ivanlau's picture
update readme.md
dc582f1
|
raw
history blame
1.55 kB
metadata
license: mit
tags:
  - generated_from_trainer
datasets:
  - common_language
metrics:
  - accuracy
model-index:
  - name: language-detection-fine-tuned-on-xlm-roberta-base
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: common_language
          type: common_language
          args: full
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9738386718094919

language-detection-fine-tuned-on-xlm-roberta-base

This model is a fine-tuned version of xlm-roberta-base on the common_language dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1886
  • Accuracy: 0.9738

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 1
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.1 1.0 22194 0.1886 0.9738

Framework versions

  • Transformers 4.12.5
  • Pytorch 1.10.0+cu111
  • Datasets 1.15.1
  • Tokenizers 0.10.3