amh_finetune / README.md
ivillar's picture
End of training
21593d5 verified
|
raw
history blame
5.03 kB
metadata
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-300m
tags:
  - generated_from_trainer
datasets:
  - ml-superb-subset
metrics:
  - wer
model-index:
  - name: amh_finetune
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: ml-superb-subset
          type: ml-superb-subset
          config: amh
          split: test
          args: amh
        metrics:
          - name: Wer
            type: wer
            value: 97.41641337386018

amh_finetune

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the ml-superb-subset dataset. It achieves the following results on the evaluation set:

  • Loss: 2.8917
  • Wer: 97.4164

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 64
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 25
  • training_steps: 500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
22.5796 2.2222 10 17.1583 100.0
9.5568 4.4444 20 7.4797 100.0
4.3875 6.6667 30 3.9841 100.0
3.8631 8.8889 40 3.8281 100.0
3.8298 11.1111 50 3.8117 100.0
3.7925 13.3333 60 3.7866 100.0
3.802 15.5556 70 3.7763 100.0
3.7845 17.7778 80 3.7681 100.0
3.7732 20.0 90 3.7627 100.0
3.7547 22.2222 100 3.7625 100.0
3.7471 24.4444 110 3.7588 100.0
3.7378 26.6667 120 3.7244 100.0
3.7278 28.8889 130 3.7337 100.0
3.71 31.1111 140 3.7188 100.0
3.6966 33.3333 150 3.7076 100.0
3.6811 35.5556 160 3.6916 100.0
3.6741 37.7778 170 3.6898 100.0
3.6337 40.0 180 3.6486 100.0
3.5766 42.2222 190 3.5913 100.0
3.5251 44.4444 200 3.5318 100.0
3.4533 46.6667 210 3.4549 100.0
3.3664 48.8889 220 3.3877 100.0
3.2963 51.1111 230 3.2852 100.0
3.1237 53.3333 240 3.1187 100.0
2.9356 55.5556 250 2.9620 100.0
2.7107 57.7778 260 2.7665 100.0
2.477 60.0 270 2.5155 99.3921
2.1786 62.2222 280 2.2953 98.4043
1.897 64.4444 290 2.1781 97.5684
1.6863 66.6667 300 2.1825 97.5684
1.4954 68.8889 310 2.1240 96.2766
1.3132 71.1111 320 2.1476 94.3769
1.1333 73.3333 330 2.2088 95.6687
0.9827 75.5556 340 2.2591 94.9088
0.9019 77.7778 350 2.4481 101.0638
0.7936 80.0 360 2.5467 103.4195
0.7015 82.2222 370 2.5279 95.5927
0.631 84.4444 380 2.6338 95.8207
0.5849 86.6667 390 2.6840 96.8085
0.5549 88.8889 400 2.7048 97.4164
0.5137 91.1111 410 2.7910 96.0486
0.4905 93.3333 420 2.8070 98.7842
0.4603 95.5556 430 2.8552 95.2888
0.457 97.7778 440 2.8382 95.8207
0.442 100.0 450 2.8831 98.2523
0.4437 102.2222 460 2.8800 97.5684
0.4346 104.4444 470 2.8805 97.7964
0.4341 106.6667 480 2.8864 97.6444
0.4319 108.8889 490 2.8911 97.3404
0.4403 111.1111 500 2.8917 97.4164

Framework versions

  • Transformers 4.41.0
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1