Cesar Aybar
commited on
Commit
•
61e0235
1
Parent(s):
caa7010
up
Browse files- benchmark.py +118 -6
- ldm_baseline/run.py +12 -6
benchmark.py
CHANGED
@@ -1,29 +1,141 @@
|
|
1 |
-
import rasterio
|
2 |
import pathlib
|
|
|
|
|
3 |
|
4 |
from typing import Callable
|
5 |
-
from rasterio.transform import from_origin
|
6 |
|
7 |
|
8 |
def create_geotiff(
|
|
|
9 |
fn: Callable,
|
10 |
-
|
11 |
-
output_path: str
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
) -> pathlib.Path:
|
13 |
"""Create all the GeoTIFFs for a specific dataset snippet
|
14 |
|
15 |
Args:
|
|
|
16 |
fn (Callable): A function that return a dictionary with the following keys:
|
17 |
- "lr": Low resolution image
|
18 |
- "sr": Super resolution image
|
19 |
- "hr": High resolution image
|
20 |
-
|
21 |
output_path (str): The output path to save the GeoTIFFs.
|
|
|
|
|
22 |
|
23 |
Returns:
|
24 |
pathlib.Path: The output path where the GeoTIFFs are saved.
|
25 |
"""
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
|
29 |
def run(
|
|
|
1 |
+
import rasterio as rio
|
2 |
import pathlib
|
3 |
+
import opensr_test
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
|
6 |
from typing import Callable
|
|
|
7 |
|
8 |
|
9 |
def create_geotiff(
|
10 |
+
model: Callable,
|
11 |
fn: Callable,
|
12 |
+
datasets: list,
|
13 |
+
output_path: str,
|
14 |
+
force: bool = False
|
15 |
+
) -> None:
|
16 |
+
"""Create all the GeoTIFFs for a specific dataset snippet
|
17 |
+
|
18 |
+
Args:
|
19 |
+
model (Callable): The model to use to run the fn function.
|
20 |
+
fn (Callable): A function that return a dictionary with the following keys:
|
21 |
+
- "lr": Low resolution image
|
22 |
+
- "sr": Super resolution image
|
23 |
+
- "hr": High resolution image
|
24 |
+
datasets (list): A list of dataset snippets to use to run the fn function.
|
25 |
+
output_path (str): The output path to save the GeoTIFFs.
|
26 |
+
force (bool, optional): If True, the dataset is redownloaded. Defaults
|
27 |
+
to False.
|
28 |
+
"""
|
29 |
+
for snippet in datasets:
|
30 |
+
create_geotiff_batch(
|
31 |
+
model=model,
|
32 |
+
fn=fn,
|
33 |
+
snippet=snippet,
|
34 |
+
output_path=output_path,
|
35 |
+
force=force
|
36 |
+
)
|
37 |
+
|
38 |
+
return None
|
39 |
+
|
40 |
+
def create_geotiff_batch(
|
41 |
+
model: Callable,
|
42 |
+
fn: Callable,
|
43 |
+
snippet: str,
|
44 |
+
output_path: str,
|
45 |
+
force: bool = False
|
46 |
) -> pathlib.Path:
|
47 |
"""Create all the GeoTIFFs for a specific dataset snippet
|
48 |
|
49 |
Args:
|
50 |
+
model (Callable): The model to use to run the fn function.
|
51 |
fn (Callable): A function that return a dictionary with the following keys:
|
52 |
- "lr": Low resolution image
|
53 |
- "sr": Super resolution image
|
54 |
- "hr": High resolution image
|
55 |
+
snippet (str): The dataset snippet to use to run the fn function.
|
56 |
output_path (str): The output path to save the GeoTIFFs.
|
57 |
+
force (bool, optional): If True, the dataset is redownloaded. Defaults
|
58 |
+
to False.
|
59 |
|
60 |
Returns:
|
61 |
pathlib.Path: The output path where the GeoTIFFs are saved.
