superIX / satlas /utils.py
csaybar's picture
Upload 2 files
8cb5e5a verified
raw
history blame
2.67 kB
import torch
from basicsr.archs.rrdbnet_arch import RRDBNet
from typing import Union
import itertools
import numpy as np
def load_satlas_sr(device: Union[str, torch.device] = "cuda") -> RRDBNet:
# Load the weights
weights_file = "weights/esrgan_1S2.pth"
device = "cuda" if torch.cuda.is_available() else "cpu"
# Create the model
model = RRDBNet(
num_in_ch=3,
num_out_ch=3,
num_feat=64,
num_block=23,
num_grow_ch=32,
scale=4
).to(device)
# Setup the weights
state_dict = torch.load(weights_file)
model.load_state_dict(state_dict['params_ema'])
model.eval()
# no gradients
for param in model.parameters():
param.requires_grad = False
return model
def run_satlas(
model: RRDBNet,
lr: torch.Tensor,
hr: torch.Tensor,
cropsize: int = 32,
overlap: int = 0,
device: Union[str, torch.device] = "cuda"
) -> torch.Tensor:
# Load the LR image
lr = torch.from_numpy(lr[[3, 2, 1]]/3558).float().to(device).clamp(0, 1)
# Select the raster with the lowest resolution
tshp = lr.shape
# if the image is too small, return (0, 0)
if (tshp[1] < cropsize) and (tshp[2] < cropsize):
return [(0, 0)]
# Define relative coordinates.
xmn, xmx, ymn, ymx = (0, tshp[1], 0, tshp[2])
if overlap > cropsize:
raise ValueError("The overlap must be smaller than the cropsize")
xrange = np.arange(xmn, xmx, (cropsize - overlap))
yrange = np.arange(ymn, ymx, (cropsize - overlap))
# If there is negative values in the range, change them by zero.
xrange[xrange < 0] = 0
yrange[yrange < 0] = 0
# Remove the last element if it is outside the tensor
xrange = xrange[xrange - (tshp[1] - cropsize) <= 0]
yrange = yrange[yrange - (tshp[2] - cropsize) <= 0]
# If the last element is not (tshp[1] - cropsize) add it!
if xrange[-1] != (tshp[1] - cropsize):
xrange = np.append(xrange, tshp[1] - cropsize)
if yrange[-1] != (tshp[2] - cropsize):
yrange = np.append(yrange, tshp[2] - cropsize)
# Create all the relative coordinates
mrs = list(itertools.product(xrange, yrange))
# Predict the image
sr = torch.zeros(3, tshp[1]*4, tshp[2]*4)
for x, y in mrs:
crop = lr[:, x:x+cropsize, y:y+cropsize]
sr_crop = model(crop[None])[0]
sr[:, x*4:(x+cropsize)*4, y*4:(y+cropsize)*4] = sr_crop
# Save the result
results = {
"lr": (lr.cpu().numpy() * 3558).astype(np.uint16),
"sr": (sr.cpu().numpy() * 3558).astype(np.uint16),
"hr": hr[0:3]
}
return results