irexyc unsubscribe commited on
Commit
4c03188
0 Parent(s):

Duplicate from internlm/internlm-chat-20b-4bit

Browse files

Co-authored-by: lmdeploy <unsubscribe@users.noreply.huggingface.co>

.gitattributes ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,117 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ pipeline_tag: text-generation
4
+ ---
5
+
6
+ <div align="center">
7
+ <img src="https://raw.githubusercontent.com/InternLM/lmdeploy/0be9e7ab6fe9a066cfb0a09d0e0c8d2e28435e58/resources/lmdeploy-logo.svg" width="450"/>
8
+ </div>
9
+
10
+ [LMDeploy](https://github.com/InternLM/lmdeploy) supports LLM model inference of 4-bit weight, with the minimum requirement for NVIDIA graphics cards being sm80, such as A10, A100, Geforce 30/40 series.
11
+
12
+ Before proceeding with the inference of `internlm-chat-20b-4bit`, please ensure that lmdeploy is installed.
13
+
14
+ ```shell
15
+ pip install 'lmdeploy>=0.0.11'
16
+ ```
17
+
18
+ ## Inference
19
+
20
+ Please download `internlm-chat-20b-4bit` model as follows,
21
+
22
+ ```shell
23
+ git-lfs install
24
+ git clone https://huggingface.co/internlm/internlm-chat-20b-4bit
25
+ ```
26
+
27
+ As demonstrated in the command below, first convert the model's layout using `turbomind.deploy`, and then you can interact with the AI assistant in the terminal
28
+
29
+ ```shell
30
+
31
+ # Convert the model's layout and store it in the default path, ./workspace.
32
+ python3 -m lmdeploy.serve.turbomind.deploy \
33
+ --model-name internlm-chat-20b \
34
+ --model-path ./internlm-chat-20b-4bit \
35
+ --model-format awq \
36
+ --group-size 128
37
+
38
+ # inference
39
+ python3 -m lmdeploy.turbomind.chat ./workspace
40
+ ```
41
+
42
+ ## Serve with gradio
43
+
44
+ If you wish to interact with the model via web UI, please initiate the gradio server as indicated below:
45
+
46
+ ```shell
47
+ python3 -m lmdeploy.serve.gradio.app ./workspace --server_name {ip_addr} --server_port {port}
48
+ ```
49
+
50
+ Subsequently, you can open the website `http://{ip_addr}:{port}` in your browser and interact with the model.
51
+
52
+ Besides serving with gradio, there are two more serving methods. One is serving with Triton Inference Server (TIS), and the other is an OpenAI-like server named as `api_server`.
53
+
54
+ Please refer to the [user guide](https://github.com/InternLM/lmdeploy#quick-start) for detailed information if you are interested.
55
+
56
+
57
+ ## Inference Performance
58
+
59
+ LMDeploy provides scripts for benchmarking `token throughput` and `request throughput`.
60
+
61
+ `token throughput` tests the speed of generating new tokens, given a specified number of prompt tokens and completion tokens, while `request throughput` measures the number of requests processed per minute with real dialogue data.
62
+
63
+ We conducted benchmarks on `internlm-chat-20b-4bit`. And `token_throughput` was measured by setting 256 prompt tokens and generating 512 tokens in response on A100-80G.
64
+
65
+ **Note**: The `session_len` in `workspace/triton_models/weights/config.ini` is changed to `2056` in our test.
66
+
67
+
68
+ | batch | tensor parallel | prompt_tokens | completion_tokens | thr_per_proc(token/s) | rpm (req/min) | mem_per_proc(GB) |
69
+ |-------|-----------------|---------------|-------------------|-----------------------|---------------|------------------|
70
+ | 1 | 1 | 256 | 512 | 88.77 | - | 15.65 |
71
+ | 16 | 1 | 256 | 512 | 792.7 | 220.23 | 51.46 |
72
+
73
+ ### token throughput
74
+
75
+ Run the following command,
76
+
77
+ ```shell
78
+ python benchmark/profile_generation.py \
79
+ --model-path ./workspace \
80
+ --concurrency 1 8 16 --prompt-tokens 256 512 512 1024 --completion-tokens 512 512 1024 1024
81
+ --dst-csv ./token_throughput.csv
82
+ ```
83
+ You will find the `token_throughput` metrics in `./token_throughput.csv`
84
+
85
+ | batch | prompt_tokens | completion_tokens | thr_per_proc(token/s) | thr_per_node(token/s) | rpm(req/min) | mem_per_proc(GB) | mem_per_gpu(GB) | mem_per_node(GB) |
86
+ |-------|---------------|-------------------|-----------------------|-----------------------|--------------|------------------|-----------------|------------------|
87
+ | 1 | 256 | 512 | 88.77 | 710.12 | - | 15.65 | 15.65 | 125.21 |
88
+ | 1 | 512 | 512 | 83.89 | 671.15 | - | 15.68 | 15.68 | 125.46 |
89
+ | 1 | 512 | 1024 | 80.19 | 641.5 | - | 15.68 | 15.68 | 125.46 |
90
+ | 1 | 1024 | 1024 | 72.34 | 578.74 | - | 15.75 | 15.75 | 125.96 |
91
+ | 1 | 1 | 2048 | 80.69 | 645.55 | - | 15.62 | 15.62 | 124.96 |
92
+ | 8 | 256 | 512 | 565.21 | 4521.67 | - | 32.37 | 32.37 | 258.96 |
93
+ | 8 | 512 | 512 | 489.04 | 3912.33 | - | 32.62 | 32.62 | 260.96 |
94
+ | 8 | 512 | 1024 | 467.23 | 3737.84 | - | 32.62 | 32.62 | 260.96 |
95
+ | 8 | 1024 | 1024 | 383.4 | 3067.19 | - | 33.06 | 33.06 | 264.46 |
96
+ | 8 | 1 | 2048 | 487.74 | 3901.93 | - | 32.12 | 32.12 | 256.96 |
97
+ | 16 | 256 | 512 | 792.7 | 6341.6 | - | 51.46 | 51.46 | 411.71 |
98
+ | 16 | 512 | 512 | 639.4 | 5115.17 | - | 51.93 | 51.93 | 415.46 |
99
+ | 16 | 512 | 1024 | 591.39 | 4731.09 | - | 51.93 | 51.93 | 415.46 |
100
+ | 16 | 1024 | 1024 | 449.11 | 3592.85 | - | 52.06 | 52.06 | 416.46 |
101
+ | 16 | 1 | 2048 | 620.5 | 4964.02 | - | 51 | 51 | 407.96 |
102
+
103
+
104
+ ### request throughput
105
+
106
+ LMDeploy uses ShareGPT dataset to test request throughput. Try the next commands, and you will get the `rpm` (request per minute) metric.
