ivanleomk's picture
Add new SentenceTransformer model.
f845983 verified
metadata
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:208
  - loss:BatchSemiHardTripletLoss
base_model: BAAI/bge-base-en
widget:
  - source_sentence: |

      Name : Vigilant Protec
      Category: Consulting Services, Cybersecurity Solutions
      Department: Legal
      Location: London, UK
      Amount: 1987.65
      Card: Global Compliance Enhancement
      Trip Name: unknown
    sentences:
      - |

        Name : Rosetta Tech
        Category: Technology Supplies, Software Solutions
        Department: Research & Development
        Location: Hamburg, Germany
        Amount: 2129.49
        Card: Advanced Research Toolkit Acquisition
        Trip Name: unknown
      - |

        Name : Ikebana Studio
        Category: Office Decor Services, Art Supplies
        Department: All Departments
        Location: Kyoto, Japan
        Amount: 789.45
        Card: Creative Work Environment Initiative
        Trip Name: unknown
      - |

        Name : Analytix Global Solutions
        Category: Business Intelligence Services, Regulatory Compliance Tools
        Department: Finance
        Location: London, UK
        Amount: 1323.67
        Card: Financial Compliance Enhancement
        Trip Name: unknown
  - source_sentence: |

      Name : La Gourmanderie Collective
      Category: Culinary Consulting, Team Building Activities
      Department: Marketing
      Location: Paris, France
      Amount: 1468.77
      Card: Innovative Cuisine Workshop
      Trip Name: unknown
    sentences:
      - |

        Name : Gandalf
        Category: Financial Services, Consulting
        Department: Finance
        Location: Singapore
        Amount: 457.29
        Card: Financial Advisory Services
        Trip Name: unknown
      - |

        Name : Anthro Insights
        Category: Talent Acquisition Services, Corporate Education Programs
        Department: Human Resource
        Location: London, UK
        Amount: 1440.75
        Card: Diversity & Inclusion
        Trip Name: unknown
      - |

        Name : Baku
        Category: Ride Sharing
        Department: Sales
        Location: Baku, Azerbaijan
        Amount: 1247.88
        Card: Client Engagement Activities
        Trip Name: unknown
  - source_sentence: |

      Name : Nimbus Networks Inc.
      Category: Cloud Services, Application Hosting
      Department: Research & Development
      Location: Austin, TX
      Amount: 1134.67
      Card: NextGen Application Deployment
      Trip Name: unknown
    sentences:
      - |

        Name : CleverInsight Solutions
        Category: Business Process Optimization
        Department: Finance
        Location: Toronto, Canada
        Amount: 2127.45
        Card: Quarterly Insights & Efficiency Project
        Trip Name: unknown
      - |

        Name : SynergyBridge
        Category: Customer Experience Software, Revenue Growth Tools
        Department: Sales
        Location: San Francisco, CA
        Amount: 1558.72
        Card: Customer Relationship Enhancement
        Trip Name: unknown
      - |

        Name : CloudArc
        Category: Cloud Storage Solutions, Internet Services
        Department: Engineering
        Location: Toronto, Canada
        Amount: 1573.63
        Card: Infrastructure Scaling
        Trip Name: unknown
  - source_sentence: |

      Name : GigaTrend
      Category: Data Services, Cloud Software Solutions
      Department: Research & Development
      Location: London, UK
      Amount: 1345.67
      Card: Data-Driven Innovation Project
      Trip Name: unknown
    sentences:
      - |

        Name : Global Wellness Network
        Category: Corporate Wellness Programs, Employee Engagement
        Department: HR
        Location: Berlin, Germany
        Amount: 1285.75
        Card: Wellness and Engagement Program
        Trip Name: unknown
      - |

        Name : TechXperts Global
        Category: IT Services, Consulting
        Department: IT Operations
        Location: Berlin, Germany
        Amount: 987.49
        Card: Quarterly System Assessment
        Trip Name: unknown
      - |

        Name : InterStep Insight Reports
        Category: Data Services, Research Publications
        Department: Marketing
        Location: Toronto, Canada
        Amount: 1248.76
        Card: Strategic Market Research
        Trip Name: unknown
  - source_sentence: |

