ipetrukha commited on
Commit
736bb87
1 Parent(s): 817283d

2f397010b86c77dab0fdb4258c39c58466ed3f0da1ffc2b6a7d09336ada3577e

Browse files
README.md ADDED
@@ -0,0 +1,186 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - code
4
+ license: llama2
5
+ pipeline_tag: text-generation
6
+ tags:
7
+ - facebook
8
+ - meta
9
+ - pytorch
10
+ - llama
11
+ - llama-2
12
+ - mlx
13
+ extra_gated_heading: You need to share contact information with Meta to access this
14
+ model
15
+ extra_gated_prompt: "### LLAMA 2 COMMUNITY LICENSE AGREEMENT\n\"Agreement\" means\
16
+ \ the terms and conditions for use, reproduction, distribution and modification\
17
+ \ of the Llama Materials set forth herein. \"Documentation\" means the specifications,\
18
+ \ manuals and documentation accompanying Llama 2 distributed by Meta at https://ai.meta.com/resources/models-and-libraries/llama-downloads/.\
19
+ \ \"Licensee\" or \"you\" means you, or your employer or any other person or entity\
20
+ \ (if you are entering into this Agreement on such person or entity's behalf), of\
21
+ \ the age required under applicable laws, rules or regulations to provide legal\
22
+ \ consent and that has legal authority to bind your employer or such other person\
23
+ \ or entity if you are entering in this Agreement on their behalf. \"Llama 2\"\
24
+ \ means the foundational large language models and software and algorithms, including\
25
+ \ machine-learning model code, trained model weights, inference-enabling code, training-enabling\
26
+ \ code, fine-tuning enabling code and other elements of the foregoing distributed\
27
+ \ by Meta at ai.meta.com/resources/models-and-libraries/llama-downloads/. \"Llama\
28
+ \ Materials\" means, collectively, Meta's proprietary Llama 2 and documentation\
29
+ \ (and any portion thereof) made available under this Agreement. \"Meta\" or \"\
30
+ we\" means Meta Platforms Ireland Limited (if you are located in or, if you are\
31
+ \ an entity, your principal place of business is in the EEA or Switzerland) and\
32
+ \ Meta Platforms, Inc. (if you are located outside of the EEA or Switzerland). \
33
+ \ By clicking \"I Accept\" below or by using or distributing any portion or element\
34
+ \ of the Llama Materials, you agree to be bound by this Agreement. 1. License Rights\
35
+ \ and Redistribution. a. Grant of Rights. You are granted a non-exclusive, worldwide,\
36
+ \ non- transferable and royalty-free limited license under Meta's intellectual property\
37
+ \ or other rights owned by Meta embodied in the Llama Materials to use, reproduce,\
38
+ \ distribute, copy, create derivative works of, and make modifications to the Llama\
39
+ \ Materials. \n \nb. Redistribution and Use. i. If you distribute or make\
40
+ \ the Llama Materials, or any derivative works thereof, available to a third party,\
41
+ \ you shall provide a copy of this Agreement to such third party. ii. If you\
42
+ \ receive Llama Materials, or any derivative works thereof, from a Licensee as\
43
+ \ part of an integrated end user product, then Section 2 of this Agreement will\
44
+ \ not apply to you. iii. You must retain in all copies of the Llama Materials that\
45
+ \ you distribute the following attribution notice within a \"Notice\" text file\
46
+ \ distributed as a part of such copies: \"Llama 2 is licensed under the LLAMA 2\
47
+ \ Community License, Copyright (c) Meta Platforms, Inc. All Rights Reserved.\"\
48
+ \ iv. Your use of the Llama Materials must comply with applicable laws and regulations\
49
+ \ (including trade compliance laws and regulations) and adhere to the Acceptable\
50
+ \ Use Policy for the Llama Materials (available at https://ai.meta.com/llama/use-policy),\
51
+ \ which is hereby incorporated by reference into this Agreement. v. You will not\
52
+ \ use the Llama Materials or any output or results of the Llama Materials to improve\
53
+ \ any other large language model (excluding Llama 2 or derivative works thereof).\
54
+ \ 2. Additional Commercial Terms. If, on the Llama 2 version release date, the\
55
+ \ monthly active users of the products or services made available by or for Licensee,\
56
+ \ or Licensee's affiliates, is greater than 700 million monthly active users in\
57
+ \ the preceding calendar month, you must request a license from Meta, which Meta\
58
+ \ may grant to you in its sole discretion, and you are not authorized to exercise\
59
+ \ any of the rights under this Agreement unless or until Meta otherwise expressly\
60
+ \ grants you such rights. 3. Disclaimer of Warranty. UNLESS REQUIRED BY APPLICABLE\
61
+ \ LAW, THE LLAMA MATERIALS AND ANY OUTPUT AND RESULTS THEREFROM ARE PROVIDED ON\
62