107
+
108
+ ```
109
+ # download the ShareGPT dataset
110
+ wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
111
+
112
+ #
113
+ python profile_throughput.py \
114
+ ShareGPT_V3_unfiltered_cleaned_split.json \
115
+ ./workspace \
116
+ --concurrency 16
117
+ ```
config.json ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "InternLMForCausalLM"
4
+ ],
5
+ "auto_map": {
6
+ "AutoConfig": "configuration_internlm.InternLMConfig",
7
+ "AutoModel": "modeling_internlm.InternLMForCausalLM",
8
+ "AutoModelForCausalLM": "modeling_internlm.InternLMForCausalLM"
9
+ },
10
+ "bias": false,
11
+ "bos_token_id": 1,
12
+ "eos_token_id": 2,
13
+ "hidden_act": "silu",
14
+ "hidden_size": 5120,
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 13824,
17
+ "max_position_embeddings": 2048,
18
+ "model_type": "internlm",
19
+ "num_attention_heads": 40,
20
+ "num_hidden_layers": 60,
21
+ "num_key_value_heads": 40,
22
+ "pad_token_id": 2,
23
+ "pretraining_tp": 1,
24
+ "rms_norm_eps": 1e-06,
25
+ "rope_scaling": null,
26
+ "rope_theta": 10000.0,
27
+ "tie_word_embeddings": false,
28
+ "torch_dtype": "float16",
29
+ "transformers_version": "4.33.1",
30
+ "use_cache": false,
31
+ "vocab_size": 103168,
32
+ "rotary": {
33
+ "base": 10000,
34
+ "type": "dynamic"
35
+ }
36
+ }
configuration_internlm.py ADDED
@@ -0,0 +1,121 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """ InternLM model configuration"""
21
+
22
+ from transformers.configuration_utils import PretrainedConfig
23
+ from transformers.utils import logging
24
+
25
+ logger = logging.get_logger(__name__)
26
+
27
+ INTERNLM_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
28
+
29
+
30
+ class InternLMConfig(PretrainedConfig):
31
+ r"""
32
+ This is the configuration class to store the configuration of a [`InternLMModel`]. It is used to instantiate
33
+ an InternLM model according to the specified arguments, defining the model architecture. Instantiating a
34
+ configuration with the defaults will yield a similar configuration to that of the InternLM-7B.
35
+
36
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
37
+ documentation from [`PretrainedConfig`] for more information.
38
+
39
+
40
+ Args:
41
+ vocab_size (`int`, *optional*, defaults to 32000):
42
+ Vocabulary size of the InternLM model. Defines the number of different tokens that can be represented by the
43
+ `inputs_ids` passed when calling [`InternLMModel`]
44
+ hidden_size (`int`, *optional*, defaults to 4096):
45
+ Dimension of the hidden representations.
46
+ intermediate_size (`int`, *optional*, defaults to 11008):
47
+ Dimension of the MLP representations.
48
+ num_hidden_layers (`int`, *optional*, defaults to 32):
49
+ Number of hidden layers in the Transformer encoder.
50
+ num_attention_heads (`int`, *optional*, defaults to 32):
51
+ Number of attention heads for each attention layer in the Transformer encoder.
52
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
53
+ The non-linear activation function (function or string) in the decoder.
54
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
55
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
56
+ just in case (e.g., 512 or 1024 or 2048).
57
+ initializer_range (`float`, *optional*, defaults to 0.02):
58
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
59
+ rms_norm_eps (`float`, *optional*, defaults to 1e-12):
60
+ The epsilon used by the rms normalization layers.
61
+ use_cache (`bool`, *optional*, defaults to `True`):
62
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
63
+ relevant if `config.is_decoder=True`.
64
+ tie_word_embeddings(`bool`, *optional*, defaults to `False`):
65
+ Whether to tie weight embeddings
66
+ Example:
67
+
68
+ ```python
69
+ >>> from transformers import InternLMModel, InternLMConfig
70
+
71
+ >>> # Initializing a InternLM internlm-7b style configuration
72
+ >>> configuration = InternLMConfig()
73
+
74
+ >>> # Initializing a model from the internlm-7b style configuration
75
+ >>> model = InternLMModel(configuration)
76
+
77
+ >>> # Accessing the model configuration
78
+ >>> configuration = model.config
79
+ ```"""
80
+ model_type = "internlm"
81
+ _auto_class = "AutoConfig"
82
+
83
+ def __init__( # pylint: disable=W0102
84
+ self,
85
+ vocab_size=103168,
86
+ hidden_size=4096,
87
+ intermediate_size=11008,
88
+ num_hidden_layers=32,
89
+ num_attention_heads=32,
90
+ hidden_act="silu",
91
+ max_position_embeddings=2048,
92
+ initializer_range=0.02,
93
+ rms_norm_eps=1e-6,
94
+ use_cache=True,
95
+ pad_token_id=0,
96
+ bos_token_id=1,
97
+ eos_token_id=2,
98
+ tie_word_embeddings=False,
99
+ bias=True,
100
+ rotary={"base": 10000, "type": "dynamic"}, # pylint: disable=W0102
101
+ **kwargs,
102
+ ):
103
+ self.vocab_size = vocab_size
104
+ self.max_position_embeddings = max_position_embeddings
105
+ self.hidden_size = hidden_size
106
+ self.intermediate_size = intermediate_size
107
+ self.num_hidden_layers = num_hidden_layers
108
+ self.num_attention_heads = num_attention_heads
109
+ self.hidden_act = hidden_act
110
+ self.initializer_range = initializer_range
111
+ self.rms_norm_eps = rms_norm_eps
112
+ self.use_cache = use_cache
113
+ self.bias = bias
114
+ self.rotary = rotary
115
+ super().__init__(
116
+ pad_token_id=pad_token_id,
117
+ bos_token_id=bos_token_id,
118
+ eos_token_id=eos_token_id,
119
+ tie_word_embeddings=tie_word_embeddings,
120
+ **kwargs,
121
+ )
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "transformers_version": "4.33.1"
6
+ }
inputs_stats.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:927d712f3743701087beb9a30d7bf49c117f7d4f443f7e814eebf48dbf652388
3
+ size 27318131
key_stats.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d807ce8e262166432decf77c7dc21dd0c33de8b3b2fd49769a7eb157fe21e411
3
+ size 1893125
modeling_internlm.py ADDED
@@ -0,0 +1,1089 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """ PyTorch InternLM model."""
21
+ import math
22
+ import queue
23
+ import threading
24
+ from typing import List, Optional, Tuple, Union
25
+
26
+ import torch
27
+ import torch.utils.checkpoint
28
+ from torch import nn
29
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
30
+ from transformers.activations import ACT2FN
31
+ from transformers.generation.streamers import BaseStreamer
32
+ from transformers.modeling_outputs import (
33
+ BaseModelOutputWithPast,
34
+ CausalLMOutputWithPast,
35
+ SequenceClassifierOutputWithPast,
36
+ )
37
+ from transformers.modeling_utils import PreTrainedModel
38
+ from transformers.utils import (
39
+ add_start_docstrings,
40
+ add_start_docstrings_to_model_forward,
41
+ logging,
42
+ replace_return_docstrings,
43
+ )
44
+
45
+ from .configuration_internlm import InternLMConfig
46
+
47
+ logger = logging.get_logger(__name__)
48
+
49
+ _CONFIG_FOR_DOC = "InternLMConfig"
50
+
51
+
52
+ # Copied from transformers.models.bart.modeling_bart._make_causal_mask
53
+ def _make_causal_mask(
54
+ input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
55
+ ):
56
+ """
57
+ Make causal mask used for bi-directional self-attention.
58
+ """
59
+ bsz, tgt_len = input_ids_shape
60
+ mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device)
61
+ mask_cond = torch.arange(mask.size(-1), device=device)
62
+ mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
63
+ mask = mask.to(dtype)
64
+
65
+ if past_key_values_length > 0:
66
+ mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
67
+ return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
68
+
69
+
70
+ # Copied from transformers.models.bart.modeling_bart._expand_mask
71
+ def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
72
+ """
73
+ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
74
+ """
75
+ bsz, src_len = mask.size()
76
+ tgt_len = tgt_len if tgt_len is not None else src_len
77
+
78
+ expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
79
+
80
+ inverted_mask = 1.0 - expanded_mask
81
+
82
+ return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
83
+
84
+
85
+ class InternLMRMSNorm(nn.Module):
86
+ """RMSNorm implemention."""
