izaitova's picture
End of training
769c482 verified
metadata
library_name: transformers
base_model: ai-forever/ruBert-large
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: ruBert-large-topic_classification
    results: []

ruBert-large-topic_classification

This model is a fine-tuned version of ai-forever/ruBert-large on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7900
  • Precision: 0.8793
  • Recall: 0.8646
  • F1: 0.8688
  • Accuracy: 0.8824

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 44 0.6327 0.8534 0.7883 0.8046 0.8186
No log 2.0 88 0.4897 0.8847 0.8401 0.8548 0.8676
No log 3.0 132 0.5957 0.8732 0.8617 0.8638 0.8676
No log 4.0 176 0.6598 0.8808 0.8658 0.8700 0.8824
No log 5.0 220 0.7086 0.8705 0.8589 0.8625 0.8775
No log 6.0 264 0.7445 0.8793 0.8646 0.8688 0.8824
No log 7.0 308 0.7661 0.8793 0.8646 0.8688 0.8824
No log 8.0 352 0.7795 0.8793 0.8646 0.8688 0.8824
No log 9.0 396 0.7870 0.8793 0.8646 0.8688 0.8824
No log 10.0 440 0.7900 0.8793 0.8646 0.8688 0.8824

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1