZQoaAZoCWgPQwiaWyGshnBzQJSGlFKUaBVLuWgWR0C7d8uRxLkCdX2UKGgGaAloD0MI1cxaCkhucECUhpRSlGgVS51oFkdAu3fLUjLSu3V9lChoBmgJaA9DCAiu8gQCjHJAlIaUUpRoFUu0aBZHQLt3311GLDR1fZQoaAZoCWgPQwi3QliNpQByQJSGlFKUaBVLhWgWR0C7d+CiItUXdX2UKGgGaAloD0MIyf/k7942c0CUhpRSlGgVS6doFkdAu3fmcYqG13V9lChoBmgJaA9DCBnHSPaIF3JAlIaUUpRoFUuiaBZHQLt394lhPTJ1fZQoaAZoCWgPQwj/lZUmpW1yQJSGlFKUaBVLnGgWR0C7d/pKzzErdX2UKGgGaAloD0MINlZintWocUCUhpRSlGgVS4toFkdAu3gYCbMHKXV9lChoBmgJaA9DCLyzdtvFynNAlIaUUpRoFUu8aBZHQLt4Jdy1eBx1fZQoaAZoCWgPQwibx2Ewv7VyQJSGlFKUaBVLm2gWR0C7eCSf+S8rdX2UKGgGaAloD0MIAS8zbJT0ckCUhpRSlGgVS7hoFkdAu3goacZtN3V9lChoBmgJaA9DCH4YITza1nFAlIaUUpRoFUuQaBZHQLt4RTG5tnB1fZQoaAZoCWgPQwiALa9cbw1zQJSGlFKUaBVLoGgWR0C7eE6FRHf/dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1232, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 256, "n_epochs": 16, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVXQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsDSxNDEHwAiAGIABgAFACIABcAUwCUToWUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjB88aXB5dGhvbi1pbnB1dC0xMi1iMWJhMDY5NTM4Nzg+lIwEZnVuY5RLBEMCAAGUjAtmaW5hbF92YWx1ZZSMDWluaXRpYWxfdmFsdWWUhpQpdJRSlH2UKIwLX19wYWNrYWdlX1+UTowIX19uYW1lX1+UjAhfX21haW5fX5R1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlGgaKVKUhpR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMHWxpbmVhcl9zY2hlZHVsZS48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/uZmZmZmZmoWUUpRoL0c/4AAAAAAAAIWUUpSGlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:9bbd71af7e8a9844e8a6c72d69f7b219425c309da4e533fa46e38593fcc7d1c7
3
- size 197096
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a7ad1be567ff8db9aabf475428b83c755769cfbfd5cfb2c6ffcd74e0f5d6ec54
3
+ size 191608
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 283.0107404986814, "std_reward": 16.052435786016552, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-12T09:50:46.255630"}
 
1
+ {"mean_reward": 293.177941340003, "std_reward": 13.380233828003405, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-12T11:59:21.747861"}