+ \ AN \"AS IS\" BASIS, WITHOUT WARRANTIES OF ANY KIND, EITHER EXPRESS OR IMPLIED,\
63
+ \ INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY,\
64
+ \ OR FITNESS FOR A PARTICULAR PURPOSE. YOU ARE SOLELY RESPONSIBLE FOR DETERMINING\
65
+ \ THE APPROPRIATENESS OF USING OR REDISTRIBUTING THE LLAMA MATERIALS AND ASSUME\
66
+ \ ANY RISKS ASSOCIATED WITH YOUR USE OF THE LLAMA MATERIALS AND ANY OUTPUT AND\
67
+ \ RESULTS. 4. Limitation of Liability. IN NO EVENT WILL META OR ITS AFFILIATES BE\
68
+ \ LIABLE UNDER ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, TORT, NEGLIGENCE,\
69
+ \ PRODUCTS LIABILITY, OR OTHERWISE, ARISING OUT OF THIS AGREEMENT, FOR ANY LOST\
70
+ \ PROFITS OR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL, EXEMPLARY OR PUNITIVE\
71
+ \ DAMAGES, EVEN IF META OR ITS AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY\
72
+ \ OF ANY OF THE FOREGOING. 5. Intellectual Property. a. No trademark licenses are\
73
+ \ granted under this Agreement, and in connection with the Llama Materials, neither\
74
+ \ Meta nor Licensee may use any name or mark owned by or associated with the other\
75
+ \ or any of its affiliates, except as required for reasonable and customary use\
76
+ \ in describing and redistributing the Llama Materials. b. Subject to Meta's ownership\
77
+ \ of Llama Materials and derivatives made by or for Meta, with respect to any derivative\
78
+ \ works and modifications of the Llama Materials that are made by you, as between\
79
+ \ you and Meta, you are and will be the owner of such derivative works and modifications.\
80
+ \ c. If you institute litigation or other proceedings against Meta or any entity\
81
+ \ (including a cross-claim or counterclaim in a lawsuit) alleging that the Llama\
82
+ \ Materials or Llama 2 outputs or results, or any portion of any of the foregoing,\
83
+ \ constitutes infringement of intellectual property or other rights owned or licensable\
84
+ \ by you, then any licenses granted to you under this Agreement shall terminate\
85
+ \ as of the date such litigation or claim is filed or instituted. You will indemnify\
86
+ \ and hold harmless Meta from and against any claim by any third party arising\
87
+ \ out of or related to your use or distribution of the Llama Materials. 6. Term\
88
+ \ and Termination. The term of this Agreement will commence upon your acceptance\
89
+ \ of this Agreement or access to the Llama Materials and will continue in full\
90
+ \ force and effect until terminated in accordance with the terms and conditions\
91
+ \ herein. Meta may terminate this Agreement if you are in breach of any term or\
92
+ \ condition of this Agreement. Upon termination of this Agreement, you shall delete\
93
+ \ and cease use of the Llama Materials. Sections 3, 4 and 7 shall survive the \
94
+ \ termination of this Agreement. 7. Governing Law and Jurisdiction. This Agreement\
95
+ \ will be governed and construed under the laws of the State of California without\
96
+ \ regard to choice of law principles, and the UN Convention on Contracts for the\
97
+ \ International Sale of Goods does not apply to this Agreement. The courts of California\
98
+ \ shall have exclusive jurisdiction of any dispute arising out of this Agreement.\
99
+ \ USE POLICY ### Llama 2 Acceptable Use Policy Meta is committed to promoting safe\
100
+ \ and fair use of its tools and features, including Llama 2. If you access or use\
101
+ \ Llama 2, you agree to this Acceptable Use Policy (“Policy”). The most recent copy\
102
+ \ of this policy can be found at [ai.meta.com/llama/use-policy](http://ai.meta.com/llama/use-policy).\
103
+ \ #### Prohibited Uses We want everyone to use Llama 2 safely and responsibly. You\
104
+ \ agree you will not use, or allow others to use, Llama 2 to: 1. Violate the law\
105
+ \ or others’ rights, including to:\n 1. Engage in, promote, generate, contribute\
106
+ \ to, encourage, plan, incite, or further illegal or unlawful activity or content,\
107
+ \ such as: \n 1. Violence or terrorism \n 2. Exploitation or harm to children,\
108
+ \ including the solicitation, creation, acquisition, or dissemination of child exploitative\
109
+ \ content or failure to report Child Sexual Abuse Material\n 3. Human trafficking,\
110
+ \ exploitation, and sexual violence\n 4. The illegal distribution of information\
111
+ \ or materials to minors, including obscene materials, or failure to employ legally\
112
+ \ required age-gating in connection with such information or materials.\n 5.\
113
+ \ Sexual solicitation\n 6. Any other criminal activity\n 2. Engage in, promote,\
114
+ \ incite, or facilitate the harassment, abuse, threatening, or bullying of individuals\
115
