j-morano commited on
Commit
dfaf406
·
verified ·
1 Parent(s): 9382a79

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +66 -3
README.md CHANGED
@@ -2,10 +2,73 @@
2
  license: cc-by-nc-4.0
3
  pipeline_tag: image-segmentation
4
  tags:
 
 
 
5
  - model_hub_mixin
6
  - pytorch_model_hub_mixin
7
  ---
8
 
9
- This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration:
10
- - Library: https://huggingface.co/j-morano/rrwnet-hrf
11
- - Docs: [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  license: cc-by-nc-4.0
3
  pipeline_tag: image-segmentation
4
  tags:
5
+ - artery-vein
6
+ - retinal-imaging
7
+ - segmentation
8
  - model_hub_mixin
9
  - pytorch_model_hub_mixin
10
  ---
11
 
12
+ # rrwnet-rite
13
+
14
+ This repo contains the the official weights of the RRWNet model trained on the RITE dataset, from the paper ["RRWNet: Recursive Refinement Network for Effective Retinal Artery/Vein Segmentation and Classification"](https://doi.org/10.1016/j.eswa.2024.124970), by José Morano, Guilherme Aresta, and Hrvoje Bogunović, published in _Expert Systems with Applications_ (2024).
15
+
16
+ [[`arXiv`](https://doi.org/10.48550/arXiv.2402.03166)] [`ESWA`](https://doi.org/10.1016/j.eswa.2024.124970)] [[`GitHub`](https://github.com/j-morano/rrwnet)] [[`BibTeX`](#citation)]
17
+
18
+
19
+ ![Overview](overview.png)
20
+
21
+
22
+
23
+ ## RRWNet models
24
+
25
+ Model | Dataset | Train resolution | Weights
26
+ --- | --- | --- | ---
27
+ RRWNet | RITE | 720x576 (original) | [Download](https://huggingface.co/j-morano/rrwnet-rite)
28
+ RRWNet | HRF | 1024 width (resized) | [Download](https://huggingface.co/j-morano/rrwnet-hrf)
29
+
30
+ Please note that the size of the images used for training is important when using the weights for predictions.
31
+
32
+
33
+ ## Usage
34
+
35
+ The model can be loaded using the `PyTorchModelHubMixin` from the `huggingface_hub` package and the code from the `model.py` file in our repo (<https://github.com/j-morano/rrwnet>).
36
+
37
+ ```python
38
+ from huggingface_hub import PyTorchModelHubMixin
39
+ from model import RRWNet as RRWNetModel
40
+
41
+
42
+ class RRWNet(RRWNetModel, PyTorchModelHubMixin):
43
+ def __init__(self, input_ch=3, output_ch=3, base_ch=64, iterations=5):
44
+ super().__init__(input_ch, output_ch, base_ch, iterations)
45
+
46
+
47
+ model = RRWNet.from_pretrained("j-morano/rrwnet-hrf")
48
+ ```
49
+
50
+
51
+ ## Preprocessing
52
+
53
+ Models are trained using enhanced images and masks.
54
+ You can preprocess the images offline using the `preprocessing.py` script in the repo.
55
+ The script will enhance the images and masks and save them in the specified directory.
56
+
57
+ ```bash
58
+ python3 preprocessing.py --images-path data/images/ --masks-path data/masks/ --save-path data/enhanced
59
+ ```
60
+
61
+
62
+ ## Citation
63
+
64
+ If you use this code, the weights, the preprocessed data, or the predictions in your research, we would greatly appreciate it if you give a star to the repo and cite our work:
65
+
66
+ ```
67
+ @article{morano2024rrwnet,
68
+ title={RRWNet: Recursive Refinement Network for Effective Retinal Artery/Vein Segmentation and Classification},
69
+ author={Morano, Jos{\'e} and Aresta, Guilherme and Bogunovi{\'c}, Hrvoje},
70
+ journal={Expert Systems with Applications},
71
+ year={2024},
72
+ doi={10.1016/j.eswa.2024.124970}
73
+ }
74
+ ```