|
62 |
"""
|
63 |
+
|
64 |
+
# Create folders to save results
|
65 |
+
output_path = pathlib.Path(output_path) / "results" / "SR"
|
66 |
+
output_path.mkdir(parents=True, exist_ok=True)
|
67 |
+
|
68 |
+
output_path_dataset_geotiff = output_path / snippet / "geotiff"
|
69 |
+
output_path_dataset_geotiff.mkdir(parents=True, exist_ok=True)
|
70 |
+
|
71 |
+
output_path_dataset_png = output_path / snippet / "png"
|
72 |
+
output_path_dataset_png.mkdir(parents=True, exist_ok=True)
|
73 |
+
|
74 |
+
# Load the dataset
|
75 |
+
dataset = opensr_test.load(snippet, force=False)
|
76 |
+
lr_dataset, hr_dataset, metadata = dataset["L2A"], dataset["HRharm"], dataset["metadata"]
|
77 |
+
for index in range(len(lr_dataset)):
|
78 |
+
print(f"Processing {index}/{len(lr_dataset)}")
|
79 |
+
|
80 |
+
# Run the model
|
81 |
+
results = fn(
|
82 |
+
model=model,
|
83 |
+
lr=lr_dataset[index],
|
84 |
+
hr=hr_dataset[index]
|
85 |
+
)
|
86 |
+
|
87 |
+
# Get the image name
|
88 |
+
image_name = metadata.iloc[index]["hr_file"]
|
89 |
+
|
90 |
+
# Get the CRS and transform
|
91 |
+
crs = metadata.iloc[index]["crs"]
|
92 |
+
transform_str = metadata.iloc[index]["affine"]
|
93 |
+
transform_list = [float(x) for x in transform_str.split(",")]
|
94 |
+
transform_rio = rio.transform.from_origin(
|
95 |
+
transform_list[2],
|
96 |
+
transform_list[5],
|
97 |
+
transform_list[0],
|
98 |
+
transform_list[4] * -1
|
99 |
+
)
|
100 |
+
|
101 |
+
# Create rio dict
|
102 |
+
meta_img = {
|
103 |
+
"driver": "GTiff",
|
104 |
+
"count": 3,
|
105 |
+
"dtype": "uint16",
|
106 |
+
"height": results["hr"].shape[1],
|
107 |
+
"width": results["hr"].shape[2],
|
108 |
+
"crs": crs,
|
109 |
+
"transform": transform_rio,
|
110 |
+
"compress": "deflate",
|
111 |
+
"predictor": 2,
|
112 |
+
"tiled": True
|
113 |
+
}
|
114 |
+
|
115 |
+
# Save the GeoTIFF
|
116 |
+
with rio.open(output_path_dataset_geotiff / (image_name + ".tif"), "w", **meta_img) as dst:
|
117 |
+
dst.write(results["sr"])
|
118 |
+
|
119 |
+
# Save the PNG
|
120 |
+
fig, ax = plt.subplots(1, 3, figsize=(15, 5))
|
121 |
+
ax[0].imshow(results["lr"].transpose(1, 2, 0) / 3000)
|
122 |
+
ax[0].set_title("LR")
|
123 |
+
ax[0].axis("off")
|
124 |
+
ax[1].imshow(results["sr"].transpose(1, 2, 0) / 3000)
|
125 |
+
ax[1].set_title("SR")
|
126 |
+
ax[1].axis("off")
|
127 |
+
ax[2].imshow(results["hr"].transpose(1, 2, 0) / 3000)
|
128 |
+
ax[2].set_title("HR")
|
129 |
+
# remove whitespace around the image
|
130 |
+
plt.subplots_adjust(left=0, right=1, top=1, bottom=0)
|
131 |
+
plt.axis("off")
|
132 |
+
plt.savefig(output_path_dataset_png / (image_name + ".png"))
|
133 |
+
plt.close()
|
134 |
+
plt.clf()
|
135 |
+
|
136 |
+
return output_path_dataset_geotiff
|
137 |
+
|
138 |
+
|
139 |
|
140 |
|
141 |
def run(
|
ldm_baseline/run.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
import matplotlib.pyplot as plt
|
2 |
import opensr_test
|
|
|
3 |
|
4 |
from ldm_baseline.utils import create_stable_diffusion_model, run_diffuser
|
5 |
|
@@ -10,11 +11,17 @@ device = "cuda:0"
|
|
10 |
model = create_stable_diffusion_model(device=device)
|
11 |
|
12 |
# Load the dataset
|
13 |
-
dataset = opensr_test.load("
|
14 |
lr_dataset, hr_dataset = dataset["L2A"], dataset["HRharm"]
|
15 |
|
16 |
# Run the model
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
# Display the results
|
20 |
fig, ax = plt.subplots(1, 3, figsize=(10, 5))
|
@@ -29,7 +36,6 @@ ax[2].set_title("HR")
|
|
29 |
plt.show()
|
30 |
|
31 |
# Run the experiment
|
32 |
-
#
|
33 |
-
# benchmark.
|
34 |
-
# benchmark.
|
35 |
-
# benchmark.plot("all")
|
|
|
1 |
import matplotlib.pyplot as plt
|
2 |
import opensr_test
|
3 |
+
import benchmark
|
4 |
|
5 |
from ldm_baseline.utils import create_stable_diffusion_model, run_diffuser
|
6 |
|
|
|
11 |
model = create_stable_diffusion_model(device=device)
|
12 |
|
13 |
# Load the dataset
|
14 |
+
dataset = opensr_test.load("naip", force=False)
|
15 |
lr_dataset, hr_dataset = dataset["L2A"], dataset["HRharm"]
|
16 |
|
17 |
# Run the model
|
18 |
+
index = 5
|
19 |
+
results = run_diffuser(
|
20 |
+
model=model,
|
21 |
+
lr=lr_dataset[index],
|
22 |
+
hr=hr_dataset[index],
|
23 |
+
device=device
|
24 |
+
)
|
25 |
|
26 |
# Display the results
|
27 |
fig, ax = plt.subplots(1, 3, figsize=(10, 5))
|
|
|
36 |
plt.show()
|
37 |
|
38 |
# Run the experiment
|
39 |
+
# benchmark.create_geotiff(model, run_diffuser, ["naip"], "ldm_baseline/")
|
40 |
+
# benchmark.run(["naip"])
|
41 |
+
# benchmark.plot(["naip"])
|
|