jabot commited on
Commit
8dbe8c3
1 Parent(s): 4941e84

Upload test training of LunarLander-v2 using PPO to jabot/PPO_LunarLanderV2

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
PPO_LunarLanderV2_8000000Steps.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c6987d5c41ddb823ffd1394197e9a9424e81fdb6413c374def41653f15721422
3
+ size 324141
PPO_LunarLanderV2_8000000Steps/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
PPO_LunarLanderV2_8000000Steps/data ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb972859830>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb9728598c0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb972859950>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb9728599e0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fb972859a70>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fb972859b00>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb972859b90>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fb972859c20>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb972859cb0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb972859d40>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb972859dd0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fb9728a78a0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {
23
+ "net_arch": [
24
+ 128,
25
+ {
26
+ "vf": [
27
+ 64,
28
+ 32,
29
+ 32
30
+ ],
31
+ "pi": [
32
+ 64,
33
+ 32,
34
+ 32
35
+ ]
36
+ }
37
+ ]
38
+ },
39
+ "observation_space": {
40
+ ":type:": "<class 'gym.spaces.box.Box'>",
41
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
42
+ "dtype": "float32",
43
+ "_shape": [
44
+ 8
45
+ ],
46
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
47
+ "high": "[inf inf inf inf inf inf inf inf]",
48
+ "bounded_below": "[False False False False False False False False]",
49
+ "bounded_above": "[False False False False False False False False]",
50
+ "_np_random": null
51
+ },
52
+ "action_space": {
53
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
54
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
55
+ "n": 4,
56
+ "_shape": [],
57
+ "dtype": "int64",
58
+ "_np_random": null
59
+ },
60
+ "n_envs": 64,
61
+ "num_timesteps": 8126464,
62
+ "_total_timesteps": 8000000,
63
+ "_num_timesteps_at_start": 0,
64
+ "seed": null,
65
+ "action_noise": null,
66
+ "start_time": 1652342597.40362,
67
+ "learning_rate": {
68
+ ":type:": "<class 'function'>",
69
+ ":serialized:": "gAWVkAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsCSxNDOHwAZAFrBXIMiABTAHwAZAJrBXIciABkAxsAUwB8AGQEawVyLIgAZAUbAFMAiABkBhsAUwBkAFMAlChORz/gAAAAAAAARz/JmZmZmZmaSwpHP7mZmZmZmZpLZE3oA3SUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjB48aXB5dGhvbi1pbnB1dC03LTkwNjViZTQ0M2U5YT6UjARmdW5jlEsYQw4AAQgBBAEIAQgBCAEIApSMDWluaXRpYWxfdmFsdWWUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UTowIX19uYW1lX1+UjAhfX21haW5fX5R1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgdfZR9lChoFmgOjAxfX3F1YWxuYW1lX1+UjBxzdGVwc19zY2hlZHVsZS48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
70
+ },
71
+ "tensorboard_log": null,
72
+ "lr_schedule": {
73
+ ":type:": "<class 'function'>",
74