+ \ or groups of individuals\n 3. Engage in, promote, incite, or facilitate discrimination\
116
+ \ or other unlawful or harmful conduct in the provision of employment, employment\
117
+ \ benefits, credit, housing, other economic benefits, or other essential goods and\
118
+ \ services\n 4. Engage in the unauthorized or unlicensed practice of any profession\
119
+ \ including, but not limited to, financial, legal, medical/health, or related professional\
120
+ \ practices \n 5. Collect, process, disclose, generate, or infer health, demographic,\
121
+ \ or other sensitive personal or private information about individuals without rights\
122
+ \ and consents required by applicable laws\n 6. Engage in or facilitate any action\
123
+ \ or generate any content that infringes, misappropriates, or otherwise violates\
124
+ \ any third-party rights, including the outputs or results of any products or services\
125
+ \ using the Llama 2 Materials\n 7. Create, generate, or facilitate the creation\
126
+ \ of malicious code, malware, computer viruses or do anything else that could disable,\
127
+ \ overburden, interfere with or impair the proper working, integrity, operation\
128
+ \ or appearance of a website or computer system \n2. Engage in, promote, incite,\
129
+ \ facilitate, or assist in the planning or development of activities that present\
130
+ \ a risk of death or bodily harm to individuals, including use of Llama 2 related\
131
+ \ to the following:\n 1. Military, warfare, nuclear industries or applications,\
132
+ \ espionage, use for materials or activities that are subject to the International\
133
+ \ Traffic Arms Regulations (ITAR) maintained by the United States Department of\
134
+ \ State\n 2. Guns and illegal weapons (including weapon development)\n 3. Illegal\
135
+ \ drugs and regulated/controlled substances\n 4. Operation of critical infrastructure,\
136
+ \ transportation technologies, or heavy machinery\n 5. Self-harm or harm to others,\
137
+ \ including suicide, cutting, and eating disorders\n 6. Any content intended to\
138
+ \ incite or promote violence, abuse, or any infliction of bodily harm to an individual\n\
139
+ 3. Intentionally deceive or mislead others, including use of Llama 2 related to\
140
+ \ the following:\n 1. Generating, promoting, or furthering fraud or the creation\
141
+ \ or promotion of disinformation\n 2. Generating, promoting, or furthering defamatory\
142
+ \ content, including the creation of defamatory statements, images, or other content\n\
143
+ \ 3. Generating, promoting, or further distributing spam\n 4. Impersonating another\
144
+ \ individual without consent, authorization, or legal right\n 5. Representing that\
145
+ \ the use of Llama 2 or outputs are human-generated\n 6. Generating or facilitating\
146
+ \ false online engagement, including fake reviews and other means of fake online\
147
+ \ engagement \n 4. Fail to appropriately disclose to end users any known dangers\
148
+ \ of your AI system \nPlease report any violation of this Policy, software “bug,”\
149
+ \ or other problems that could lead to a violation of this Policy through one of\
150
+ \ the following means: * Reporting issues with the model: [github.com/facebookresearch/llama](http://github.com/facebookresearch/llama)\
151
+ \ * Reporting risky content generated by the model: [developers.facebook.com/llama_output_feedback](http://developers.facebook.com/llama_output_feedback)\
152
+ \ * Reporting bugs and security concerns: [facebook.com/whitehat/info](http://facebook.com/whitehat/info)\
153
+ \ * Reporting violations of the Acceptable Use Policy or unlicensed uses of Llama:\
154
+ \ [LlamaUseReport@meta.com](mailto:LlamaUseReport@meta.com)"
155
+ extra_gated_fields:
156
+ First Name: text
157
+ Last Name: text
158
+ Date of birth: date_picker
159
+ Country: country
160
+ Affiliation: text
161
+ geo: ip_location
162
+ ? By clicking Submit below I accept the terms of the license and acknowledge that
163
+ the information I provide will be collected stored processed and shared in accordance
164
+ with the Meta Privacy Policy
165
+ : checkbox
166
+ extra_gated_description: The information you provide will be collected, stored, processed
167
+ and shared in accordance with the [Meta Privacy Policy](https://www.facebook.com/privacy/policy/).
168
+ extra_gated_button_content: Submit
169
+ ---
170
+
171
+ # ipetrukha/CodeLlama-34b-Instruct-hf-4bit
172
+
173
+ The Model [ipetrukha/CodeLlama-34b-Instruct-hf-4bit](https://huggingface.co/ipetrukha/CodeLlama-34b-Instruct-hf-4bit) was converted to MLX format from [meta-llama/CodeLlama-34b-Instruct-hf](https://huggingface.co/meta-llama/CodeLlama-34b-Instruct-hf) using mlx-lm version **0.16.1**.