87
+
88
+ def __init__(self, hidden_size, eps=1e-6):
89
+ """
90
+ InternLMRMSNorm is equivalent to T5LayerNorm
91
+ """
92
+ super().__init__()
93
+ self.weight = nn.Parameter(torch.ones(hidden_size))
94
+ self.variance_epsilon = eps
95
+
96
+ def forward(self, hidden_states):
97
+ variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
98
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
99
+
100
+ # convert into half-precision if necessary
101
+ if self.weight.dtype in [torch.float16, torch.bfloat16]:
102
+ hidden_states = hidden_states.to(self.weight.dtype)
103
+
104
+ return self.weight * hidden_states
105
+
106
+
107
+ class InternLMRotaryEmbedding(torch.nn.Module):
108
+ """Implement InternLM's rotary embedding.
109
+
110
+ Args:
111
+ dim (int): Characteristic dimension of each self-attentional head.
112
+ max_position_embeddings (int, optional): Model's training length. Defaults to 2048.
113
+ base (int, optional): The rotation position encodes the rotation Angle base number. Defaults to 10000.
114
+ device (Any, optional): Running device. Defaults to None.
115
+ """
116
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
117
+ super().__init__()
118
+ inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim))
119
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
120
+
121
+ # Build here to make `torch.jit.trace` work.
122
+ self.max_seq_len_cached = max_position_embeddings
123
+ t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
124
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
125
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
126
+ emb = torch.cat((freqs, freqs), dim=-1)
127
+ self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
128
+ self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)
129
+
130
+ def forward(self, x, seq_len=None):
131
+ # x: [bs, num_attention_heads, seq_len, head_size]
132
+ # This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case.
133
+ if seq_len > self.max_seq_len_cached:
134
+ self.max_seq_len_cached = seq_len
135
+ t = torch.arange(self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype)
136
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
137
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
138
+ emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
139
+ self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
140
+ self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)
141
+ return (
142
+ self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
143
+ self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
144
+ )
145
+
146
+
147
+ class InternLMDynamicNTKScalingRotaryEmbedding(torch.nn.Module):
148
+ """Implement InternLM's DyanmicNTK extrapolation method, thereby broadening the model support context to 16K.
149
+
150
+ Args:
151
+ dim (int): Characteristic dimension of each self-attentional head.
152
+ max_position_embeddings (int, optional): Model's training length. Defaults to 2048.
153
+ base (int, optional): The rotation position encodes the rotation Angle base number. Defaults to 10000.
154
+ device (Any, optional): Running device. Defaults to None.
155
+ scaling_factor (float, optional): NTK method extrapolation coefficient. Defaults to 1.0.
156
+ """
157
+
158
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
159
+ super().__init__()
160
+ inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim))
161
+ self.register_buffer("inv_freq", inv_freq)
162
+ self.dim = dim
163
+ self.base = base
164
+ self.scaling_factor = scaling_factor
165
+
166
+ # Build here to make `torch.jit.trace` work.
167
+ self.max_position_embeddings = max_position_embeddings
168
+ self.max_seq_len_cached = max_position_embeddings
169
+ t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
170
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
171
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
172
+ emb = torch.cat((freqs, freqs), dim=-1)
173
+ self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
174
+ self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)
175
+
176
+ def _update_cached(self, x, seq_len=None):
177
+ self.max_seq_len_cached = max(seq_len, self.max_position_embeddings)
178
+ if seq_len > self.max_position_embeddings:
179
+ base = self.base * (
180
+ (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
181
+ ) ** (self.dim / (self.dim - 2))
182
+ inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(x.device) / self.dim))
183
+ else:
184
+ inv_freq = self.inv_freq
185
+ t = torch.arange(self.max_seq_len_cached, device=inv_freq.device, dtype=inv_freq.dtype)
186
+ freqs = torch.einsum("i,j->ij", t, inv_freq)
187
+ emb = torch.cat((freqs, freqs), dim=-1)
188
+ self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
189
+ self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)
190
+
191
+ def forward(self, x, seq_len=None):
192
+ # x: [bs, num_attention_heads, seq_len, head_size]
193
+ # This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case.
194
+ if seq_len <= self.max_position_embeddings:
195
+ # Reset the tables if the sequence length has changed,
196
+ if self.max_seq_len_cached > self.max_position_embeddings:
197
+ self._update_cached(x, seq_len)
198
+ else:
199
+ self._update_cached(x, seq_len)
200
+
201
+ return (
202
+ self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
203
+ self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
204
+ )
205
+
206
+
207
+ def rotate_half(x):
208
+ """Rotates half the hidden dims of the input."""
209
+ x1 = x[..., : x.shape[-1] // 2]
210
+ x2 = x[..., x.shape[-1] // 2 :]
211
+ return torch.cat((-x2, x1), dim=-1)
212
+
213
+
214
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
215
+ # The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
216
+ cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
217
+ sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
218
+ cos = cos.unsqueeze(0).unsqueeze(0).expand(len(position_ids), -1, -1, -1)
219
+ sin = sin.unsqueeze(0).unsqueeze(0).expand(len(position_ids), -1, -1, -1)
220
+ if q.size(2) == 1:
221
+ q_embed = (q * cos[:, :, -1, :]) + (rotate_half(q) * sin[:, :, -1, :])
222
+ else:
223
+ q_embed = (q * cos) + (rotate_half(q) * sin)
224
+
225
+ if k.size(2) == 1:
226
+ k_embed = (k * cos[:, :, -1, :]) + (rotate_half(k) * sin[:, :, -1, :])
227
+ else:
228
+ k_embed = (k * cos) + (rotate_half(k) * sin)
229
+
230
+ return q_embed, k_embed
231
+
232
+
233
+ class InternLMMLP(nn.Module):
234
+ def __init__(
235
+ self,
236
+ hidden_size: int,
237
+ intermediate_size: int,
238
+ hidden_act: str,
239
+ ):
240
+ super().__init__()
241
+ self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
242
+ self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=False)
243
+ self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
244
+ self.act_fn = ACT2FN[hidden_act]
245
+
246
+ def forward(self, x):
247
+ return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
248
+
249
+
250
+ class InternLMAttention(nn.Module):
251
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
252
+
253
+ def __init__(self, config: InternLMConfig):
254
+ super().__init__()
255
+ self.config = config
256
+ self.hidden_size = config.hidden_size
257
+ self.num_heads = config.num_attention_heads
258
+ self.head_dim = self.hidden_size // self.num_heads
259
+ self.max_position_embeddings = config.max_position_embeddings
260
+
261
+ if (self.head_dim * self.num_heads) != self.hidden_size:
262
+ raise ValueError(
263
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
264
+ f" and `num_heads`: {self.num_heads})."
