internlm-chat-20b-4bit / modeling_lmdeploy.py
irexyc's picture
lmdeploy managed
536b93f
raw
history blame
7.57 kB
# Copyright (c) OpenMMLab. All rights reserved.
import dataclasses
import os
from contextlib import contextmanager
from dataclasses import dataclass, field
from itertools import count
from queue import Queue
from typing import List, Optional, Tuple, Union
from transformers import PretrainedConfig
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import logging
from lmdeploy.turbomind import TurboMind
from lmdeploy.turbomind.utils import download_hf_repo, get_gen_param
from .configuration_lmdeploy import LmdeployConfig
logger = logging.get_logger(__name__)
@dataclass
class Session:
_count = count()
_session_id: int = None
_message: List[Tuple[str, str]] = field(default_factory=list)
_step: int = 0
_nth_round: int = 0
_error: int = 0
def __init__(self):
self._session_id = next(Session._count)
self._message = []
self._step = 0
self._nth_round = 0
@property
def session_id(self):
return self._session_id
@property
def message(self):
return self._message
@property
def step(self):
return self._step
@property
def nth_round(self):
return self._nth_round
@property
def error(self):
return self._error
class LmdeployForCausalLM(PreTrainedModel):
config_class = LmdeployConfig
def __init__(self,
config: LmdeployConfig,
*inputs,
model_path: str = None,
**kwargs):
super().__init__(config)
self.tm_model = TurboMind.from_pretrained(model_path, **kwargs)
que = Queue()
for _ in range(config.turbomind['max_batch_size']):
que.put(self.tm_model.create_instance())
self.que = que
@classmethod
def from_pretrained(cls,
pretrained_model_name_or_path,
*model_args,
config: Optional[Union[PretrainedConfig, str,
os.PathLike]] = None,
cache_dir: Optional[Union[str, os.PathLike]] = None,
force_download: bool = False,
local_files_only: bool = False,
token: Optional[Union[str, bool]] = None,
revision: str = 'main',
**kwargs):
"""Instantiate a LM model with turbomind backend."""
resume_download = kwargs.pop('resume_download', True)
proxies = kwargs.pop('proxies', None)
if os.path.isdir(pretrained_model_name_or_path):
local_folder = pretrained_model_name_or_path
else:
local_folder = download_hf_repo(
pretrained_model_name_or_path,
revision=revision,
cache_dir=cache_dir,
proxies=proxies,
resume_download=resume_download,
force_download=force_download,
token=token,
local_files_only=local_files_only,
)
if not isinstance(config, PretrainedConfig):
config_path = config if config is not None else local_folder
kwargs.pop('return_unused_kwargs')
config, model_kwargs = cls.config_class.from_pretrained(
config_path, return_unused_kwargs=True, **kwargs)
else:
model_kwargs = kwargs
model = cls(config,
*model_args,
model_path=local_folder,
**model_kwargs)
generation_config = model.tm_model.model.sampling_param
for k, v in dataclasses.asdict(generation_config).items():
if hasattr(model.generation_config, k):
base_value = getattr(model.generation_config, k)
setattr(generation_config, k, base_value)
if k in kwargs:
setattr(generation_config, k, v)
model.generation_config = generation_config
return model
@contextmanager
def managed_generator(self, session: Session):
generator = self.que.get()
try:
yield generator
except: # noqa E722
for _ in generator.stream_infer(session.session_id, [0],
request_output_len=0,
sequence_start=False,
sequence_end=False,
stop=True):
pass
finally:
self.que.put(generator)
def generate(
self,
input_ids: List[int],
session: Session,
**kwargs,
):
"""Generates sequences of token ids for models with a language modeling
head.
Args:
input_ids (List(int)): list of input token ids
session (Session) session information
kwargs (dict): hoc parametrization of generation
"""
with self.managed_generator(session) as generator:
for outputs in generator.stream_infer(
session_id=session.session_id,
input_ids=[input_ids],
**kwargs,
):
res, tokens = outputs[0]
yield res, tokens
def chat(
self,
query: str,
session: Optional[Session] = None,
cap: str = 'chat',
request_output_len: int = 512,
stream_output: bool = False,
ignore_eos=False,
random_seed: Optional[int] = None,
**kwargs,
) -> Tuple[str, Session]:
"""chat."""
if session is None:
session = Session()
assert session._error == 0, 'An error occurred before, ' \
'please start a new session.'
session._message.append([query, ''])
prompt = self.tm_model.model.get_prompt(query, session.nth_round == 0)
input_ids = self.tm_model.tokenizer.encode(prompt)
if len(
input_ids
) + session.step + request_output_len >= self.tm_model.session_len:
logger.error(
f'session_length exceeded {self.tm_model.session_len}')
session._error = 1
yield '', session
else:
gen_param = get_gen_param(cap, self.generation_config,
session.nth_round + 1, session.step,
request_output_len, **kwargs)
gen_kwargs = dataclasses.asdict(gen_param)
gen_kwargs.update(
random_seed=random_seed if session.nth_round == 0 else None,
stream_output=stream_output,
ignore_eos=ignore_eos,
**kwargs)
_step = session._step
_nth_round = session._nth_round
response_size = 0
for res, tokens in self.generate(input_ids,
session=session,
**gen_kwargs):
response = self.tm_model.tokenizer.decode(res.tolist(),
offset=response_size)
if response.endswith('�'):
continue
response_size = tokens
session._message[-1][-1] += response
session._nth_round = _nth_round + 1
session._step = _step + response_size
yield response, session