+ ":serialized:": "gAWVkAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsCSxNDOHwAZAFrBXIMiABTAHwAZAJrBXIciABkAxsAUwB8AGQEawVyLIgAZAUbAFMAiABkBhsAUwBkAFMAlChORz/gAAAAAAAARz/JmZmZmZmaSwpHP7mZmZmZmZpLZE3oA3SUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjB48aXB5dGhvbi1pbnB1dC03LTkwNjViZTQ0M2U5YT6UjARmdW5jlEsYQw4AAQgBBAEIAQgBCAEIApSMDWluaXRpYWxfdmFsdWWUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UTowIX19uYW1lX1+UjAhfX21haW5fX5R1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgdfZR9lChoFmgOjAxfX3F1YWxuYW1lX1+UjBxzdGVwc19zY2hlZHVsZS48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
75
+ },
76
+ "_last_obs": {
77
+ ":type:": "<class 'numpy.ndarray'>",
78
+ ":serialized:": "gAWVdQgAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYACAAAAAAAAA2ilz2x+a8/E0JwPoYB3L62lv89UNgaPgAAAAAAAAAAzSCpvIrwpz8yE/W9vYX1vi/Bib3JSxK+AAAAAAAAAAAmepq9do/uPvMc3z0DJ0W/6MHTvfXFkD0AAAAAAAAAAJoO/b0jG3c9DRfoPuAHnr7yA7w8XcY9PgAAAAAAAAAAMzc2vKBVqT8tce69LWMKv4FK47zVBZ+9AAAAAAAAAAD9goM+6rVSP5PoET1tkzW/iIblPlcFR70AAAAAAAAAAJqZvzx7VJq62PCeOommnTV5Bvc6XnS3uQAAgD8AAIA/jR23PWWLdT6tr6e+mgMnvwBHmT2Ojou+AAAAAAAAAAAAHo08J+qvP4FdET8GdhG/VM5ivFI/Qb0AAAAAAAAAAA3+sr0x+U8+8zYWPulFKb+Gx/a9+dLGPQAAAAAAAAAAM5exPLgKsD8sISI+Fa6OvtBCYbt64a09AAAAAAAAAAAzO8K74ViVukXPDLQz3XmvLBqbuma7ujMAAIA/AACAPzMzV7opmA+6VPKJNSDQhrJhGcy7c2ietAAAgD8AAIA/MyMXu3vUkroKHW01d/5FL7+xFDuxIKy0AACAPwAAgD+NhoC9OOr2u0KA3D7ZgYg7T/+3vPwAHD0AAIA/AACAPzNWyT3XMT08vRvqvl1Jar5C7yy+1yiwPgAAgD8AAAAAzYOSPJyLE7y7Vwe+MRiWvQZJbD0qbFG+AAAAAAAAgD/N7BK6XH9iuqr6dD3cPLSwR50AOwoYy7MAAIA/AACAP2ZmobhSqKq5GLE9M6+jkCs3gw87njLQswAAgD8AAIA/zU3NPK4RqLpLor290+WnPHHP3Tt4BJG9AACAPwAAgD+aqa88FOCNuiqJgLd1/H+yzomSuvV+lTYAAIA/AACAP7OkPr3YFMI9Xga2PeEKz74udfi9E35tvQAAAAAAAAAATcNBPu9WPz+xx7091Cs1v+ONyz7DUWq9AAAAAAAAAABmFn+7QycBvJbQ7zzVrqE8SUpPPauehr0AAIA/AACAP+B6ir6YhgQ/LmuLvRNFNL/3qcy+VlDTPAAAAAAAAAAAZnfLPO5Jh7y73+e9NY+QPerFkT1mnn+8AACAPwAAgD8Ax8U8rWnDPn7Hnr1XQDm/atyLPf4npb0AAAAAAAAAAACSH71lQJ4/Y1VNvu60K7/G0em9xpdivgAAAAAAAAAAAJsaPVQ/lLwCKJO+d7Xqu0F6cz3dWPM9AACAPwAAgD8A47m9RzBiPvqvgT5EgDi/JUxsvUnxGD4AAAAAAAAAABDgpj4Qyo0/3Q3MPjJ8LL/O9xg/ek72PQAAAAAAAAAAZkJRvcVduT9zTfW+v6k9PXEAkbwEbx++AAAAAAAAAABaq+O9lrnAP0J74b7kZwa+I7QDvi3hM74AAAAAAAAAAM0Burzb8qE/FL0wvvHaL796FTK9E0v+vQAAAAAAAAAAoJ0TPk3OlD+TTbk+j9Etv/tutz6WOIU+AAAAAAAAAACaOje+BQAoP1qGLL41pT2/AqGqvrLM2LwAAAAAAAAAABpvLb4omrA91v4MP+XWp77NnX09lf8aPgAAAAAAAAAAugZLvnwIqj9Fzd2+HWUcv3CAw76SCYy+AAAAAAAAAACzcL290Dq/PxsjKb+Z1v89rA4pvcIpgr4AAAAAAAAAAI224z0Ge5U/Oo30PlS3Or+crFk+my3EPgAAAAAAAAAAgOXWvUM4qj9f27a+paH2vnzLVr6wdH++AAAAAAAAAABzAmo+x0Y7PviAfL4s7xK/twrKPqNFDr4AAAAAAAAAAJONTD6QcSw/J+IkPSfHNb9CtM4+zyy3vAAAAAAAAAAAmhTYvN86Mz9cU4y9Iqlpv3zpi7viuoG9AAAAAAAAAADNbC87HBk8vMbyR73l6Sg9/J9BPT5kmrwAAIA/AACAP8CXH75kNYM/Tdz7voWoXL8SDrW+tY1/vgAAAAAAAAAA2qS4vUJ8DT6eF5A+Zc8Qv/o/0L28a7s9AAAAAAAAAACQ87y+7XpeP2qJcr3sNSu/iOfnvlwVDD4AAAAAAAAAAJpxeTwclLk/7x7FPsYByT6qEY680aCwvQAAAAAAAAAAzZDkPClGZj2VZHu+RBTFvlVfOr3uVkK+AAAAAAAAAACaQns9zxcePRD6yr7DlqC+kxQbvuabsr4AAAAAAAAAAGYOrb7vDXE/JbGpvjSFL7+NmvW+YKFhPAAAAAAAAAAAZq96PYs9pD9/JBA/uf4vv2u6xTzmanA+AAAAAAAAAABNXRw+c1LxPlJV6r021C+/LeaXPg379r0AAAAAAAAAAIMJXr5XSXg+2pXOPiWbGL+e5h6+2kFVPgAAAAAAAAAAAKiYu0ZQtD8ym/G+fxrKvaQcsTvg6No9AAAAAAAAAABasQe+nEYhPQzwDz/Tdo2+Obr1PMa6Lz4AAAAAAAAAACa1yD3nxGc/aQ4SPn4GV796vn8+qeyWPQAAAAAAAAAAZvIrPPasaLqgX/C2Om2SMXLnlLpt8Ao2AACAPwAAgD9aF44+SWJFP05rdjuelCS/7wkBPyN5k70AAAAAAAAAAOZZGT0UqoU9/hOBvjzvzb5k7q29gYmJvgAAAAAAAAAAxrcLPl/WoD86inY+f4FFvzB6gz7qLoU+AAAAAAAAAABa4WY+aG12P1Pr2j5UwAm/lCXePie5Fj4AAAAAAAAAADN3J7xvfWk9rYtTPfvKyL5wG529BrEJvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYktASwiGlIwBQ5R0lFKULg=="
