gonzmg88 commited on
Commit
dd60e50
1 Parent(s): aed1120

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +49 -3
README.md CHANGED
@@ -1,3 +1,49 @@
1
- ---
2
- license: cc-by-nc-4.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-nc-4.0
3
+ ---
4
+
5
+ # CloudSEN12 trained models
6
+
7
+ This repository contains the trained models of the publications:
8
+
9
+ > Aybar, C., Ysuhuaylas, L., Loja, J., Gonzales, K., Herrera, F., Bautista, L., Yali, R., Flores, A., Diaz, L., Cuenca, N., Espinoza, W., Prudencio, F., Llactayo, V., Montero, D., Sudmanns, M., Tiede, D., Mateo-García, G., & Gómez-Chova, L. (2022). **CloudSEN12, a global dataset for semantic understanding of cloud and cloud shadow in Sentinel-2**. Scientific Data, 9(1), Article 1. [DOI: 10.1038/s41597-022-01878-2](https://doi.org/10.1038/s41597-022-01878-2)
10
+ > Aybar, C., Montero, D., Mateo-García, G., & Gómez-Chova, L. (2023). **Lessons Learned From Cloudsen12 Dataset: Identifying Incorrect Annotations in Cloud Semantic Segmentation Datasets**. IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium, 892–895. [DOI: 10.1109/IGARSS52108.2023.10282381](https://doi.org/10.1109/IGARSS52108.2023.10282381)
11
+ > Mateo-García, G., Aybar, C., Acciarini, G., Růžička, V., Meoni, G., Longépé, N., & Gómez-Chova, L. (2023). **Onboard Cloud Detection and Atmospheric Correction with Deep Learning Emulators**. IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium, 1875–1878. [DOI: 10.1109/IGARSS52108.2023.10282605](https://doi.org/10.1109/IGARSS52108.2023.10282605)
12
+ > Aybar, C., et al (2024), **CloudSEN12+: The largest dataset of expert-labeled pixels for cloud and cloud shadow detection in Sentinel-2** (Submitted)
13
+
14
+
15
+ We include the trained models:
16
+ * **cloudsen12** Model trained on the 13 bands of Sentinel-2 L1C
17
+ * **cloudsen12l2a** Model trained on the 12 bands of Sentinel-2 L2A
18
+ * **dtacs4bands** Model trained on the NIR, RED, GREEN and BLUE bands
19
+ * **landsat30** Model trained on the common bands of Sentinel-2 and Landsat 8 and 9
20
+
21
+ In order to run any of these models in a Sentinel-2 scene see the tutorial [*Run CloudSEN12 model*](https://github.com/IPL-UV/cloudsen12_models/blob/main/notebooks/run_in_gee_image.ipynb) in the cloudsen12_models package.
22
+
23
+ If you find this work useful please cite:
24
+
25
+ ```
26
+ @article{aybar_cloudsen12_2022,
27
+ title = {{CloudSEN12}, a global dataset for semantic understanding of cloud and cloud shadow in {Sentinel}-2},
28
+ volume = {9},
29
+ issn = {2052-4463},
30
+ url = {https://www.nature.com/articles/s41597-022-01878-2},
31
+ doi = {10.1038/s41597-022-01878-2},
32
+ number = {1},
33
+ urldate = {2023-01-02},
34
+ journal = {Scientific Data},
35
+ author = {Aybar, Cesar and Ysuhuaylas, Luis and Loja, Jhomira and Gonzales, Karen and Herrera, Fernando and Bautista, Lesly and Yali, Roy and Flores, Angie and Diaz, Lissette and Cuenca, Nicole and Espinoza, Wendy and Prudencio, Fernando and Llactayo, Valeria and Montero, David and Sudmanns, Martin and Tiede, Dirk and Mateo-García, Gonzalo and Gómez-Chova, Luis},
36
+ month = dec,
37
+ year = {2022},
38
+ pages = {782},
39
+ }
40
+ ```
41
+
42
+ ## Licence
43
+ <img src="https://mirrors.creativecommons.org/presskit/buttons/88x31/png/by-nc.png" alt="licence" width="60"/>
44
+
45
+ All pre-trained models in this repository are released under a [Creative Commons non-commercial licence](https://creativecommons.org/licenses/by-nc/4.0/legalcode.txt)
46
+
47
+
48
+ The `cloudsen12_models` python package is published under a [GNU Lesser GPL v3 licence](https://www.gnu.org/licenses/lgpl-3.0.en.html)
49
+