174
+
175
+ ## Use with mlx
176
+
177
+ ```bash
178
+ pip install mlx-lm
179
+ ```
180
+
181
+ ```python
182
+ from mlx_lm import load, generate
183
+
184
+ model, tokenizer = load("ipetrukha/CodeLlama-34b-Instruct-hf-4bit")
185
+ response = generate(model, tokenizer, prompt="hello", verbose=True)
186
+ ```
added_tokens.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "▁<EOT>": 32003,
3
+ "▁<MID>": 32001,
4
+ "▁<PRE>": 32000,
5
+ "▁<SUF>": 32002
6
+ }
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "LlamaForCausalLM"
4
+ ],
5
+ "bos_token_id": 1,
6
+ "eos_token_id": 2,
7
+ "hidden_act": "silu",
8
+ "hidden_size": 8192,
9
+ "initializer_range": 0.02,
10
+ "intermediate_size": 22016,
11
+ "max_position_embeddings": 16384,
12
+ "model_type": "llama",
13
+ "num_attention_heads": 64,
14
+ "num_hidden_layers": 48,
15
+ "num_key_value_heads": 8,
16
+ "pretraining_tp": 1,
17
+ "quantization": {
18
+ "group_size": 64,
19
+ "bits": 4
20
+ },
21
+ "rms_norm_eps": 1e-05,
22
+ "rope_scaling": null,
23
+ "rope_theta": 1000000,
24
+ "tie_word_embeddings": false,
25
+ "torch_dtype": "bfloat16",
26
+ "transformers_version": "4.32.0.dev0",
27
+ "use_cache": true,
28
+ "vocab_size": 32000
29
+ }
model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:468ff1658034cb7992005929a6d8796523ce9ab5f4b33c08cd341a54e55c5f9e
3
+ size 1956312791
model.safetensors.index.json ADDED
@@ -0,0 +1,1118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 18982125568
4
+ },
5
+ "weight_map": {
6
+ "lm_head.biases": "model-00004-of-00004.safetensors",
7
+ "lm_head.scales": "model-00004-of-00004.safetensors",
8
+ "lm_head.weight": "model-00004-of-00004.safetensors",
9
+ "model.embed_tokens.biases": "model-00001-of-00004.safetensors",
10
+ "model.embed_tokens.scales": "model-00001-of-00004.safetensors",
11
+ "model.embed_tokens.weight": "model-00001-of-00004.safetensors",
12
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
13
+ "model.layers.0.mlp.down_proj.biases": "model-00001-of-00004.safetensors",
14
+ "model.layers.0.mlp.down_proj.scales": "model-00001-of-00004.safetensors",
15
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
16
+ "model.layers.0.mlp.gate_proj.biases": "model-00001-of-00004.safetensors",
17
+ "model.layers.0.mlp.gate_proj.scales": "model-00001-of-00004.safetensors",
18
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
19
+ "model.layers.0.mlp.up_proj.biases": "model-00001-of-00004.safetensors",
20
+ "model.layers.0.mlp.up_proj.scales": "model-00001-of-00004.safetensors",
21
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
22
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
23
+ "model.layers.0.self_attn.k_proj.biases": "model-00001-of-00004.safetensors",
24
+ "model.layers.0.self_attn.k_proj.scales": "model-00001-of-00004.safetensors",
25
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
26
+ "model.layers.0.self_attn.o_proj.biases": "model-00001-of-00004.safetensors",
27
+ "model.layers.0.self_attn.o_proj.scales": "model-00001-of-00004.safetensors",
28
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
29
+ "model.layers.0.self_attn.q_proj.biases": "model-00001-of-00004.safetensors",
30
+ "model.layers.0.self_attn.q_proj.scales": "model-00001-of-00004.safetensors",
31
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
32
+ "model.layers.0.self_attn.v_proj.biases": "model-00001-of-00004.safetensors",
33
+ "model.layers.0.self_attn.v_proj.scales": "model-00001-of-00004.safetensors",
34
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
35
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
36
+ "model.layers.1.mlp.down_proj.biases": "model-00001-of-00004.safetensors",
37
+ "model.layers.1.mlp.down_proj.scales": "model-00001-of-00004.safetensors",
38
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
39
+ "model.layers.1.mlp.gate_proj.biases": "model-00001-of-00004.safetensors",
40
+ "model.layers.1.mlp.gate_proj.scales": "model-00001-of-00004.safetensors",
41
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
42
+ "model.layers.1.mlp.up_proj.biases": "model-00001-of-00004.safetensors",
43
+ "model.layers.1.mlp.up_proj.scales": "model-00001-of-00004.safetensors",
44
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
45
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
46
+ "model.layers.1.self_attn.k_proj.biases": "model-00001-of-00004.safetensors",
47
+ "model.layers.1.self_attn.k_proj.scales": "model-00001-of-00004.safetensors",
48
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
49
+ "model.layers.1.self_attn.o_proj.biases": "model-00001-of-00004.safetensors",
50
+ "model.layers.1.self_attn.o_proj.scales": "model-00001-of-00004.safetensors",
51
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
52
+ "model.layers.1.self_attn.q_proj.biases": "model-00001-of-00004.safetensors",
53
+ "model.layers.1.self_attn.q_proj.scales": "model-00001-of-00004.safetensors",
54
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
55
+ "model.layers.1.self_attn.v_proj.biases": "model-00001-of-00004.safetensors",
56
+ "model.layers.1.self_attn.v_proj.scales": "model-00001-of-00004.safetensors",
57
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
58
+ "model.layers.10.input_layernorm.weight": "model-00001-of-00004.safetensors",
59
+ "model.layers.10.mlp.down_proj.biases": "model-00001-of-00004.safetensors",
