izaitova's picture
End of training
cd2c5ca verified
metadata
library_name: transformers
license: mit
base_model: DTAI-KULeuven/robbert-2023-dutch-large
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: robbert-2023-dutch-large-topic_classification
    results: []

robbert-2023-dutch-large-topic_classification

This model is a fine-tuned version of DTAI-KULeuven/robbert-2023-dutch-large on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7479
  • Precision: 0.9198
  • Recall: 0.9008
  • F1: 0.9082
  • Accuracy: 0.9118

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 88 0.7486 0.8471 0.8101 0.8223 0.8333
No log 2.0 176 0.7488 0.8557 0.7525 0.7800 0.8137
No log 3.0 264 0.9650 0.8507 0.8430 0.8347 0.8284
No log 4.0 352 0.7878 0.8982 0.8472 0.8650 0.8775
No log 5.0 440 0.8113 0.9254 0.8876 0.9020 0.9020
0.5488 6.0 528 0.8695 0.9070 0.8858 0.8936 0.8971
0.5488 7.0 616 0.7924 0.9174 0.8886 0.8983 0.9020
0.5488 8.0 704 0.6974 0.9198 0.9008 0.9082 0.9118
0.5488 9.0 792 0.7410 0.9292 0.9065 0.9148 0.9167
0.5488 10.0 880 0.7479 0.9198 0.9008 0.9082 0.9118

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1