79
+ },
80
+ "_last_episode_starts": {
81
+ ":type:": "<class 'numpy.ndarray'>",
82
+ ":serialized:": "gAWVswAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiS0CFlIwBQ5R0lFKULg=="
83
+ },
84
+ "_last_original_obs": null,
85
+ "_episode_num": 0,
86
+ "use_sde": false,
87
+ "sde_sample_freq": -1,
88
+ "_current_progress_remaining": -0.015808000000000044,
89
+ "ep_info_buffer": {
90
+ ":type:": "<class 'collections.deque'>",
91
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIbVM8LqpzcUCUhpRSlIwBbJRLs4wBdJRHQLfKTJO32El1fZQoaAZoCWgPQwhETl/PVzxxQJSGlFKUaBVLjWgWR0C3yk+801qGdX2UKGgGaAloD0MIHAx1WCEBc0CUhpRSlGgVS71oFkdAt8pao60Y0nV9lChoBmgJaA9DCCv3ArPCEnFAlIaUUpRoFUujaBZHQLfKXK3NLUV1fZQoaAZoCWgPQwjiAWVTbjVwQJSGlFKUaBVLoGgWR0C3yme+h4+sdX2UKGgGaAloD0MIELIsmPgvcUCUhpRSlGgVS49oFkdAt8pn2mHgxnV9lChoBmgJaA9DCJKtLqfEMnNAlIaUUpRoFUvHaBZHQLfKgIK+i8F1fZQoaAZoCWgPQwhSfecX5QxwQJSGlFKUaBVLmGgWR0C3yn6+BYmtdX2UKGgGaAloD0MIv0f99Qq/ckCUhpRSlGgVS4RoFkdAt8qTUz9CNXV9lChoBmgJaA9DCKzlzkywCXBAlIaUUpRoFUueaBZHQLfKmlolD4R1fZQoaAZoCWgPQwhl3xXBP1JyQJSGlFKUaBVLm2gWR0C3yp3QhOgydX2UKGgGaAloD0MIY7fPKrP+c0CUhpRSlGgVS89oFkdAt8qpQwblzXV9lChoBmgJaA9DCDIiUWiZSnBAlIaUUpRoFUuhaBZHQLfKu+ERJ3B1fZQoaAZoCWgPQwgBipElMwhzQJSGlFKUaBVLkmgWR0C3ysXWOIZZdX2UKGgGaAloD0MIvCAiNa0YcECUhpRSlGgVS5hoFkdAt8rU/4ZdfXV9lChoBmgJaA9DCN2adFuirXJAlIaUUpRoFUuPaBZHQLfK6s0YTCd1fZQoaAZoCWgPQwgEq+rl9ydzQJSGlFKUaBVLr2gWR0C3yub7oB7vdX2UKGgGaAloD0MIVwbVBieXcUCUhpRSlGgVS6BoFkdAt8sB39rGi3V9lChoBmgJaA9DCExuFFlrKnBAlIaUUpRoFUuXaBZHQLfLAd69kBl1fZQoaAZoCWgPQwhyw++mm4NzQJSGlFKUaBVLvmgWR0C3ywQxSHdodX2UKGgGaAloD0MIxccnZGeCckCUhpRSlGgVS6JoFkdAt8sK/M4cWHV9lChoBmgJaA9DCP93RIXqYnFAlIaUUpRoFUuraBZHQLfLE8BdUsF1fZQoaAZoCWgPQwg6zJcX4DpyQJSGlFKUaBVLpWgWR0C3yxuGKyfMdX2UKGgGaAloD0MIaTnQQ604c0CUhpRSlGgVS6hoFkdAt8sz6yjYZnV9lChoBmgJaA9DCKpjldJzWnFAlIaUUpRoFUuVaBZHQLfLMqLCN0h1fZQoaAZoCWgPQwgcfjfdMl9zQJSGlFKUaBVLmWgWR0C3y0kE5hjOdX2UKGgGaAloD0MImz3QCsxbckCUhpRSlGgVS5NoFkdAt8tP3dsSCnV9lChoBmgJaA9DCOp4zEAlgnRAlIaUUpRoFUu7aBZHQLfLVILgGbF1fZQoaAZoCWgPQwibOSS1EPVxQJSGlFKUaBVLjGgWR0C3y1P3BYV7dX2UKGgGaAloD0MISDfCoqJ/cECUhpRSlGgVS5RoFkdAt8tUTQE6k3V9lChoBmgJaA9DCOgwX15AeHFAlIaUUpRoFUulaBZHQLfLWikfs/p1fZQoaAZoCWgPQwgZAoBjj8FwQJSGlFKUaBVLmWgWR0C3y2tb9qDcdX2UKGgGaAloD0MIrwj+t1Jgc0CUhpRSlGgVS8poFkdAt8ttY9xIa3V9lChoBmgJaA9DCPRtwVLdVHRAlIaUUpRoFUutaBZHQLfLfB4D9wZ1fZQoaAZoCWgPQwiXx5qRgTRwQJSGlFKUaBVLkGgWR0C3y3npnpSrdX2UKGgGaAloD0MIEhWqm4t+cUCUhpRSlGgVS4loFkdAt8uBwtJ4B3V9lChoBmgJaA9DCA/Tvrm/l29AlIaUUpRoFUuRaBZHQLfLmc5sCT51fZQoaAZoCWgPQwhlqfV+489zQJSGlFKUaBVLwmgWR0C3y6ouoP07dX2UKGgGaAloD0MIomKcvwnzcUCUhpRSlGgVS7JoFkdAt8upzQu27XV9lChoBmgJaA9DCDnulA6W+HFAlIaUUpRoFUuQaBZHQLfLrNmUW2x1fZQoaAZoCWgPQwjLZDiejx5yQJSGlFKUaBVLj2gWR0C3y7yq2jO+dX2UKGgGaAloD0MI8Z9uoMAjdECUhpRSlGgVS7BoFkdAt8vGB5HEuXV9lChoBmgJaA9DCDZbecn/JHJAlIaUUpRoFUuZaBZHQLfL/k078vV1fZQoaAZoCWgPQwiPGaiMf8NwQJSGlFKUaBVLk2gWR0C3zAlFx4pudX2UKGgGaAloD0MIJ0pCIu0HckCUhpRSlGgVS3xoFkdAt8wMsg+yJXV9lChoBmgJaA9DCAEZOnZQwXFAlIaUUpRoFUunaBZHQLfMDIiTt9h1fZQoaAZoCWgPQwgA/5QqUZFyQJSGlFKUaBVLtmgWR0C3zBjneSB9dX2UKGgGaAloD0MI4443+S2wcECUhpRSlGgVS6RoFkdAt8w1/RVp9XV9lChoBmgJaA9DCAwEATK0DHJAlIaUUpRoFUutaBZHQLfMVcHGCI11fZQoaAZoCWgPQwhNLzGWaUtzQJSGlFKUaBVLymgWR0C3zFRA8jiXdX2UKGgGaAloD0MIm64num4Pc0CUhpRSlGgVS9FoFkdAt8x2Vv/BFnV9lChoBmgJaA9DCM+goX8CiHFAlIaUUpRoFUucaBZHQLfMe2tMfzV1fZQoaAZoCWgPQwjpQxfUtylxQJSGlFKUaBVLlWgWR0C3zHtmUW2xdX2UKGgGaAloD0MIxw+VRsxVckCUhpRSlGgVS7toFkdAt8x5OfukUXV9lChoBmgJaA9DCPcCs0IRx3FAlIaUUpRoFUuHaBZHQLfMf5oXbdt1fZQoaAZoCWgPQwhUqkTZm1NzQJSGlFKUaBVLwWgWR0C3zIsoYvWZdX2UKGgGaAloD0MIOlyrPez9ckCUhpRSlGgVS55oFkdAt8yU95hScnV9lChoBmgJaA9DCCO/foiNf3NAlIaUUpRoFUvDaBZHQLfMmOObRWt1fZQoaAZoCWgPQwiVYHE4c1hwQJSGlFKUaBVLn2gWR0C3zLQmVqvedX2UKGgGaAloD0MINL+aAwSZcUCUhpRSlGgVS59oFkdAt8y2qlxffHV9lChoBmgJaA9DCHwL68Y7f3NAlIaUUpRoFUvBaBZHQLfMyDqnm7t1fZQoaAZoCWgPQwgAVHHjluZxQJSGlFKUaBVLq2gWR0C3zNaJ66atdX2UKGgGaAloD0MIyjUFMruAckCUhpRSlGgVS5loFkdAt8zitRvWH3V9lChoBmgJaA9DCJHRAUmYDXRAlIaUUpRoFUvJaBZHQLfM5I4EOiF1fZQoaAZoCWgPQwgsSDMWjfRxQJSGlFKUaBVLiGgWR0C3zPsCHRCydX2UKGgGaAloD0MI/l915AjMcUCUhpRSlGgVS7loFkdAt8z/gm7aqXV9lChoBmgJaA9DCKWkh6EVf3JAlIaUUpRoFUuZaBZHQLfNDWgvlEJ1fZQoaAZoCWgPQwjvy5ntSuVxQJSGlFKUaBVLqGgWR0C3zRlar3j/dX2UKGgGaAloD0MIUdzxJv9IcUCUhpRSlGgVS55oFkdAt80s1cdHUnV9lChoBmgJaA9DCEDAWrVr/HJAlIaUUpRoFUu9aBZHQLfNO8OkLx91fZQoaAZoCWgPQwiFP8Ob9Y5yQJSGlFKUaBVLmmgWR0C3zUTBuXNUdX2UKGgGaAloD0MIcjJxq+DPc0CUhpRSlGgVS89oFkdAt81EbyYoiXV9lChoBmgJaA9DCE35EFQN6XJAlIaUUpRoFUveaBZHQLfNSlgc94h1fZQoaAZoCWgPQwi1UDI59S90QJSGlFKUaBVLz2gWR0C3zV61PWQPdX2UKGgGaAloD0MIT1yOV2Dsc0CUhpRSlGgVS7JoFkdAt81emsNlRXV9lChoBmgJaA9DCGsPe6FApXRAlIaUUpRoFUvWaBZHQLfNXmbb1yx1fZQoaAZoCWgPQwjV7IFWYAt0QJSGlFKUaBVL5GgWR0C3zVzuSfUXdX2UKGgGaAloD0MIJa/OMSDTc0CUhpRSlGgVS8poFkdAt81ygnMMZ3V9lChoBmgJaA9DCB40u+7tEnRAlIaUUpRoFUvFaBZHQLfNeObAk9l1fZQoaAZoCWgPQwgHX5hMldVyQJSGlFKUaBVLv2gWR0C3zYOBlMAWdX2UKGgGaAloD0MIgqj7AOQOckCUhpRSlGgVS6VoFkdAt82LSJCSinV9lChoBmgJaA9DCGCRXz8E7nFAlIaUUpRoFUukaBZHQLfNkTLW7OF1fZQoaAZoCWgPQwjImSZs/2VzQJSGlFKUaBVLo2gWR0C3zZ+X7cfvdX2UKGgGaAloD0MIelVntcBNc0CUhpRSlGgVS7loFkdAt82qCPIXCXV9lChoBmgJaA9DCJ2E0hfCsXNAlIaUUpRoFUucaBZHQLfNvsdkrgB1fZQoaAZoCWgPQwgzUYTULQtxQJSGlFKUaBVLlWgWR0C3zbrgjyFxdX2UKGgGaAloD0MIkzmWd5WJckCUhpRSlGgVS69oFkdAt83CRxLkCHV9lChoBmgJaA9DCF/Tg4IS63FAlIaUUpRoFUufaBZHQLfNzhGH58B1fZQoaAZoCWgPQwifHXBdMXhyQJSGlFKUaBVLumgWR0C3zdfoFFDwdX2UKGgGaAloD0MIPWNfsnG8b0CUhpRSlGgVS5FoFkdAt83npeNT+HV9lChoBmgJaA9DCCVbXU7J63JAlIaUUpRoFUuraBZHQLfN8L+xW1d1fZQoaAZoCWgPQwjzkv/Jnx9zQJSGlFKUaBVLrmgWR0C3zfTisGPgdX2UKGgGaAloD0MID7kZboB0cUCUhpRSlGgVS6doFkdAt837Xf642HV9lChoBmgJaA9DCOscA7IX+nFAlIaUUpRoFUu1aBZHQLfN+aScLBt1fZQoaAZoCWgPQwioN6PmqwJxQJSGlFKUaBVLpWgWR0C3zgF6eGwidX2UKGgGaAloD0MILliqC/g6cUCUhpRSlGgVS65oFkdAt83/vx6OYXV9lChoBmgJaA9DCEVnmUUoJ3NAlIaUUpRoFUumaBZHQLfOB8TBZZB1fZQoaAZoCWgPQwhcO1ESkmFyQJSGlFKUaBVLvWgWR0C3zhhQ79ycdX2UKGgGaAloD0MIcxO1NDfIc0CUhpRSlGgVS7ZoFkdAt84gAsCkoHV9lChoBmgJaA9DCBDmdi+3inNAlIaUUpRoFUvNaBZHQLfOIuwosqd1ZS4="
92
+ },
93
+ "ep_success_buffer": {
94
+ ":type:": "<class 'collections.deque'>",
95
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
96
+ },
97
+ "_n_updates": 992,
98
+ "n_steps": 2048,
99
+ "gamma": 0.999,
100
+ "gae_lambda": 0.98,
101
+ "ent_coef": 0.01,
102
+ "vf_coef": 0.5,
103
+ "max_grad_norm": 0.5,
104
+ "batch_size": 256,
105
+ "n_epochs": 16,
106
+ "clip_range": {
107
+ ":type:": "<class 'function'>",
108