60
+ "model.layers.10.mlp.down_proj.scales": "model-00001-of-00004.safetensors",
61
+ "model.layers.10.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
62
+ "model.layers.10.mlp.gate_proj.biases": "model-00001-of-00004.safetensors",
63
+ "model.layers.10.mlp.gate_proj.scales": "model-00001-of-00004.safetensors",
64
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
65
+ "model.layers.10.mlp.up_proj.biases": "model-00001-of-00004.safetensors",
66
+ "model.layers.10.mlp.up_proj.scales": "model-00001-of-00004.safetensors",
67
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
68
+ "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
69
+ "model.layers.10.self_attn.k_proj.biases": "model-00001-of-00004.safetensors",
70
+ "model.layers.10.self_attn.k_proj.scales": "model-00001-of-00004.safetensors",
71
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
72
+ "model.layers.10.self_attn.o_proj.biases": "model-00001-of-00004.safetensors",
73
+ "model.layers.10.self_attn.o_proj.scales": "model-00001-of-00004.safetensors",
74
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
75
+ "model.layers.10.self_attn.q_proj.biases": "model-00001-of-00004.safetensors",
76
+ "model.layers.10.self_attn.q_proj.scales": "model-00001-of-00004.safetensors",
77
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
78
+ "model.layers.10.self_attn.v_proj.biases": "model-00001-of-00004.safetensors",
79
+ "model.layers.10.self_attn.v_proj.scales": "model-00001-of-00004.safetensors",
80
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
81
+ "model.layers.11.input_layernorm.weight": "model-00001-of-00004.safetensors",
82
+ "model.layers.11.mlp.down_proj.biases": "model-00001-of-00004.safetensors",
83
+ "model.layers.11.mlp.down_proj.scales": "model-00001-of-00004.safetensors",
84
+ "model.layers.11.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
85
+ "model.layers.11.mlp.gate_proj.biases": "model-00001-of-00004.safetensors",
86
+ "model.layers.11.mlp.gate_proj.scales": "model-00001-of-00004.safetensors",
87
+ "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
88
+ "model.layers.11.mlp.up_proj.biases": "model-00001-of-00004.safetensors",
89
+ "model.layers.11.mlp.up_proj.scales": "model-00001-of-00004.safetensors",
90
+ "model.layers.11.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
91
+ "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
92
+ "model.layers.11.self_attn.k_proj.biases": "model-00001-of-00004.safetensors",
93
+ "model.layers.11.self_attn.k_proj.scales": "model-00001-of-00004.safetensors",
94
+ "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
95
+ "model.layers.11.self_attn.o_proj.biases": "model-00001-of-00004.safetensors",
96
+ "model.layers.11.self_attn.o_proj.scales": "model-00001-of-00004.safetensors",
97
+ "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
98
+ "model.layers.11.self_attn.q_proj.biases": "model-00001-of-00004.safetensors",
99
+ "model.layers.11.self_attn.q_proj.scales": "model-00001-of-00004.safetensors",
100
+ "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
101
+ "model.layers.11.self_attn.v_proj.biases": "model-00001-of-00004.safetensors",
102
+ "model.layers.11.self_attn.v_proj.scales": "model-00001-of-00004.safetensors",
103
+ "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
104
+ "model.layers.12.input_layernorm.weight": "model-00001-of-00004.safetensors",
105
+ "model.layers.12.mlp.down_proj.biases": "model-00001-of-00004.safetensors",
106
+ "model.layers.12.mlp.down_proj.scales": "model-00001-of-00004.safetensors",
107
+ "model.layers.12.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
108
+ "model.layers.12.mlp.gate_proj.biases": "model-00001-of-00004.safetensors",
109
+ "model.layers.12.mlp.gate_proj.scales": "model-00001-of-00004.safetensors",
110
+ "model.layers.12.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
111
+ "model.layers.12.mlp.up_proj.biases": "model-00001-of-00004.safetensors",
112
+ "model.layers.12.mlp.up_proj.scales": "model-00001-of-00004.safetensors",
113
+ "model.layers.12.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
114
+ "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
115
+ "model.layers.12.self_attn.k_proj.biases": "model-00001-of-00004.safetensors",
116
+ "model.layers.12.self_attn.k_proj.scales": "model-00001-of-00004.safetensors",
117
+ "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
118
+ "model.layers.12.self_attn.o_proj.biases": "model-00001-of-00004.safetensors",
119
+ "model.layers.12.self_attn.o_proj.scales": "model-00001-of-00004.safetensors",
120
+ "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
121
+ "model.layers.12.self_attn.q_proj.biases": "model-00001-of-00004.safetensors",
122
+ "model.layers.12.self_attn.q_proj.scales": "model-00001-of-00004.safetensors",
123
+ "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
124
+ "model.layers.12.self_attn.v_proj.biases": "model-00001-of-00004.safetensors",
125
+ "model.layers.12.self_attn.v_proj.scales": "model-00001-of-00004.safetensors",
126
+ "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
127
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
128
+ "model.layers.13.mlp.down_proj.biases": "model-00002-of-00004.safetensors",
129
+ "model.layers.13.mlp.down_proj.scales": "model-00002-of-00004.safetensors",