      Name : Viacom Solutions
      Category: Telecom Hardware, Network Architecture
      Department: Engineering
      Location: Tokyo, Japan
      Amount: 1450.67
      Card: Global Network Optimization Project
      Trip Name: unknown
    sentences:
      - |

        Name : CloudMetric Solutions
        Category: Data Analytics, Virtual Infrastructure Management
        Department: Engineering
        Location: Toronto, Canada
        Amount: 1644.75
        Card: Real-Time Resource Monitoring
        Trip Name: unknown
      - |

        Name : Il Vino e L'Arte
        Category: Culinary Experience, Cultural Event Venue
        Department: Marketing
        Location: Rome, Italy
        Amount: 748.32
        Card: Cultural Engagement Dinner
        Trip Name: unknown
      - |

        Name : Pardalis Digital
        Category: Data Analytics Platform, Professional Networking Service
        Department: Sales
        Location: Dublin, Ireland
        Amount: 1456.75
        Card: Sales Intelligence & Networking Platform
        Trip Name: unknown
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
  - cosine_accuracy
  - dot_accuracy
  - manhattan_accuracy
  - euclidean_accuracy
  - max_accuracy
model-index:
  - name: SentenceTransformer based on BAAI/bge-base-en
    results:
      - task:
          type: triplet
          name: Triplet
        dataset:
          name: bge base en train
          type: bge-base-en-train
        metrics:
          - type: cosine_accuracy
            value: 0
            name: Cosine Accuracy
          - type: dot_accuracy
            value: 0
            name: Dot Accuracy
          - type: manhattan_accuracy
            value: 0
            name: Manhattan Accuracy
          - type: euclidean_accuracy
            value: 0
            name: Euclidean Accuracy
          - type: max_accuracy
            value: 0
            name: Max Accuracy
      - task:
          type: triplet
          name: Triplet
        dataset:
          name: bge base en eval
          type: bge-base-en-eval
        metrics:
          - type: cosine_accuracy
            value: 0
            name: Cosine Accuracy
          - type: dot_accuracy
            value: 0
            name: Dot Accuracy
          - type: manhattan_accuracy
            value: 0
            name: Manhattan Accuracy
          - type: euclidean_accuracy
            value: 0
            name: Euclidean Accuracy
          - type: max_accuracy
            value: 0
            name: Max Accuracy

SentenceTransformer based on BAAI/bge-base-en

This is a sentence-transformers model finetuned from BAAI/bge-base-en. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: BAAI/bge-base-en
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("ivanleomk/finetuned-BAAI-bge-base-en")
# Run inference
sentences = [
    '\nName : Viacom Solutions\nCategory: Telecom Hardware, Network Architecture\nDepartment: Engineering\nLocation: Tokyo, Japan\nAmount: 1450.67\nCard: Global Network Optimization Project\nTrip Name: unknown\n',
    '\nName : Pardalis Digital\nCategory: Data Analytics Platform, Professional Networking Service\nDepartment: Sales\nLocation: Dublin, Ireland\nAmount: 1456.75\nCard: Sales Intelligence & Networking Platform\nTrip Name: unknown\n',
    "\nName : Il Vino e L'Arte\nCategory: Culinary Experience, Cultural Event Venue\nDepartment: Marketing\nLocation: Rome, Italy\nAmount: 748.32\nCard: Cultural Engagement Dinner\nTrip Name: unknown\n",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Triplet

Metric Value
cosine_accuracy 0.0
dot_accuracy 0.0
manhattan_accuracy 0.0
euclidean_accuracy 0.0
max_accuracy 0.0

Triplet

Metric Value
cosine_accuracy 0.0
dot_accuracy 0.0
manhattan_accuracy 0.0
euclidean_accuracy 0.0
max_accuracy 0.0