265
+ )
266
+ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.bias)
267
+ self.k_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.bias)
268
+ self.v_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.bias)
269
+ self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.bias)
270
+ self.rotary_emb = self._init_rope()
271
+
272
+ def _init_rope(self):
273
+ if self.config.rotary["type"] == "origin":
274
+ self.rotary_emb = InternLMRotaryEmbedding(
275
+ self.head_dim,
276
+ max_position_embeddings=self.max_position_embeddings,
277
+ base=self.config.rotary["base"],
278
+ )
279
+ elif self.config.rotary["type"] == "dynamic":
280
+ self.rotary_emb = InternLMDynamicNTKScalingRotaryEmbedding(
281
+ self.head_dim,
282
+ max_position_embeddings=self.max_position_embeddings,
283
+ base=self.config.rotary["base"],
284
+ scaling_factor=self.config.rotary.get("scaling_factor", 1.0),
285
+ )
286
+ else:
287
+ raise ValueError("Currently we only support rotary embedding's type being one of ('origin', 'dynamic').")
288
+ return self.rotary_emb
289
+
290
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
291
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
292
+
293
+ def forward(
294
+ self,
295
+ hidden_states: torch.Tensor,
296
+ attention_mask: Optional[torch.Tensor] = None,
297
+ position_ids: Optional[torch.LongTensor] = None,
298
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
299
+ output_attentions: bool = False,
300
+ use_cache: bool = False,
301
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
302
+ bsz, q_len, _ = hidden_states.size()
303
+
304
+ query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
305
+ key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
306
+ value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
307
+
308
+ if past_key_value is not None:
309
+ # reuse k, v, self_attention
310
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
311
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
312
+
313
+ # print(use_cache)
314
+ past_key_value = (key_states, value_states) if use_cache else None
315
+
316
+ kv_seq_len = key_states.shape[-2]
317
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
318
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
319
+
320
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
321
+
322
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
323
+ raise ValueError(
324
+ f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
325
+ f" {attn_weights.size()}"
326
+ )
327
+
328
+ if attention_mask is not None:
329
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
330
+ raise ValueError(
331
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
332
+ )
333
+ attn_weights = attn_weights + attention_mask
334
+ attn_weights = torch.max(attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min))
335
+
336
+ # upcast attention to fp32
337
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
338
+ attn_output = torch.matmul(attn_weights, value_states)
339
+
340
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
341
+ raise ValueError(
342
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
343
+ f" {attn_output.size()}"
344
+ )
345
+
346
+ attn_output = attn_output.transpose(1, 2)
347
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
348
+
349
+ attn_output = self.o_proj(attn_output)
350
+
351
+ if not output_attentions:
352
+ attn_weights = None
353
+
354
+ return attn_output, attn_weights, past_key_value
355
+
356
+
357
+ class InternLMDecoderLayer(nn.Module):
358
+ def __init__(self, config: InternLMConfig):
359
+ super().__init__()
360
+ self.hidden_size = config.hidden_size
361
+ self.self_attn = InternLMAttention(config=config)
362
+ self.mlp = InternLMMLP(
363
+ hidden_size=self.hidden_size,
364
+ intermediate_size=config.intermediate_size,
365
+ hidden_act=config.hidden_act,
366
+ )
367
+ self.input_layernorm = InternLMRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
368
+ self.post_attention_layernorm = InternLMRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
369
+
370
+ def forward(
371
+ self,
372
+ hidden_states: torch.Tensor,
373
+ attention_mask: Optional[torch.Tensor] = None,
374
+ position_ids: Optional[torch.LongTensor] = None,
375
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
376
+ output_attentions: Optional[bool] = False,
377
+ use_cache: Optional[bool] = False,
378
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
379
+ """
380
+ Args:
381
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
382
+ attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
383
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
384
+ output_attentions (`bool`, *optional*):
385
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
386
+ returned tensors for more detail.
387
+ use_cache (`bool`, *optional*):
388
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
389
+ (see `past_key_values`).
390
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
391
+ """
392
+
393
+ residual = hidden_states
394
+
395
+ hidden_states = self.input_layernorm(hidden_states)
396
+
397
+ # Self Attention
398
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
399
+ hidden_states=hidden_states,
400
+ attention_mask=attention_mask,
401
+ position_ids=position_ids,
402
+ past_key_value=past_key_value,
403
+ output_attentions=output_attentions,
404
+ use_cache=use_cache,
405
+ )
406
+ hidden_states = residual + hidden_states
407
+
408
+ # Fully Connected
409
+ residual = hidden_states
410
+ hidden_states = self.post_attention_layernorm(hidden_states)
411
+ hidden_states = self.mlp(hidden_states)
412
+ hidden_states = residual + hidden_states
413
+
414
+ outputs = (hidden_states,)
415
+
416
+ if output_attentions:
417
+ outputs += (self_attn_weights,)
418
+
419
+ if use_cache:
420
+ outputs += (present_key_value,)
421
+
422
+ return outputs
423
+
424
+
425
+ INTERNLM_START_DOCSTRING = r"""
426
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
427
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
428
+ etc.)
429
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
430
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
431
+ and behavior.
432
+ Parameters:
433
+ config ([`InternLMConfig`]):
434
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
435
+ load the weights associated with the model, only the configuration. Check out the
436
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
437
+ """
438
+
439
+
440
+ @add_start_docstrings(
441
+ "The bare InternLM Model outputting raw hidden-states without any specific head on top.",
442
+ INTERNLM_START_DOCSTRING,
443
+ )
444
+ class InternLMPreTrainedModel(PreTrainedModel):
445
+ config_class = InternLMConfig
446
+ base_model_prefix = "model"
447
+ supports_gradient_checkpointing = True
448
+ _no_split_modules = ["InternLMDecoderLayer"]
449
+ _keys_to_ignore_on_load_unexpected = [r"decoder\.version"]
450
+
451
+ def _init_weights(self, module):
452
+ std = self.config.initializer_range
453
+ if isinstance(module, nn.Linear):
454
+ module.weight.data.normal_(mean=0.0, std=std)
455
+ if module.bias is not None:
456
+ module.bias.data.zero_()
457
+ elif isinstance(module, nn.Embedding):
458
+ module.weight.data.normal_(mean=0.0, std=std)
459
+ if module.padding_idx is not None:
460
+ module.weight.data[module.padding_idx].zero_()
461
+
462
+ def _set_gradient_checkpointing(self, module, value=False):
463
+ if isinstance(module, InternLMModel):
464
+ module.gradient_checkpointing = value
465
+
466
+
467
+ INTERNLM_INPUTS_DOCSTRING = r"""
468
+ Args:
469
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
470
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
471
+ it.
472
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
473
+ [`PreTrainedTokenizer.__call__`] for details.
474
+ [What are input IDs?](../glossary#input-ids)
475
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
476
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
477
+ - 1 for tokens that are **not masked**,
478
+ - 0 for tokens that are **masked**.
479
+ [What are attention masks?](../glossary#attention-mask)
480
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
481
+ [`PreTrainedTokenizer.__call__`] for details.
482
+ If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
483
+ `past_key_values`).
484
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
485
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
486
+ information on the default strategy.
487
+ - 1 indicates the head is **not masked**,
488
+ - 0 indicates the head is **masked**.
489
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
490
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
491
+ config.n_positions - 1]`.
492
+ [What are position IDs?](../glossary#position-ids)
493
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or
494
+ when `config.use_cache=True`):
495
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
496
+ `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
497
+ `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
498
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
499
+ blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
500
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
501
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
502
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
503
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
504
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
505
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
506
+ model's internal embedding lookup matrix.
507
+ use_cache (`bool`, *optional*):
508
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
509
+ `past_key_values`).
510
+ output_attentions (`bool`, *optional*):
511
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
512
+ tensors for more detail.
513
+ output_hidden_states (`bool`, *optional*):
514
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
515
+ more detail.
