p1atdev commited on
Commit
fba69ac
·
1 Parent(s): d9acdef

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +71 -0
README.md ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ datasets:
4
+ - isek-ai/danbooru-tags-2016-2023
5
+ language:
6
+ - en
7
+ library_name: transformers
8
+ ---
9
+
10
+ # SDPrompt-RetNet-v2
11
+
12
+ This model is a pretrained RetNet model trained from scratch using https://github.com/syncdoth/RetNet.
13
+
14
+ It achieves the following results on the evaluation set:
15
+ - Loss: 0.5923
16
+
17
+ ## Model description
18
+
19
+ More information needed
20
+
21
+ ## Intended uses & limitations
22
+
23
+ More information needed
24
+
25
+ ## Training and evaluation data
26
+
27
+ More information needed
28
+
29
+ ## Training procedure
30
+
31
+ ### Training hyperparameters
32
+
33
+ The following hyperparameters were used during training:
34
+ - learning_rate: 0.0001
35
+ - train_batch_size: 32
36
+ - eval_batch_size: 8
37
+ - seed: 42
38
+ - gradient_accumulation_steps: 2
39
+ - total_train_batch_size: 64
40
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
41
+ - lr_scheduler_type: linear
42
+ - lr_scheduler_warmup_steps: 500
43
+ - num_epochs: 1
44
+
45
+ ### Training results
46
+
47
+ | Training Loss | Epoch | Step | Validation Loss |
48
+ |:-------------:|:-----:|:----:|:---------------:|
49
+ | 0.975 | 0.07 | 500 | 1.0005 |
50
+ | 0.7549 | 0.13 | 1000 | 0.7604 |
51
+ | 0.6923 | 0.2 | 1500 | 0.7090 |
52
+ | 0.6753 | 0.26 | 2000 | 0.6778 |
53
+ | 0.6591 | 0.33 | 2500 | 0.6568 |
54
+ | 0.6337 | 0.39 | 3000 | 0.6429 |
55
+ | 0.6288 | 0.46 | 3500 | 0.6319 |
56
+ | 0.624 | 0.53 | 4000 | 0.6218 |
57
+ | 0.62 | 0.59 | 4500 | 0.6172 |
58
+ | 0.603 | 0.66 | 5000 | 0.6090 |
59
+ | 0.5931 | 0.72 | 5500 | 0.6032 |
60
+ | 0.5957 | 0.79 | 6000 | 0.5986 |
61
+ | 0.5972 | 0.85 | 6500 | 0.5948 |
62
+ | 0.5928 | 0.92 | 7000 | 0.5926 |
63
+ | 0.5904 | 0.98 | 7500 | 0.5923 |
64
+
65
+
66
+ ### Framework versions
67
+
68
+ - Transformers 4.36.1
69
+ - Pytorch 2.1.2+cu121
70
+ - Datasets 2.15.0
71
+ - Tokenizers 0.15.0