+ ":serialized:": "gAWVXAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsDSxNDEHwAiAGIABgAFACIABcAUwCUToWUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjB48aXB5dGhvbi1pbnB1dC03LTkwNjViZTQ0M2U5YT6UjARmdW5jlEsEQwIAAZSMC2ZpbmFsX3ZhbHVllIwNaW5pdGlhbF92YWx1ZZSGlCl0lFKUfZQojAtfX3BhY2thZ2VfX5ROjAhfX25hbWVfX5SMCF9fbWFpbl9flHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUaBopUpSGlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBdoDowMX19xdWFsbmFtZV9flIwdbGluZWFyX3NjaGVkdWxlLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz+5mZmZmZmahZRSlGgvRz/gAAAAAAAAhZRSlIaUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
109
+ },
110
+ "clip_range_vf": null,
111
+ "normalize_advantage": true,
112
+ "target_kl": null
113
+ }
PPO_LunarLanderV2_8000000Steps/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:de981bac1e9934bc144a70ff0e78717a78e15685e035f80dfed73380eab4e22a
3
+ size 202617
PPO_LunarLanderV2_8000000Steps/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:99f6f8e3b69d1be8d9c345e0cf23bbd5ead9eadff474d728ccceb350ad886c03
3
+ size 102447
PPO_LunarLanderV2_8000000Steps/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
PPO_LunarLanderV2_8000000Steps/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 283.01 +/- 16.05
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
+
26
+ ## Usage (with Stable-baselines3)
27
+ TODO: Add your code
28
+
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb972859830>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb9728598c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb972859950>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb9728599e0>", "_build": "<function ActorCriticPolicy._build at 0x7fb972859a70>", "forward": "<function ActorCriticPolicy.forward at 0x7fb972859b00>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb972859b90>", "_predict": "<function ActorCriticPolicy._predict at 0x7fb972859c20>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb972859cb0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb972859d40>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb972859dd0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fb9728a78a0>"}, "verbose": 1, "policy_kwargs": {"net_arch": [128, {"vf": [64, 32, 32], "pi": [64, 32, 32]}]}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 64, "num_timesteps": 8126464, "_total_timesteps": 8000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652342597.40362, "learning_rate": {":type:": "<class 'function'>", ":serialized:": "gAWVkAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsCSxNDOHwAZAFrBXIMiABTAHwAZAJrBXIciABkAxsAUwB8AGQEawVyLIgAZAUbAFMAiABkBhsAUwBkAFMAlChORz/gAAAAAAAARz/JmZmZmZmaSwpHP7mZmZmZmZpLZE3oA3SUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjB48aXB5dGhvbi1pbnB1dC03LTkwNjViZTQ0M2U5YT6UjARmdW5jlEsYQw4AAQgBBAEIAQgBCAEIApSMDWluaXRpYWxfdmFsdWWUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UTowIX19uYW1lX1+UjAhfX21haW5fX5R1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgdfZR9lChoFmgOjAxfX3F1YWxuYW1lX1+UjBxzdGVwc19zY2hlZHVsZS48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVkAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsCSxNDOHwAZAFrBXIMiABTAHwAZAJrBXIciABkAxsAUwB8AGQEawVyLIgAZAUbAFMAiABkBhsAUwBkAFMAlChORz/gAAAAAAAARz/JmZmZmZmaSwpHP7mZmZmZmZpLZE3oA3SUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjB48aXB5dGhvbi1pbnB1dC03LTkwNjViZTQ0M2U5YT6UjARmdW5jlEsYQw4AAQgBBAEIAQgBCAEIApSMDWluaXRpYWxfdmFsdWWUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UTowIX19uYW1lX1+UjAhfX21haW5fX5R1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgdfZR9lChoFmgOjAxfX3F1YWxuYW1lX1+UjBxzdGVwc19zY2hlZHVsZS48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQgAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYACAAAAAAAAA2ilz2x+a8/E0JwPoYB3L62lv89UNgaPgAAAAAAAAAAzSCpvIrwpz8yE/W9vYX1vi/Bib3JSxK+AAAAAAAAAAAmepq9do/uPvMc3z0DJ0W/6MHTvfXFkD0AAAAAAAAAAJoO/b0jG3c9DRfoPuAHnr7yA7w8XcY9PgAAAAAAAAAAMzc2vKBVqT8tce69LWMKv4FK47zVBZ+9AAAAAAAAAAD9goM+6rVSP5PoET1tkzW/iIblPlcFR70AAAAAAAAAAJqZvzx7VJq62PCeOommnTV5Bvc6XnS3uQAAgD8AAIA/jR23PWWLdT6tr6e+mgMnvwBHmT2Ojou+AAAAAAAAAAAAHo08J+qvP4FdET8GdhG/VM5ivFI/Qb0AAAAAAAAAAA3+sr0x+U8+8zYWPulFKb+Gx/a9+dLGPQAAAAAAAAAAM5exPLgKsD8sISI+Fa6OvtBCYbt64a09AAAAAAAAAAAzO8K74ViVukXPDLQz3XmvLBqbuma7ujMAAIA/AACAPzMzV7opmA+6VPKJNSDQhrJhGcy7c2ietAAAgD8AAIA/MyMXu3vUkroKHW01d/5FL7+xFDuxIKy0AACAPwAAgD+NhoC9OOr2u0KA3D7ZgYg7T/+3vPwAHD0AAIA/AACAPzNWyT3XMT08vRvqvl1Jar5C7yy+1yiwPgAAgD8AAAAAzYOSPJyLE7y7Vwe+MRiWvQZJbD0qbFG+AAAAAAAAgD/N7BK6XH9iuqr6dD3cPLSwR50AOwoYy7MAAIA/AACAP2ZmobhSqKq5GLE9M6+jkCs3gw87njLQswAAgD8AAIA/zU3NPK4RqLpLor290+WnPHHP3Tt4BJG9AACAPwAAgD+aqa88FOCNuiqJgLd1/H+yzomSuvV+lTYAAIA/AACAP7OkPr3YFMI9Xga2PeEKz74udfi9E35tvQAAAAAAAAAATcNBPu9WPz+xx7091Cs1v+ONyz7DUWq9AAAAAAAAAABmFn+7QycBvJbQ7zzVrqE8SUpPPauehr0AAIA/AACAP+B6ir6YhgQ/LmuLvRNFNL/3qcy+VlDTPAAAAAAAAAAAZnfLPO5Jh7y73+e9NY+QPerFkT1mnn+8AACAPwAAgD8Ax8U8rWnDPn7Hnr1XQDm/atyLPf4npb0AAAAAAAAAAACSH71lQJ4/Y1VNvu60K7/G0em9xpdivgAAAAAAAAAAAJsaPVQ/lLwCKJO+d7Xqu0F6cz3dWPM9AACAPwAAgD8A47m9RzBiPvqvgT5EgDi/JUxsvUnxGD4AAAAAAAAAABDgpj4Qyo0/3Q3MPjJ8LL/O9xg/ek72PQAAAAAAAAAAZkJRvcVduT9zTfW+v6k9PXEAkbwEbx++AAAAAAAAAABaq+O9lrnAP0J74b7kZwa+I7QDvi3hM74AAAAAAAAAAM0Burzb8qE/FL0wvvHaL796FTK9E0v+vQAAAAAAAAAAoJ0TPk3OlD+TTbk+j9Etv/tutz6WOIU+AAAAAAAAAACaOje+BQAoP1qGLL41pT2/AqGqvrLM2LwAAAAAAAAAABpvLb4omrA91v4MP+XWp77NnX09lf8aPgAAAAAAAAAAugZLvnwIqj9Fzd2+HWUcv3CAw76SCYy+AAAAAAAAAACzcL290Dq/PxsjKb+Z1v89rA4pvcIpgr4AAAAAAAAAAI224z0Ge5U/Oo30PlS3Or+crFk+my3EPgAAAAAAAAAAgOXWvUM4qj9f27a+paH2vnzLVr6wdH++AAAAAAAAAABzAmo+x0Y7PviAfL4s7xK/twrKPqNFDr4AAAAAAAAAAJONTD6QcSw/J+IkPSfHNb9CtM4+zyy3vAAAAAAAAAAAmhTYvN86Mz9cU4y9Iqlpv3zpi7viuoG9AAAAAAAAAADNbC87HBk8vMbyR73l6Sg9/J9BPT5kmrwAAIA/AACAP8CXH75kNYM/Tdz7voWoXL8SDrW+tY1/vgAAAAAAAAAA2qS4vUJ8DT6eF5A+Zc8Qv/o/0L28a7s9AAAAAAAAAACQ87y+7XpeP2qJcr3sNSu/iOfnvlwVDD4AAAAAAAAAAJpxeTwclLk/7x7FPsYByT6qEY680aCwvQAAAAAAAAAAzZDkPClGZj2VZHu+RBTFvlVfOr3uVkK+AAAAAAAAAACaQns9zxcePRD6yr7DlqC+kxQbvuabsr4AAAAAAAAAAGYOrb7vDXE/JbGpvjSFL7+NmvW+YKFhPAAAAAAAAAAAZq96PYs9pD9/JBA/uf4vv2u6xTzmanA+AAAAAAAAAABNXRw+c1LxPlJV6r021C+/LeaXPg379r0AAAAAAAAAAIMJXr5XSXg+2pXOPiWbGL+e5h6+2kFVPgAAAAAAAAAAAKiYu0ZQtD8ym/G+fxrKvaQcsTvg6No9AAAAAAAAAABasQe+nEYhPQzwDz/Tdo2+Obr1PMa6Lz4AAAAAAAAAACa1yD3nxGc/aQ4SPn4GV796vn8+qeyWPQAAAAAAAAAAZvIrPPasaLqgX/C2Om2SMXLnlLpt8Ao2AACAPwAAgD9aF44+SWJFP05rdjuelCS/7wkBPyN5k70AAAAAAAAAAOZZGT0UqoU9/hOBvjzvzb5k7q29gYmJvgAAAAAAAAAAxrcLPl/WoD86inY+f4FFvzB6gz7qLoU+AAAAAAAAAABa4WY+aG12P1Pr2j5UwAm/lCXePie5Fj4AAAAAAAAAADN3J7xvfWk9rYtTPfvKyL5wG529BrEJvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYktASwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVswAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiS0CFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIbVM8LqpzcUCUhpRSlIwBbJRLs4wBdJRHQLfKTJO32El1fZQoaAZoCWgPQwhETl/PVzxxQJSGlFKUaBVLjWgWR0C3yk+801qGdX2UKGgGaAloD0MIHAx1WCEBc0CUhpRSlGgVS71oFkdAt8pao60Y0nV9lChoBmgJaA9DCCv3ArPCEnFAlIaUUpRoFUujaBZHQLfKXK3NLUV1fZQoaAZoCWgPQwjiAWVTbjVwQJSGlFKUaBVLoGgWR0C3yme+h4+sdX2UKGgGaAloD0MIELIsmPgvcUCUhpRSlGgVS49oFkdAt8pn2mHgxnV9lChoBmgJaA9DCJKtLqfEMnNAlIaUUpRoFUvHaBZHQLfKgIK+i8F1fZQoaAZoCWgPQwhSfecX5QxwQJSGlFKUaBVLmGgWR0C3yn6+BYmtdX2UKGgGaAloD0MIv0f99Qq/ckCUhpRSlGgVS4RoFkdAt8qTUz9CNXV9lChoBmgJaA9DCKzlzkywCXBAlIaUUpRoFUueaBZHQLfKmlolD4R1fZQoaAZoCWgPQwhl3xXBP1JyQJSGlFKUaBVLm2gWR0C3yp3QhOgydX2UKGgGaAloD0MIY7fPKrP+c0CUhpRSlGgVS89oFkdAt8qpQwblzXV9lChoBmgJaA9DCDIiUWiZSnBAlIaUUpRoFUuhaBZHQLfKu+ERJ3B1fZQoaAZoCWgPQwgBipElMwhzQJSGlFKUaBVLkmgWR0C3ysXWOIZZdX2UKGgGaAloD0MIvCAiNa0YcECUhpRSlGgVS5hoFkdAt8rU/4ZdfXV9lChoBmgJaA9DCN2adFuirXJAlIaUUpRoFUuPaBZHQLfK6s0YTCd1fZQoaAZoCWgPQwgEq+rl9ydzQJSGlFKUaBVLr2gWR0C3yub7oB7vdX2UKGgGaAloD0MIVwbVBieXcUCUhpRSlGgVS6BoFkdAt8sB39rGi3V9lChoBmgJaA9DCExuFFlrKnBAlIaUUpRoFUuXaBZHQLfLAd69kBl1fZQoaAZoCWgPQwhyw++mm4NzQJSGlFKUaBVLvmgWR0C3ywQxSHdodX2UKGgGaAloD0MIxccnZGeCckCUhpRSlGgVS6JoFkdAt8sK/M4cWHV9lChoBmgJaA9DCP93RIXqYnFAlIaUUpRoFUuraBZHQLfLE8BdUsF1fZQoaAZoCWgPQwg6zJcX4DpyQJSGlFKUaBVLpWgWR0C3yxuGKyfMdX2UKGgGaAloD0MIaTnQQ604c0CUhpRSlGgVS6hoFkdAt8sz6yjYZnV9lChoBmgJaA9DCKpjldJzWnFAlIaUUpRoFUuVaBZHQLfLMqLCN0h1fZQoaAZoCWgPQwgcfjfdMl9zQJSGlFKUaBVLmWgWR0C3y0kE5hjOdX2UKGgGaAloD0MImz3QCsxbckCUhpRSlGgVS5NoFkdAt8tP3dsSCnV9lChoBmgJaA9DCOp4zEAlgnRAlIaUUpRoFUu7aBZHQLfLVILgGbF1fZQoaAZoCWgPQwibOSS1EPVxQJSGlFKUaBVLjGgWR0C3y1P3BYV7dX2UKGgGaAloD0MISDfCoqJ/cECUhpRSlGgVS5RoFkdAt8tUTQE6k3V9lChoBmgJaA9DCOgwX15AeHFAlIaUUpRoFUulaBZHQLfLWikfs/p1fZQoaAZoCWgPQwgZAoBjj8FwQJSGlFKUaBVLmWgWR0C3y2tb9qDcdX2UKGgGaAloD0MIrwj+t1Jgc0CUhpRSlGgVS8poFkdAt8ttY9xIa3V9lChoBmgJaA9DCPRtwVLdVHRAlIaUUpRoFUutaBZHQLfLfB4D9wZ1fZQoaAZoCWgPQwiXx5qRgTRwQJSGlFKUaBVLkGgWR0C3y3npnpSrdX2UKGgGaAloD0MIEhWqm4t+cUCUhpRSlGgVS4loFkdAt8uBwtJ4B3V9lChoBmgJaA9DCA/Tvrm/l29AlIaUUpRoFUuRaBZHQLfLmc5sCT51fZQoaAZoCWgPQwhlqfV+489zQJSGlFKUaBVLwmgWR0C3y6ouoP07dX2UKGgGaAloD0MIomKcvwnzcUCUhpRSlGgVS7JoFkdAt8upzQu27XV9lChoBmgJaA9DCDnulA6W+HFAlIaUUpRoFUuQaBZHQLfLrNmUW2x1fZQoaAZoCWgPQwjLZDiejx5yQJSGlFKUaBVLj2gWR0C3y7yq2jO+dX2UKGgGaAloD0MI8Z9uoMAjdECUhpRSlGgVS7BoFkdAt8vGB5HEuXV9lChoBmgJaA9DCDZbecn/JHJAlIaUUpRoFUuZaBZHQLfL/k078vV1fZQoaAZoCWgPQwiPGaiMf8NwQJSGlFKUaBVLk2gWR0C3zAlFx4pudX2UKGgGaAloD0MIJ0pCIu0HckCUhpRSlGgVS3xoFkdAt8wMsg+yJXV9lChoBmgJaA9DCAEZOnZQwXFAlIaUUpRoFUunaBZHQLfMDIiTt9h1fZQoaAZoCWgPQwgA/5QqUZFyQJSGlFKUaBVLtmgWR0C3zBjneSB9dX2UKGgGaAloD0MI4443+S2wcECUhpRSlGgVS6RoFkdAt8w1/RVp9XV9lChoBmgJaA9DCAwEATK0DHJAlIaUUpRoFUutaBZHQLfMVcHGCI11fZQoaAZoCWgPQwhNLzGWaUtzQJSGlFKUaBVLymgWR0C3zFRA8jiXdX2UKGgGaAloD0MIm64num4Pc0CUhpRSlGgVS9FoFkdAt8x2Vv/BFnV9lChoBmgJaA9DCM+goX8CiHFAlIaUUpRoFUucaBZHQLfMe2tMfzV1fZQoaAZoCWgPQwjpQxfUtylxQJSGlFKUaBVLlWgWR0C3zHtmUW2xdX2UKGgGaAloD0MIxw+VRsxVckCUhpRSlGgVS7toFkdAt8x5OfukUXV9lChoBmgJaA9DCPcCs0IRx3FAlIaUUpRoFUuHaBZHQLfMf5oXbdt1fZQoaAZoCWgPQwhUqkTZm1NzQJSGlFKUaBVLwWgWR0C3zIsoYvWZdX2UKGgGaAloD0MIOlyrPez9ckCUhpRSlGgVS55oFkdAt8yU95hScnV9lChoBmgJaA9DCCO/foiNf3NAlIaUUpRoFUvDaBZHQLfMmOObRWt1fZQoaAZoCWgPQwiVYHE4c1hwQJSGlFKUaBVLn2gWR0C3zLQmVqvedX2UKGgGaAloD0MINL+aAwSZcUCUhpRSlGgVS59oFkdAt8y2qlxffHV9lChoBmgJaA9DCHwL68Y7f3NAlIaUUpRoFUvBaBZHQLfMyDqnm7t1fZQoaAZoCWgPQwgAVHHjluZxQJSGlFKUaBVLq2gWR0C3zNaJ66atdX2UKGgGaAloD0MIyjUFMruAckCUhpRSlGgVS5loFkdAt8zitRvWH3V9lChoBmgJaA9DCJHRAUmYDXRAlIaUUpRoFUvJaBZHQLfM5I4EOiF1fZQoaAZoCWgPQwgsSDMWjfRxQJSGlFKUaBVLiGgWR0C3zPsCHRCydX2UKGgGaAloD0MI/l915AjMcUCUhpRSlGgVS7loFkdAt8z/gm7aqXV9lChoBmgJaA9DCKWkh6EVf3JAlIaUUpRoFUuZaBZHQLfNDWgvlEJ1fZQoaAZoCWgPQwjvy5ntSuVxQJSGlFKUaBVLqGgWR0C3zRlar3j/dX2UKGgGaAloD0MIUdzxJv9IcUCUhpRSlGgVS55oFkdAt80s1cdHUnV9lChoBmgJaA9DCEDAWrVr/HJAlIaUUpRoFUu9aBZHQLfNO8OkLx91fZQoaAZoCWgPQwiFP8Ob9Y5yQJSGlFKUaBVLmmgWR0C3zUTBuXNUdX2UKGgGaAloD0MIcjJxq+DPc0CUhpRSlGgVS89oFkdAt81EbyYoiXV9lChoBmgJaA9DCE35EFQN6XJAlIaUUpRoFUveaBZHQLfNSlgc94h1fZQoaAZoCWgPQwi1UDI59S90QJSGlFKUaBVLz2gWR0C3zV61PWQPdX2UKGgGaAloD0MIT1yOV2Dsc0CUhpRSlGgVS7JoFkdAt81emsNlRXV9lChoBmgJaA9DCGsPe6FApXRAlIaUUpRoFUvWaBZHQLfNXmbb1yx1fZQoaAZoCWgPQwjV7IFWYAt0QJSGlFKUaBVL5GgWR0C3zVzuSfUXdX2UKGgGaAloD0MIJa/OMSDTc0CUhpRSlGgVS8poFkdAt81ygnMMZ3V9lChoBmgJaA9DCB40u+7tEnRAlIaUUpRoFUvFaBZHQLfNeObAk9l1fZQoaAZoCWgPQwgHX5hMldVyQJSGlFKUaBVLv2gWR0C3zYOBlMAWdX2UKGgGaAloD0MIgqj7AOQOckCUhpRSlGgVS6VoFkdAt82LSJCSinV9lChoBmgJaA9DCGCRXz8E7nFAlIaUUpRoFUukaBZHQLfNkTLW7OF1fZQoaAZoCWgPQwjImSZs/2VzQJSGlFKUaBVLo2gWR0C3zZ+X7cfvdX2UKGgGaAloD0MIelVntcBNc0CUhpRSlGgVS7loFkdAt82qCPIXCXV9lChoBmgJaA9DCJ2E0hfCsXNAlIaUUpRoFUucaBZHQLfNvsdkrgB1fZQoaAZoCWgPQwgzUYTULQtxQJSGlFKUaBVLlWgWR0C3zbrgjyFxdX2UKGgGaAloD0MIkzmWd5WJckCUhpRSlGgVS69oFkdAt83CRxLkCHV9lChoBmgJaA9DCF/Tg4IS63FAlIaUUpRoFUufaBZHQLfNzhGH58B1fZQoaAZoCWgPQwifHXBdMXhyQJSGlFKUaBVLumgWR0C3zdfoFFDwdX2UKGgGaAloD0MIPWNfsnG8b0CUhpRSlGgVS5FoFkdAt83npeNT+HV9lChoBmgJaA9DCCVbXU7J63JAlIaUUpRoFUuraBZHQLfN8L+xW1d1fZQoaAZoCWgPQwjzkv/Jnx9zQJSGlFKUaBVLrmgWR0C3zfTisGPgdX2UKGgGaAloD0MID7kZboB0cUCUhpRSlGgVS6doFkdAt837Xf642HV9lChoBmgJaA9DCOscA7IX+nFAlIaUUpRoFUu1aBZHQLfN+aScLBt1fZQoaAZoCWgPQwioN6PmqwJxQJSGlFKUaBVLpWgWR0C3zgF6eGwidX2UKGgGaAloD0MILliqC/g6cUCUhpRSlGgVS65oFkdAt83/vx6OYXV9lChoBmgJaA9DCEVnmUUoJ3NAlIaUUpRoFUumaBZHQLfOB8TBZZB1fZQoaAZoCWgPQwhcO1ESkmFyQJSGlFKUaBVLvWgWR0C3zhhQ79ycdX2UKGgGaAloD0MIcxO1NDfIc0CUhpRSlGgVS7ZoFkdAt84gAsCkoHV9lChoBmgJaA9DCBDmdi+3inNAlIaUUpRoFUvNaBZHQLfOIuwosqd1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 992, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 256, "n_epochs": 16, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVXAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsDSxNDEHwAiAGIABgAFACIABcAUwCUToWUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjB48aXB5dGhvbi1pbnB1dC03LTkwNjViZTQ0M2U5YT6UjARmdW5jlEsEQwIAAZSMC2ZpbmFsX3ZhbHVllIwNaW5pdGlhbF92YWx1ZZSGlCl0lFKUfZQojAtfX3BhY2thZ2VfX5ROjAhfX25hbWVfX5SMCF9fbWFpbl9flHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUaBopUpSGlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBdoDowMX19xdWFsbmFtZV9flIwdbGluZWFyX3NjaGVkdWxlLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz+5mZmZmZmahZRSlGgvRz/gAAAAAAAAhZRSlIaUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9bbd71af7e8a9844e8a6c72d69f7b219425c309da4e533fa46e38593fcc7d1c7
3
+ size 197096
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 283.0107404986814, "std_reward": 16.052435786016552, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-12T09:50:46.255630"}