516
+ return_dict (`bool`, *optional*):
517
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
518
+ """
519
+
520
+
521
+ @add_start_docstrings(
522
+ "The bare InternLM Model outputting raw hidden-states without any specific head on top.",
523
+ INTERNLM_START_DOCSTRING,
524
+ )
525
+ class InternLMModel(InternLMPreTrainedModel):
526
+ """
527
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`InternLMDecoderLayer`]
528
+ Args:
529
+ config: InternLMConfig
530
+ """
531
+
532
+ _auto_class = "AutoModel"
533
+
534
+ def __init__(self, config: InternLMConfig):
535
+ assert (0), 'Inference by transformers is currently not supported, ' \
536
+ 'please follow README to convert the model ' \
537
+ 'and use lmdeploy (https://github.com/InternLM/lmdeploy) for inference.'
538
+ super().__init__(config)
539
+ self.padding_idx = config.pad_token_id
540
+ self.vocab_size = config.vocab_size
541
+
542
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
543
+ self.layers = nn.ModuleList([InternLMDecoderLayer(config) for _ in range(config.num_hidden_layers)])
544
+ self.norm = InternLMRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
545
+
546
+ self.gradient_checkpointing = False
547
+ # Initialize weights and apply final processing
548
+ self.post_init()
549
+
550
+ def get_input_embeddings(self):
551
+ return self.embed_tokens
552
+
553
+ def set_input_embeddings(self, value):
554
+ self.embed_tokens = value
555
+
556
+ # Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
557
+ def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
558
+ # create causal mask
559
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
560
+ combined_attention_mask = None
561
+ if input_shape[-1] > 1:
562
+ combined_attention_mask = _make_causal_mask(
563
+ input_shape,
564
+ inputs_embeds.dtype,
565
+ device=inputs_embeds.device,
566
+ past_key_values_length=past_key_values_length,
567
+ )
568
+
569
+ if attention_mask is not None:
570
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
571
+ expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
572
+ inputs_embeds.device
573
+ )
574
+ combined_attention_mask = (
575
+ expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
576
+ )
577
+
578
+ return combined_attention_mask
579
+
580
+ @add_start_docstrings_to_model_forward(INTERNLM_INPUTS_DOCSTRING)
581
+ def forward(
582
+ self,
583
+ input_ids: torch.LongTensor = None,
584
+ attention_mask: Optional[torch.Tensor] = None,
585
+ position_ids: Optional[torch.LongTensor] = None,
586
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
587
+ inputs_embeds: Optional[torch.FloatTensor] = None,
588
+ use_cache: Optional[bool] = None,
589
+ output_attentions: Optional[bool] = None,
590
+ output_hidden_states: Optional[bool] = None,
591
+ return_dict: Optional[bool] = None,
592
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
593
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
594
+ output_hidden_states = (
595
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
596
+ )
597
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
598
+
599
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
600
+
601
+ # retrieve input_ids and inputs_embeds
602
+ if input_ids is not None and inputs_embeds is not None:
603
+ raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
604
+ elif input_ids is not None:
605
+ batch_size, seq_length = input_ids.shape
606
+ elif inputs_embeds is not None:
607
+ batch_size, seq_length, _ = inputs_embeds.shape
608
+ else:
609
+ raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
610
+
611
+ seq_length_with_past = seq_length
612
+ past_key_values_length = 0
613
+
614
+ if past_key_values is not None:
615
+ past_key_values_length = past_key_values[0][0].shape[2]
616
+ seq_length_with_past = seq_length_with_past + past_key_values_length
617
+
618
+ if position_ids is None:
619
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
620
+ position_ids = torch.arange(
621
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
622
+ )
623
+ position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
624
+ else:
625
+ position_ids = position_ids.view(-1, seq_length).long()
626
+
627
+ if inputs_embeds is None:
628
+ inputs_embeds = self.embed_tokens(input_ids)
629
+ # embed positions
630
+ if attention_mask is None:
631
+ attention_mask = torch.ones(
632
+ (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
633
+ )
634
+ attention_mask = self._prepare_decoder_attention_mask(
635
+ attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
636
+ )
637
+
638
+ hidden_states = inputs_embeds
639
+
640
+ if self.gradient_checkpointing and self.training:
641
+ if use_cache:
642
+ logger.warning_once(
643
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
644
+ )
645
+ use_cache = False
646
+
647
+ # decoder layers
648
+ all_hidden_states = () if output_hidden_states else None
649
+ all_self_attns = () if output_attentions else None
650
+ next_decoder_cache = () if use_cache else None
651
+
652
+ for idx, decoder_layer in enumerate(self.layers):
653
+ if output_hidden_states:
654
+ all_hidden_states += (hidden_states,)
655
+
656
+ past_key_value = past_key_values[idx] if past_key_values is not None else None
657
+
658
+ if self.gradient_checkpointing and self.training:
659
+
660
+ def create_custom_forward(module):
661
+ def custom_forward(*inputs):
662
+ # None for past_key_value
663
+ return module(*inputs, output_attentions, None)
664
+
665
+ return custom_forward
666
+
667
+ layer_outputs = torch.utils.checkpoint.checkpoint(
668
+ create_custom_forward(decoder_layer),
669
+ hidden_states,
670
+ attention_mask,
671
+ position_ids,
672
+ None,
673
+ )
674
+ else:
675
+ layer_outputs = decoder_layer(
676
+ hidden_states,
677
+ attention_mask=attention_mask,
678
+ position_ids=position_ids,
679
+ past_key_value=past_key_value,
680
+ output_attentions=output_attentions,
681
+ use_cache=use_cache,
682
+ )
683
+
684
+ hidden_states = layer_outputs[0]
685
+
686
+ if use_cache:
687
+ next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
688
+
689
+ if output_attentions:
690
+ all_self_attns += (layer_outputs[1],)
691
+
692
+ hidden_states = self.norm(hidden_states)
693
+
694
+ # add hidden states from the last decoder layer
695
+ if output_hidden_states:
696
+ all_hidden_states += (hidden_states,)
697
+
698
+ next_cache = next_decoder_cache if use_cache else None
699
+ if not return_dict:
700
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
701
+ return BaseModelOutputWithPast(
702
+ last_hidden_state=hidden_states,
703
+ past_key_values=next_cache,
704
+ hidden_states=all_hidden_states,
705
+ attentions=all_self_attns,
706
+ )
707
+
708
+
709
+ class InternLMForCausalLM(InternLMPreTrainedModel):
710
+ _auto_class = "AutoModelForCausalLM"
711
+
712
+ def __init__(self, config):
713
+ super().__init__(config)
714
+ self.model = InternLMModel(config)
715
+
716
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
717
+
718
+ # Initialize weights and apply final processing
719
+ self.post_init()
720
+
721
+ def get_input_embeddings(self):
722
+ return self.model.embed_tokens
723
+
724
+ def set_input_embeddings(self, value):
725
+ self.model.embed_tokens = value
726
+
727
+ def get_output_embeddings(self):
728
+ return self.lm_head
729
+
730
+ def set_output_embeddings(self, new_embeddings):
731
+ self.lm_head = new_embeddings
732
+
733
+ def set_decoder(self, decoder):
734
+ self.model = decoder
735
+
736
+ def get_decoder(self):
737
+ return self.model
738
+
739
+ @add_start_docstrings_to_model_forward(INTERNLM_INPUTS_DOCSTRING)
740
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
741
+ def forward(
742
+ self,
743
+ input_ids: torch.LongTensor = None,
744
+ attention_mask: Optional[torch.Tensor] = None,
745
+ position_ids: Optional[torch.LongTensor] = None,
746
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
747
+ inputs_embeds: Optional[torch.FloatTensor] = None,
748
+ labels: Optional[torch.LongTensor] = None,
749
+ use_cache: Optional[bool] = None,
750
+ output_attentions: Optional[bool] = None,
751
+ output_hidden_states: Optional[bool] = None,
752
+ return_dict: Optional[bool] = None,
753
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
754
+ r"""
755
+ Args:
756
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
757
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
758
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
759
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
760
+ Returns:
761
+ Example:
762
+ ```python
763
+ >>> from transformers import AutoTokenizer, InternLMForCausalLM
764
+ >>> model = InternLMForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
765
+ >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
766
+ >>> prompt = "Hey, are you consciours? Can you talk to me?"