Training Details

Training Dataset

Unnamed Dataset

  • Size: 208 training samples
  • Columns: sentence and label
  • Approximate statistics based on the first 208 samples:
    sentence label
    type string int
    details
    • min: 33 tokens
    • mean: 39.66 tokens
    • max: 48 tokens
    • 0: ~4.81%
    • 1: ~5.29%
    • 2: ~6.25%
    • 3: ~2.40%
    • 4: ~3.85%
    • 5: ~4.33%
    • 6: ~3.85%
    • 7: ~2.40%
    • 8: ~4.81%
    • 9: ~3.37%
    • 10: ~3.85%
    • 11: ~3.85%
    • 12: ~4.81%
    • 13: ~4.81%
    • 14: ~5.29%
    • 15: ~3.37%
    • 16: ~4.81%
    • 17: ~4.33%
    • 18: ~3.85%
    • 19: ~1.92%
    • 20: ~2.88%
    • 21: ~2.88%
    • 22: ~3.37%
    • 23: ~0.96%
    • 24: ~4.33%
    • 25: ~2.40%
    • 26: ~0.96%
  • Samples:
    sentence label

    Name : Global Insights Group
    Category: Subscriptions & Memberships, Data Services & Analytics
    Department: Marketing
    Location: London, UK
    Amount: 1245.67
    Card: Marketing Intelligence Fund
    Trip Name: unknown
    0

    Name : CyberGuard Provisions
    Category: Security Software Solutions, Data Protection Services
    Department: Information Security
    Location: San Francisco, CA
    Amount: 879.92
    Card: Digital Fortress Action Plan
    Trip Name: unknown
    1

    Name : Apex Innovations Group
    Category: Business Consulting, Training Services
    Department: Executive
    Location: Sydney, Australia
    Amount: 1575.34
    Card: Leadership Development Program
    Trip Name: unknown
    2
  • Loss: BatchSemiHardTripletLoss

Evaluation Dataset

Unnamed Dataset

  • Size: 52 evaluation samples
  • Columns: sentence and label
  • Approximate statistics based on the first 52 samples:
    sentence label
    type string int
    details
    • min: 32 tokens
    • mean: 40.13 tokens
    • max: 49 tokens
    • 0: ~5.77%
    • 1: ~1.92%
    • 2: ~3.85%
    • 3: ~1.92%
    • 4: ~1.92%
    • 5: ~1.92%
    • 6: ~5.77%
    • 8: ~3.85%
    • 9: ~7.69%
    • 10: ~5.77%
    • 12: ~3.85%
    • 13: ~5.77%
    • 14: ~3.85%
    • 15: ~1.92%
    • 16: ~9.62%
    • 17: ~1.92%
    • 18: ~1.92%
    • 19: ~3.85%
    • 20: ~1.92%
    • 21: ~3.85%
    • 22: ~5.77%
    • 23: ~3.85%
    • 24: ~5.77%
    • 25: ~5.77%
  • Samples:
    sentence label

    Name : Viacom Solutions
    Category: Telecom Hardware, Network Architecture
    Department: Engineering
    Location: Tokyo, Japan
    Amount: 1450.67
    Card: Global Network Optimization Project
    Trip Name: unknown
    9

    Name : Vista Cascades Resort
    Category: Hospitality, Event Hosting
    Department: Sales
    Location: Orlando, FL
    Amount: 1823.45
    Card: Annual Sales Retreat
    Trip Name: Q3 Strategy Session
    12

    Name : ActiveHealth CoLab
    Category: Health Services, Wellness Solutions
    Department: HR
    Location: Amsterdam, Netherlands
    Amount: 745.32
    Card: Corporate Wellness Partnership
    Trip Name: unknown
    23
  • Loss: BatchSemiHardTripletLoss

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • learning_rate: 2e-05
  • num_train_epochs: 5
  • warmup_ratio: 0.1
  • fp16: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 5
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step bge-base-en-eval_max_accuracy bge-base-en-train_max_accuracy
0 0 - 0.0
5.0 65 0.0 -

Framework Versions

  • Python: 3.11.10
  • Sentence Transformers: 3.1.1
  • Transformers: 4.45.2
  • PyTorch: 2.5.1+cu124
  • Accelerate: 1.1.1
  • Datasets: 3.1.0
  • Tokenizers: 0.20.3

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

BatchSemiHardTripletLoss

@misc{hermans2017defense,
    title={In Defense of the Triplet Loss for Person Re-Identification},
    author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
    year={2017},
    eprint={1703.07737},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}