130
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
131
+ "model.layers.13.mlp.gate_proj.biases": "model-00002-of-00004.safetensors",
132
+ "model.layers.13.mlp.gate_proj.scales": "model-00002-of-00004.safetensors",
133
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
134
+ "model.layers.13.mlp.up_proj.biases": "model-00002-of-00004.safetensors",
135
+ "model.layers.13.mlp.up_proj.scales": "model-00002-of-00004.safetensors",
136
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
137
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
138
+ "model.layers.13.self_attn.k_proj.biases": "model-00001-of-00004.safetensors",
139
+ "model.layers.13.self_attn.k_proj.scales": "model-00001-of-00004.safetensors",
140
+ "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
141
+ "model.layers.13.self_attn.o_proj.biases": "model-00001-of-00004.safetensors",
142
+ "model.layers.13.self_attn.o_proj.scales": "model-00001-of-00004.safetensors",
143
+ "model.layers.13.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
144
+ "model.layers.13.self_attn.q_proj.biases": "model-00001-of-00004.safetensors",
145
+ "model.layers.13.self_attn.q_proj.scales": "model-00001-of-00004.safetensors",
146
+ "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
147
+ "model.layers.13.self_attn.v_proj.biases": "model-00001-of-00004.safetensors",
148
+ "model.layers.13.self_attn.v_proj.scales": "model-00001-of-00004.safetensors",
149
+ "model.layers.13.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
150
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
151
+ "model.layers.14.mlp.down_proj.biases": "model-00002-of-00004.safetensors",
152
+ "model.layers.14.mlp.down_proj.scales": "model-00002-of-00004.safetensors",
153
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
154
+ "model.layers.14.mlp.gate_proj.biases": "model-00002-of-00004.safetensors",
155
+ "model.layers.14.mlp.gate_proj.scales": "model-00002-of-00004.safetensors",
156
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
157
+ "model.layers.14.mlp.up_proj.biases": "model-00002-of-00004.safetensors",
158
+ "model.layers.14.mlp.up_proj.scales": "model-00002-of-00004.safetensors",
159
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
160
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
161
+ "model.layers.14.self_attn.k_proj.biases": "model-00002-of-00004.safetensors",
162
+ "model.layers.14.self_attn.k_proj.scales": "model-00002-of-00004.safetensors",
163
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
164
+ "model.layers.14.self_attn.o_proj.biases": "model-00002-of-00004.safetensors",
165
+ "model.layers.14.self_attn.o_proj.scales": "model-00002-of-00004.safetensors",
166
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
167
+ "model.layers.14.self_attn.q_proj.biases": "model-00002-of-00004.safetensors",
168
+ "model.layers.14.self_attn.q_proj.scales": "model-00002-of-00004.safetensors",
169
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
170
+ "model.layers.14.self_attn.v_proj.biases": "model-00002-of-00004.safetensors",
171
+ "model.layers.14.self_attn.v_proj.scales": "model-00002-of-00004.safetensors",
172
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
173
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
174
+ "model.layers.15.mlp.down_proj.biases": "model-00002-of-00004.safetensors",
175
+ "model.layers.15.mlp.down_proj.scales": "model-00002-of-00004.safetensors",
176
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
177
+ "model.layers.15.mlp.gate_proj.biases": "model-00002-of-00004.safetensors",
178
+ "model.layers.15.mlp.gate_proj.scales": "model-00002-of-00004.safetensors",
179
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
180
+ "model.layers.15.mlp.up_proj.biases": "model-00002-of-00004.safetensors",
181
+ "model.layers.15.mlp.up_proj.scales": "model-00002-of-00004.safetensors",
182
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
183
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
184
+ "model.layers.15.self_attn.k_proj.biases": "model-00002-of-00004.safetensors",
185
+ "model.layers.15.self_attn.k_proj.scales": "model-00002-of-00004.safetensors",
186
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
187
+ "model.layers.15.self_attn.o_proj.biases": "model-00002-of-00004.safetensors",
188
+ "model.layers.15.self_attn.o_proj.scales": "model-00002-of-00004.safetensors",
189
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
190
+ "model.layers.15.self_attn.q_proj.biases": "model-00002-of-00004.safetensors",
191
+ "model.layers.15.self_attn.q_proj.scales": "model-00002-of-00004.safetensors",
192
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
193
+ "model.layers.15.self_attn.v_proj.biases": "model-00002-of-00004.safetensors",
194
+ "model.layers.15.self_attn.v_proj.scales": "model-00002-of-00004.safetensors",
195
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
196
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
197
+ "model.layers.16.mlp.down_proj.biases": "model-00002-of-00004.safetensors",
198
+ "model.layers.16.mlp.down_proj.scales": "model-00002-of-00004.safetensors",
199
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
200
+ "model.layers.16.mlp.gate_proj.biases": "model-00002-of-00004.safetensors",
201