767
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
768
+ >>> # Generate
769
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
770
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
771
+ "Hey, are you consciours? Can you talk to me?\nI'm not consciours, but I can talk to you."
772
+ ```"""
773
+
774
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
775
+ output_hidden_states = (
776
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
777
+ )
778
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
779
+
780
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
781
+ outputs = self.model(
782
+ input_ids=input_ids,
783
+ attention_mask=attention_mask,
784
+ position_ids=position_ids,
785
+ past_key_values=past_key_values,
786
+ inputs_embeds=inputs_embeds,
787
+ use_cache=use_cache,
788
+ output_attentions=output_attentions,
789
+ output_hidden_states=output_hidden_states,
790
+ return_dict=return_dict,
791
+ )
792
+
793
+ hidden_states = outputs[0]
794
+ logits = self.lm_head(hidden_states)
795
+
796
+ loss = None
797
+ if labels is not None:
798
+ # Shift so that tokens < n predict n
799
+ shift_logits = logits[..., :-1, :].contiguous()
800
+ shift_labels = labels[..., 1:].contiguous()
801
+ # Flatten the tokens
802
+ loss_fct = CrossEntropyLoss()
803
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
804
+ shift_labels = shift_labels.view(-1)
805
+ # Enable model parallelism
806
+ shift_labels = shift_labels.to(shift_logits.device)
807
+ loss = loss_fct(shift_logits, shift_labels)
808
+
809
+ if not return_dict:
810
+ output = (logits,) + outputs[1:]
811
+ return (loss,) + output if loss is not None else output
812
+
813
+ return CausalLMOutputWithPast(
814
+ loss=loss,
815
+ logits=logits,
816
+ past_key_values=outputs.past_key_values,
817
+ hidden_states=outputs.hidden_states,
818
+ attentions=outputs.attentions,
819
+ )
820
+
821
+ def prepare_inputs_for_generation(
822
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
823
+ ):
824
+ if past_key_values:
825
+ input_ids = input_ids[:, -1:]
826
+
827
+ position_ids = kwargs.get("position_ids", None)
828
+ if attention_mask is not None and position_ids is None:
829
+ # create position_ids on the fly for batch generation
830
+ position_ids = attention_mask.long().cumsum(-1) - 1
831
+ position_ids.masked_fill_(attention_mask == 0, 1)
832
+ if past_key_values:
833
+ position_ids = position_ids[:, -1].unsqueeze(-1)
834
+
835
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
836
+ if inputs_embeds is not None and past_key_values is None:
837
+ model_inputs = {"inputs_embeds": inputs_embeds}
838
+ else:
839
+ model_inputs = {"input_ids": input_ids}
840
+
841
+ model_inputs.update(
842
+ {
843
+ "position_ids": position_ids,
844
+ "past_key_values": past_key_values,
845
+ "use_cache": kwargs.get("use_cache"),
846
+ "attention_mask": attention_mask,
847
+ }
848
+ )
849
+ return model_inputs
850
+
851
+ @staticmethod
852
+ def _reorder_cache(past_key_values, beam_idx):
853
+ reordered_past = ()
854
+ for layer_past in past_key_values:
855
+ reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
856
+ return reordered_past
857
+
858
+ def build_inputs(self, tokenizer, query: str, history: List[Tuple[str, str]] = []):
859
+ prompt = ""
860
+ for record in history:
861
+ prompt += f"""<|User|>:{record[0]}<eoh>\n<|Bot|>:{record[1]}<eoa>\n"""
862
+ prompt += f"""<|User|>:{query}<eoh>\n<|Bot|>:"""
863
+ return tokenizer([prompt], return_tensors="pt")
864
+
865
+ @torch.no_grad()
866
+ def chat(
867
+ self,
868
+ tokenizer,
869
+ query: str,
870
+ history: List[Tuple[str, str]] = [],
871
+ streamer: Optional[BaseStreamer] = None,
872
+ max_new_tokens: int = 1024,
873
+ do_sample: bool = True,
874
+ temperature: float = 0.8,
875
+ top_p: float = 0.8,
876
+ **kwargs,
877
+ ):
878
+ inputs = self.build_inputs(tokenizer, query, history)
879
+ inputs = {k: v.to(self.device) for k, v in inputs.items() if torch.is_tensor(v)}
880
+ outputs = self.generate(
881
+ **inputs,
882
+ streamer=streamer,
883
+ max_new_tokens=max_new_tokens,
884
+ do_sample=do_sample,
885
+ temperature=temperature,
886
+ top_p=top_p,
887
+ **kwargs,
888
+ )
889
+ outputs = outputs[0].cpu().tolist()[len(inputs["input_ids"][0]) :]
890
+ response = tokenizer.decode(outputs, skip_special_tokens=True)
891
+ response = response.split("<eoa>")[0]
892
+ history = history + [(query, response)]
893
+ return response, history
894
+
895
+ @torch.no_grad()
896
+ def stream_chat(
897
+ self,
898
+ tokenizer,
899
+ query: str,
900
+ history: List[Tuple[str, str]] = [],
901
+ max_new_tokens: int = 1024,
902
+ do_sample: bool = True,
903
+ temperature: float = 0.8,
904
+ top_p: float = 0.8,
905
+ **kwargs,
906
+ ):
907
+ """
908
+ Return a generator in format: (response, history)
909
+ Eg.
910
+ ('你好,有什么可以帮助您的吗', [('你好', '你好,有什么可以帮助您的吗')])
911
+ ('你好,有什么可以帮助您的吗?', [('你好', '你好,有什么可以帮助您的吗?')])
912
+ """
913
+
914
+ response_queue = queue.Queue(maxsize=20)
915
+
916
+ class ChatStreamer(BaseStreamer):
917
+ def __init__(self, tokenizer) -> None:
918
+ super().__init__()
919
+ self.tokenizer = tokenizer
920
+ self.queue = response_queue
921
+ self.query = query
922
+ self.history = history
923
+ self.response = ""
924
+ self.received_inputs = False
925
+ self.queue.put((self.response, history + [(self.query, self.response)]))
926
+
927
+ def put(self, value):
928
+ if len(value.shape) > 1 and value.shape[0] > 1:
929
+ raise ValueError("ChatStreamer only supports batch size 1")
930
+ elif len(value.shape) > 1:
931
+ value = value[0]
932
+
933
+ if not self.received_inputs:
934
+ # The first received value is input_ids, ignore here
935
+ self.received_inputs = True
936
+ return
937
+
938
+ token = self.tokenizer.decode([value[-1]], skip_special_tokens=True)
939
+ if token.strip() != "<eoa>":
940
+ self.response = self.response + token
941
+ history = self.history + [(self.query, self.response)]
942
+ self.queue.put((self.response, history))
943
+
944
+ def end(self):
945
+ self.queue.put(None)
946
+
947
+ def stream_producer():
948
+ return self.chat(
949
+ tokenizer=tokenizer,
950
+ query=query,
951
+ streamer=ChatStreamer(tokenizer=tokenizer),
952
+ history=history,
953
+ max_new_tokens=max_new_tokens,
954
+ do_sample=do_sample,
955
+ temperature=temperature,
956
+ top_p=top_p,
957
+ **kwargs,
958
+ )
959
+
960
+ def consumer():
961
+ producer = threading.Thread(target=stream_producer)
962
+ producer.start()
963
+ while True:
964
+ res = response_queue.get()
965
+ if res is None:
966
+ return
967
+ yield res
968
+
969
+ return consumer()
970
+
971
+
972
+ @add_start_docstrings(
973
+ """
974
+ The InternLM Model transformer with a sequence classification head on top (linear layer).
