|
--- |
|
library_name: transformers |
|
language: |
|
- ug |
|
license: apache-2.0 |
|
base_model: openai/whisper-small |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- THUGY20 |
|
metrics: |
|
- cer |
|
- wer |
|
model-index: |
|
- name: Whisper Small Fine-tuned with THUYG20 Uyghur Dataset |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: 'THUGY20: A free Uyghur speech database' |
|
type: THUGY20 |
|
metrics: |
|
- name: Cer |
|
type: cer |
|
value: 4.927369689396644 |
|
- name: Wer |
|
type: wer |
|
value: 17.940071709066075 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Whisper Small Fine-tuned with THUYG20 Uyghur Dataset |
|
|
|
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the THUGY20: A free Uyghur speech database dataset. |
|
It achieves the following results on the test set of THUGY20: |
|
- Loss: 0.7473 |
|
- Wer Ortho: 18.0908 |
|
- Wer: 17.9401 |
|
- Cer: 4.9274 |
|
|
|
## Training procedure |
|
|
|
Finetuning code avaiblable in https://github.com/ixxan/ug-speech |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 16 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 50 |
|
- training_steps: 4000 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | Cer | |
|
|:-------------:|:------:|:----:|:---------------:|:---------:|:-------:|:-------:| |
|
| 0.3815 | 0.8058 | 500 | 0.7944 | 34.8819 | 34.7960 | 10.4265 | |
|
| 0.1343 | 1.6116 | 1000 | 0.7441 | 28.3393 | 28.3550 | 8.3051 | |
|
| 0.0646 | 2.4174 | 1500 | 0.7396 | 27.7378 | 27.5653 | 8.5366 | |
|
| 0.0311 | 3.2232 | 2000 | 0.6984 | 25.1910 | 24.9445 | 7.5643 | |
|
| 0.0176 | 4.0290 | 2500 | 0.6934 | 21.3709 | 21.2523 | 5.8316 | |
|
| 0.0075 | 4.8348 | 3000 | 0.7654 | 20.5541 | 20.3603 | 5.7519 | |
|
| 0.0023 | 5.6406 | 3500 | 0.7686 | 18.7582 | 18.5846 | 5.1923 | |
|
| 0.0004 | 6.4464 | 4000 | 0.7473 | 18.0908 | 17.9401 | 4.9274 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.46.2 |
|
- Pytorch 2.5.1+cu121 |
|
- Datasets 3.1.0 |
|
- Tokenizers 0.20.3 |