+ "model.layers.16.mlp.gate_proj.scales": "model-00002-of-00004.safetensors",
202
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
203
+ "model.layers.16.mlp.up_proj.biases": "model-00002-of-00004.safetensors",
204
+ "model.layers.16.mlp.up_proj.scales": "model-00002-of-00004.safetensors",
205
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
206
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
207
+ "model.layers.16.self_attn.k_proj.biases": "model-00002-of-00004.safetensors",
208
+ "model.layers.16.self_attn.k_proj.scales": "model-00002-of-00004.safetensors",
209
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
210
+ "model.layers.16.self_attn.o_proj.biases": "model-00002-of-00004.safetensors",
211
+ "model.layers.16.self_attn.o_proj.scales": "model-00002-of-00004.safetensors",
212
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
213
+ "model.layers.16.self_attn.q_proj.biases": "model-00002-of-00004.safetensors",
214
+ "model.layers.16.self_attn.q_proj.scales": "model-00002-of-00004.safetensors",
215
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
216
+ "model.layers.16.self_attn.v_proj.biases": "model-00002-of-00004.safetensors",
217
+ "model.layers.16.self_attn.v_proj.scales": "model-00002-of-00004.safetensors",
218
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
219
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
220
+ "model.layers.17.mlp.down_proj.biases": "model-00002-of-00004.safetensors",
221
+ "model.layers.17.mlp.down_proj.scales": "model-00002-of-00004.safetensors",
222
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
223
+ "model.layers.17.mlp.gate_proj.biases": "model-00002-of-00004.safetensors",
224
+ "model.layers.17.mlp.gate_proj.scales": "model-00002-of-00004.safetensors",
225
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
226
+ "model.layers.17.mlp.up_proj.biases": "model-00002-of-00004.safetensors",
227
+ "model.layers.17.mlp.up_proj.scales": "model-00002-of-00004.safetensors",
228
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
229
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
230
+ "model.layers.17.self_attn.k_proj.biases": "model-00002-of-00004.safetensors",
231
+ "model.layers.17.self_attn.k_proj.scales": "model-00002-of-00004.safetensors",
232
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
233
+ "model.layers.17.self_attn.o_proj.biases": "model-00002-of-00004.safetensors",
234
+ "model.layers.17.self_attn.o_proj.scales": "model-00002-of-00004.safetensors",
235
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
236
+ "model.layers.17.self_attn.q_proj.biases": "model-00002-of-00004.safetensors",
237
+ "model.layers.17.self_attn.q_proj.scales": "model-00002-of-00004.safetensors",
238
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
239
+ "model.layers.17.self_attn.v_proj.biases": "model-00002-of-00004.safetensors",
240
+ "model.layers.17.self_attn.v_proj.scales": "model-00002-of-00004.safetensors",
241
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
242
+ "model.layers.18.input_layernorm.weight": "model-00002-of-00004.safetensors",
243
+ "model.layers.18.mlp.down_proj.biases": "model-00002-of-00004.safetensors",
244
+ "model.layers.18.mlp.down_proj.scales": "model-00002-of-00004.safetensors",
245
+ "model.layers.18.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
246
+ "model.layers.18.mlp.gate_proj.biases": "model-00002-of-00004.safetensors",
247
+ "model.layers.18.mlp.gate_proj.scales": "model-00002-of-00004.safetensors",
248
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
249
+ "model.layers.18.mlp.up_proj.biases": "model-00002-of-00004.safetensors",
250
+ "model.layers.18.mlp.up_proj.scales": "model-00002-of-00004.safetensors",
251
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
252
+ "model.layers.18.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
253
+ "model.layers.18.self_attn.k_proj.biases": "model-00002-of-00004.safetensors",
254
+ "model.layers.18.self_attn.k_proj.scales": "model-00002-of-00004.safetensors",
255
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
256
+ "model.layers.18.self_attn.o_proj.biases": "model-00002-of-00004.safetensors",
257
+ "model.layers.18.self_attn.o_proj.scales": "model-00002-of-00004.safetensors",
258
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
259
+ "model.layers.18.self_attn.q_proj.biases": "model-00002-of-00004.safetensors",
260
+ "model.layers.18.self_attn.q_proj.scales": "model-00002-of-00004.safetensors",
261
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
262
+ "model.layers.18.self_attn.v_proj.biases": "model-00002-of-00004.safetensors",
263
+ "model.layers.18.self_attn.v_proj.scales": "model-00002-of-00004.safetensors",
264
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
265
+ "model.layers.19.input_layernorm.weight": "model-00002-of-00004.safetensors",
266
+ "model.layers.19.mlp.down_proj.biases": "model-00002-of-00004.safetensors",
267
+ "model.layers.19.mlp.down_proj.scales": "model-00002-of-00004.safetensors",
268
+ "model.layers.19.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
269
+ "model.layers.19.mlp.gate_proj.biases": "model-00002-of-00004.safetensors",
270
+ "model.layers.19.mlp.gate_proj.scales": "model-00002-of-00004.safetensors",
271
+ "model.layers.19.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
272