975
+ [`InternLMForSequenceClassification`] uses the last token in order to do the classification, as other causal models
976
+ (e.g. GPT-2) do.
977
+ Since it does classification on the last token, it requires to know the position of the last token. If a
978
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
979
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
980
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
981
+ each row of the batch).
982
+ """,
983
+ INTERNLM_START_DOCSTRING,
984
+ )
985
+ class InternLMForSequenceClassification(InternLMPreTrainedModel):
986
+ _keys_to_ignore_on_load_missing = [r"lm_head.weight"]
987
+
988
+ def __init__(self, config):
989
+ super().__init__(config)
990
+ self.num_labels = config.num_labels
991
+ self.model = InternLMModel(config)
992
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
993
+
994
+ # Initialize weights and apply final processing
995
+ self.post_init()
996
+
997
+ def get_input_embeddings(self):
998
+ return self.model.embed_tokens
999
+
1000
+ def set_input_embeddings(self, value):
1001
+ self.model.embed_tokens = value
1002
+
1003
+ @add_start_docstrings_to_model_forward(INTERNLM_INPUTS_DOCSTRING)
1004
+ def forward(
1005
+ self,
1006
+ input_ids: torch.LongTensor = None,
1007
+ attention_mask: Optional[torch.Tensor] = None,
1008
+ position_ids: Optional[torch.LongTensor] = None,
1009
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1010
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1011
+ labels: Optional[torch.LongTensor] = None,
1012
+ use_cache: Optional[bool] = None,
1013
+ output_attentions: Optional[bool] = None,
1014
+ output_hidden_states: Optional[bool] = None,
1015
+ return_dict: Optional[bool] = None,
1016
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1017
+ r"""
1018
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1019
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1020
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1021
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1022
+ """
1023
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1024
+
1025
+ transformer_outputs = self.model(
1026
+ input_ids,
1027
+ attention_mask=attention_mask,
1028
+ position_ids=position_ids,
1029
+ past_key_values=past_key_values,
1030
+ inputs_embeds=inputs_embeds,
1031
+ use_cache=use_cache,
1032
+ output_attentions=output_attentions,
1033
+ output_hidden_states=output_hidden_states,
1034
+ return_dict=return_dict,
1035
+ )
1036
+ hidden_states = transformer_outputs[0]
1037
+ logits = self.score(hidden_states)
1038
+
1039
+ if input_ids is not None:
1040
+ batch_size = input_ids.shape[0]
1041
+ else:
1042
+ batch_size = inputs_embeds.shape[0]
1043
+
1044
+ if self.config.pad_token_id is None and batch_size != 1:
1045
+ raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
1046
+ if self.config.pad_token_id is None:
1047
+ sequence_lengths = -1
1048
+ else:
1049
+ if input_ids is not None:
1050
+ sequence_lengths = (torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1).to(logits.device)
1051
+ else:
1052
+ sequence_lengths = -1
1053
+
1054
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1055
+
1056
+ loss = None
1057
+ if labels is not None:
1058
+ labels = labels.to(logits.device)
1059
+ if self.config.problem_type is None:
1060
+ if self.num_labels == 1:
1061
+ self.config.problem_type = "regression"
1062
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1063
+ self.config.problem_type = "single_label_classification"
1064
+ else:
1065
+ self.config.problem_type = "multi_label_classification"
1066
+
1067
+ if self.config.problem_type == "regression":
1068
+ loss_fct = MSELoss()
1069
+ if self.num_labels == 1:
1070
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1071
+ else:
1072
+ loss = loss_fct(pooled_logits, labels)
1073
+ elif self.config.problem_type == "single_label_classification":
1074
+ loss_fct = CrossEntropyLoss()
1075
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1076
+ elif self.config.problem_type == "multi_label_classification":
1077
+ loss_fct = BCEWithLogitsLoss()
1078
+ loss = loss_fct(pooled_logits, labels)
1079
+ if not return_dict:
1080
+ output = (pooled_logits,) + transformer_outputs[1:]
1081
+ return ((loss,) + output) if loss is not None else output
1082
+
1083
+ return SequenceClassifierOutputWithPast(
1084
+ loss=loss,
1085
+ logits=pooled_logits,
1086
+ past_key_values=transformer_outputs.past_key_values,
1087
+ hidden_states=transformer_outputs.hidden_states,
1088
+ attentions=transformer_outputs.attentions,
1089
+ )
outputs_stats.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bf970b6479d19e4fe099676f95fb72a9c654c591922db16483e81c3eded03dc0
3
+ size 38910266
pytorch_model-00001-of-00002.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0ef3abea1b58a6625455f2fa9bc1e6ab9bcfcc6bec8edbadb4baddf1cf5cfbc1
3
+ size 9997623855
pytorch_model-00002-of-00002.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:456b4d367444b6cd2ef13c02fbae621fbded6c3900de2f93921cf738644859a9
3
+ size 2004513892
pytorch_model.bin.index.json ADDED
The diff for this file is too large to render. See raw diff
 
special_tokens_map.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<s>",
3
+ "eos_token": "</s>",
4
+ "pad_token": "</s>",
5
+ "unk_token": "<unk>"
6
+ }
tokenization_internlm.py ADDED
@@ -0,0 +1,242 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+
21
+ """Tokenization classes for IntermLM."""
22
+ import os
23
+ from shutil import copyfile
24
+ from typing import Any, Dict, List, Optional, Tuple
25
+
26
+ import sentencepiece as spm
27
+
28
+ from transformers.tokenization_utils import PreTrainedTokenizer
29
+ from transformers.utils import logging
30
+
31
+
32
+ logger = logging.get_logger(__name__)
33
+
34
+ VOCAB_FILES_NAMES = {"vocab_file": "./tokenizer.model"}
35
+
36
+ PRETRAINED_VOCAB_FILES_MAP = {}
37
+
38
+
39
+ class InternLMTokenizer(PreTrainedTokenizer):
40
+ """
41
+ Construct a InternLM tokenizer. Based on byte-level Byte-Pair-Encoding.
42
+
43
+ Args:
44
+ vocab_file (`str`):
45
+ Path to the vocabulary file.
