irexyc commited on
Commit
22f590e
1 Parent(s): 536b93f
config.json CHANGED
@@ -1,11 +1,11 @@
1
  {
2
  "architectures": [
3
- "LmdeployForCausalLM"
4
  ],
5
  "auto_map": {
6
- "AutoConfig": "configuration_lmdeploy.LmdeployConfig",
7
- "AutoModel": "modeling_lmdeploy.LmdeployForCausalLM",
8
- "AutoModelForCausalLM": "modeling_lmdeploy.LmdeployForCausalLM"
9
  },
10
  "turbomind": {
11
  "model_name": "internlm-chat-20b",
@@ -35,5 +35,6 @@
35
  "max_position_embeddings": 2048,
36
  "use_dynamic_ntk": 0,
37
  "use_logn_attn": 0
38
- }
 
39
  }
 
1
  {
2
  "architectures": [
3
+ "LMDeployForCausalLM"
4
  ],
5
  "auto_map": {
6
+ "AutoConfig": "configuration_lmdeploy.LMDeployConfig",
7
+ "AutoModel": "modeling_lmdeploy.LMDeployForCausalLM",
8
+ "AutoModelForCausalLM": "modeling_lmdeploy.LMDeployForCausalLM"
9
  },
10
  "turbomind": {
11
  "model_name": "internlm-chat-20b",
 
35
  "max_position_embeddings": 2048,
36
  "use_dynamic_ntk": 0,
37
  "use_logn_attn": 0
38
+ },
39
+ "lmdeploy_version": "0.0.14"
40
  }
configuration_lmdeploy.py CHANGED
@@ -7,7 +7,8 @@ from lmdeploy.turbomind.deploy.target_model.base import TurbomindModelConfig
7
  from lmdeploy.version import __version__ as lm_version
8
 
9
 
10
- class LmdeployConfig(PretrainedConfig):
 
11
 
12
  def __init__(self, turbomind: dict = None, **kwargs):
13
  default_tm_cfg = copy.deepcopy(
@@ -33,3 +34,4 @@ class LmdeployConfig(PretrainedConfig):
33
  return config, kwargs
34
  else:
35
  return config
 
 
7
  from lmdeploy.version import __version__ as lm_version
8
 
9
 
10
+ class LMDeployConfig(PretrainedConfig):
11
+ """Lmdeploy config."""
12
 
13
  def __init__(self, turbomind: dict = None, **kwargs):
14
  default_tm_cfg = copy.deepcopy(
 
34
  return config, kwargs
35
  else:
36
  return config
37
+
modeling_lmdeploy.py CHANGED
@@ -7,14 +7,15 @@ from itertools import count
7
  from queue import Queue
8
  from typing import List, Optional, Tuple, Union
9
 
 
10
  from transformers import PretrainedConfig
11
  from transformers.modeling_utils import PreTrainedModel
12
  from transformers.utils import logging
13
 
14
  from lmdeploy.turbomind import TurboMind
15
- from lmdeploy.turbomind.utils import download_hf_repo, get_gen_param
16
 
17
- from .configuration_lmdeploy import LmdeployConfig
18
 
19
  logger = logging.get_logger(__name__)
20
 
@@ -55,11 +56,11 @@ class Session:
55
  return self._error
56
 
57
 
58
- class LmdeployForCausalLM(PreTrainedModel):
59
- config_class = LmdeployConfig
60
 
61
  def __init__(self,
62
- config: LmdeployConfig,
63
  *inputs,
64
  model_path: str = None,
65
  **kwargs):
@@ -90,7 +91,7 @@ class LmdeployForCausalLM(PreTrainedModel):
90
  if os.path.isdir(pretrained_model_name_or_path):
91
  local_folder = pretrained_model_name_or_path
92
  else:
93
- local_folder = download_hf_repo(
94
  pretrained_model_name_or_path,
95
  revision=revision,
96
  cache_dir=cache_dir,
@@ -137,6 +138,7 @@ class LmdeployForCausalLM(PreTrainedModel):
137
  sequence_end=False,
138
  stop=True):
139
  pass
 
140
  finally:
141
  self.que.put(generator)
142
 
@@ -222,3 +224,4 @@ class LmdeployForCausalLM(PreTrainedModel):
222
  session._step = _step + response_size
223
 
224
  yield response, session
 
 
7
  from queue import Queue
8
  from typing import List, Optional, Tuple, Union
9
 
10
+ from huggingface_hub import snapshot_download
11
  from transformers import PretrainedConfig
12
  from transformers.modeling_utils import PreTrainedModel
13
  from transformers.utils import logging
14
 
15
  from lmdeploy.turbomind import TurboMind
16
+ from lmdeploy.turbomind.utils import get_gen_param
17
 
18
+ from .configuration_lmdeploy import LMDeployConfig
19
 
20
  logger = logging.get_logger(__name__)
21
 
 
56
  return self._error
57
 
58
 
59
+ class LMDeployForCausalLM(PreTrainedModel):
60
+ config_class = LMDeployConfig
61
 
62
  def __init__(self,
63
+ config: LMDeployConfig,
64
  *inputs,
65
  model_path: str = None,
66
  **kwargs):
 
91
  if os.path.isdir(pretrained_model_name_or_path):
92
  local_folder = pretrained_model_name_or_path
93
  else:
94
+ local_folder = snapshot_download(
95
  pretrained_model_name_or_path,
96
  revision=revision,
97
  cache_dir=cache_dir,
 
138
  sequence_end=False,
139
  stop=True):
140
  pass
141
+ session._error = 1
142
  finally:
143
  self.que.put(generator)
144
 
 
224
  session._step = _step + response_size
225
 
226
  yield response, session
227
+