46
+ """
47
+
48
+ vocab_files_names = VOCAB_FILES_NAMES
49
+ pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
50
+ model_input_names = ["input_ids", "attention_mask"]
51
+ _auto_class = "AutoTokenizer"
52
+
53
+ def __init__(
54
+ self,
55
+ vocab_file,
56
+ unk_token="<unk>",
57
+ bos_token="<s>",
58
+ eos_token="</s>",
59
+ pad_token="</s>",
60
+ sp_model_kwargs: Optional[Dict[str, Any]] = None,
61
+ add_bos_token=True,
62
+ add_eos_token=False,
63
+ decode_with_prefix_space=False,
64
+ clean_up_tokenization_spaces=False,
65
+ **kwargs,
66
+ ):
67
+ self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
68
+ self.vocab_file = vocab_file
69
+ self.add_bos_token = add_bos_token
70
+ self.add_eos_token = add_eos_token
71
+ self.decode_with_prefix_space = decode_with_prefix_space
72
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
73
+ self.sp_model.Load(vocab_file)
74
+ self._no_prefix_space_tokens = None
75
+ super().__init__(
76
+ bos_token=bos_token,
77
+ eos_token=eos_token,
78
+ unk_token=unk_token,
79
+ pad_token=pad_token,
80
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
81
+ **kwargs,
82
+ )
83
+
84
+ """ Initialisation"""
85
+
86
+ @property
87
+ def no_prefix_space_tokens(self):
88
+ if self._no_prefix_space_tokens is None:
89
+ vocab = self.convert_ids_to_tokens(list(range(self.vocab_size)))
90
+ self._no_prefix_space_tokens = {i for i, tok in enumerate(vocab) if not tok.startswith("▁")}
91
+ return self._no_prefix_space_tokens
92
+
93
+ @property
94
+ def vocab_size(self):
95
+ """Returns vocab size"""
96
+ return self.sp_model.get_piece_size()
97
+
98
+ @property
99
+ def bos_token_id(self) -> Optional[int]:
100
+ return self.sp_model.bos_id()
101
+
102
+ @property
103
+ def eos_token_id(self) -> Optional[int]:
104
+ return self.sp_model.eos_id()
105
+
106
+ def get_vocab(self):
107
+ """Returns vocab as a dict"""
108
+ vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
109
+ vocab.update(self.added_tokens_encoder)
110
+ return vocab
111
+
112
+ def _tokenize(self, text):
113
+ """Returns a tokenized string."""
114
+ return self.sp_model.encode(text, out_type=str)
115
+
116
+ def _convert_token_to_id(self, token):
117
+ """Converts a token (str) in an id using the vocab."""
118
+ return self.sp_model.piece_to_id(token)
119
+
120
+ def _convert_id_to_token(self, index):
121
+ """Converts an index (integer) in a token (str) using the vocab."""
122
+ token = self.sp_model.IdToPiece(index)
123
+ return token
124
+
125
+ def _maybe_add_prefix_space(self, tokens, decoded):
126
+ if tokens and tokens[0] not in self.no_prefix_space_tokens:
127
+ return " " + decoded
128
+ else:
129
+ return decoded
130
+
131
+ def convert_tokens_to_string(self, tokens):
132
+ """Converts a sequence of tokens (string) in a single string."""
133
+ current_sub_tokens = []
134
+ out_string = ""
135
+ prev_is_special = False
136
+ for token in tokens:
137
+ # make sure that special tokens are not decoded using sentencepiece model
138
+ if token in self.all_special_tokens:
139
+ if not prev_is_special:
140
+ out_string += " "
141
+ out_string += self.sp_model.decode(current_sub_tokens) + token
142
+ prev_is_special = True
143
+ current_sub_tokens = []
144
+ else:
145
+ current_sub_tokens.append(token)
146
+ prev_is_special = False
147
+ out_string += self.sp_model.decode(current_sub_tokens)
148
+ out_string = self.clean_up_tokenization(out_string)
149
+ out_string = self._maybe_add_prefix_space(tokens=tokens, decoded=out_string)
150
+ return out_string[1:]
151
+
152
+ def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
153
+ """
154
+ Save the vocabulary and special tokens file to a directory.
155
+
156
+ Args:
157
+ save_directory (`str`):
158
+ The directory in which to save the vocabulary.
159
+
160
+ Returns:
161
+ `Tuple(str)`: Paths to the files saved.
162
+ """
163
+ if not os.path.isdir(save_directory):
164
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
165
+ return
166
+ out_vocab_file = os.path.join(
167
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
168
+ )
169
+
170
+ if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
171
+ copyfile(self.vocab_file, out_vocab_file)
172
+ elif not os.path.isfile(self.vocab_file):
173
+ with open(out_vocab_file, "wb") as fi:
174
+ content_spiece_model = self.sp_model.serialized_model_proto()
175
+ fi.write(content_spiece_model)
176
+
177
+ return (out_vocab_file,)
178
+
179
+ def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
180
+ if self.add_bos_token:
181
+ bos_token_ids = [self.bos_token_id]
182
+ else:
183
+ bos_token_ids = []
184
+
185
+ output = bos_token_ids + token_ids_0
186
+
187
+ if token_ids_1 is not None:
188
+ output = output + token_ids_1
189
+
190
+ if self.add_eos_token:
191
+ output = output + [self.eos_token_id]
192
+
193
+ return output
194
+
195
+ def get_special_tokens_mask(
196
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
197
+ ) -> List[int]:
198
+ """
199
+ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
200
+ special tokens using the tokenizer `prepare_for_model` method.
201
+
202
+ Args:
203
+ token_ids_0 (`List[int]`):
204
+ List of IDs.
205
+ token_ids_1 (`List[int]`, *optional*):
206
+ Optional second list of IDs for sequence pairs.
207
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
208
+ Whether or not the token list is already formatted with special tokens for the model.
209
+
210
+ Returns:
211
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
212
+ """
213
+ if already_has_special_tokens:
214
+ return super().get_special_tokens_mask(
215
+ token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
216
+ )
217
+
218
+ if token_ids_1 is None:
219
+ return [1] + ([0] * len(token_ids_0)) + [1]
220
+ return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
221
+
222
+ def create_token_type_ids_from_sequences(
223
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
224
+ ) -> List[int]:
225
+ """
226
+ Create a mask from the two sequences passed to be used in a sequence-pair classification task. T5 does not make
227
+ use of token type ids, therefore a list of zeros is returned.
228
+
229
+ Args:
230
+ token_ids_0 (`List[int]`):
231
+ List of IDs.
232
+ token_ids_1 (`List[int]`, *optional*):
233
+ Optional second list of IDs for sequence pairs.
234
+
235
+ Returns:
236
+ `List[int]`: List of zeros.
237
+ """
238
+ eos = [self.eos_token_id]
239
+
240
+ if token_ids_1 is None:
241
+ return len(token_ids_0 + eos) * [0]
242
+ return len(token_ids_0 + eos + token_ids_1 + eos) * [0]
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aab622d98c98677a1a51f969e25765154487bf3e85c7819db105db2fcacba83f
3
+ size 1658691
tokenizer_config.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "auto_map": {
3
+ "AutoTokenizer": [
4
+ "tokenization_internlm.InternLMTokenizer",
5
+ null
6
+ ]
7
+ },
8
+ "bos_token": "<s>",
9
+ "clean_up_tokenization_spaces": false,
10
+ "eos_token": "</s>",
11
+ "model_max_length": 1000000000000000019884624838656,
12
+ "pad_token": "</s>",
13
+ "tokenizer_class": "InternLMTokenizer",
14
+ "unk_token": "<unk>"
15
+ }
value_stats.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f202450ac24cb97d66804a89ddfccd52ab313e819c289e0c30d0a3e48f0ed8a4
3
+ size 1893489