+ "model.layers.19.mlp.up_proj.biases": "model-00002-of-00004.safetensors",
273
+ "model.layers.19.mlp.up_proj.scales": "model-00002-of-00004.safetensors",
274
+ "model.layers.19.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
275
+ "model.layers.19.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
276
+ "model.layers.19.self_attn.k_proj.biases": "model-00002-of-00004.safetensors",
277
+ "model.layers.19.self_attn.k_proj.scales": "model-00002-of-00004.safetensors",
278
+ "model.layers.19.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
279
+ "model.layers.19.self_attn.o_proj.biases": "model-00002-of-00004.safetensors",
280
+ "model.layers.19.self_attn.o_proj.scales": "model-00002-of-00004.safetensors",
281
+ "model.layers.19.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
282
+ "model.layers.19.self_attn.q_proj.biases": "model-00002-of-00004.safetensors",
283
+ "model.layers.19.self_attn.q_proj.scales": "model-00002-of-00004.safetensors",
284
+ "model.layers.19.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
285
+ "model.layers.19.self_attn.v_proj.biases": "model-00002-of-00004.safetensors",
286
+ "model.layers.19.self_attn.v_proj.scales": "model-00002-of-00004.safetensors",
287
+ "model.layers.19.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
288
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
289
+ "model.layers.2.mlp.down_proj.biases": "model-00001-of-00004.safetensors",
290
+ "model.layers.2.mlp.down_proj.scales": "model-00001-of-00004.safetensors",
291
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
292
+ "model.layers.2.mlp.gate_proj.biases": "model-00001-of-00004.safetensors",
293
+ "model.layers.2.mlp.gate_proj.scales": "model-00001-of-00004.safetensors",
294
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
295
+ "model.layers.2.mlp.up_proj.biases": "model-00001-of-00004.safetensors",
296
+ "model.layers.2.mlp.up_proj.scales": "model-00001-of-00004.safetensors",
297
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
298
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
299
+ "model.layers.2.self_attn.k_proj.biases": "model-00001-of-00004.safetensors",
300
+ "model.layers.2.self_attn.k_proj.scales": "model-00001-of-00004.safetensors",
301
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
302
+ "model.layers.2.self_attn.o_proj.biases": "model-00001-of-00004.safetensors",
303
+ "model.layers.2.self_attn.o_proj.scales": "model-00001-of-00004.safetensors",
304
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
305
+ "model.layers.2.self_attn.q_proj.biases": "model-00001-of-00004.safetensors",
306
+ "model.layers.2.self_attn.q_proj.scales": "model-00001-of-00004.safetensors",
307
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
308
+ "model.layers.2.self_attn.v_proj.biases": "model-00001-of-00004.safetensors",
309
+ "model.layers.2.self_attn.v_proj.scales": "model-00001-of-00004.safetensors",
310
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
311
+ "model.layers.20.input_layernorm.weight": "model-00002-of-00004.safetensors",
312
+ "model.layers.20.mlp.down_proj.biases": "model-00002-of-00004.safetensors",
313
+ "model.layers.20.mlp.down_proj.scales": "model-00002-of-00004.safetensors",
314
+ "model.layers.20.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
315
+ "model.layers.20.mlp.gate_proj.biases": "model-00002-of-00004.safetensors",
316
+ "model.layers.20.mlp.gate_proj.scales": "model-00002-of-00004.safetensors",
317
+ "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
318
+ "model.layers.20.mlp.up_proj.biases": "model-00002-of-00004.safetensors",
319
+ "model.layers.20.mlp.up_proj.scales": "model-00002-of-00004.safetensors",
320
+ "model.layers.20.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
321
+ "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
322
+ "model.layers.20.self_attn.k_proj.biases": "model-00002-of-00004.safetensors",
323
+ "model.layers.20.self_attn.k_proj.scales": "model-00002-of-00004.safetensors",
324
+ "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
325
+ "model.layers.20.self_attn.o_proj.biases": "model-00002-of-00004.safetensors",
326
+ "model.layers.20.self_attn.o_proj.scales": "model-00002-of-00004.safetensors",
327
+ "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
328
+ "model.layers.20.self_attn.q_proj.biases": "model-00002-of-00004.safetensors",
329
+ "model.layers.20.self_attn.q_proj.scales": "model-00002-of-00004.safetensors",
330
+ "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
331
+ "model.layers.20.self_attn.v_proj.biases": "model-00002-of-00004.safetensors",
332
+ "model.layers.20.self_attn.v_proj.scales": "model-00002-of-00004.safetensors",
333
+ "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
334
+ "model.layers.21.input_layernorm.weight": "model-00002-of-00004.safetensors",
335
+ "model.layers.21.mlp.down_proj.biases": "model-00002-of-00004.safetensors",
336
+ "model.layers.21.mlp.down_proj.scales": "model-00002-of-00004.safetensors",
337
+ "model.layers.21.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
338
+ "model.layers.21.mlp.gate_proj.biases": "model-00002-of-00004.safetensors",
339
+ "model.layers.21.mlp.gate_proj.scales": "model-00002-of-00004.safetensors",
340
+ "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
341
+ "model.layers.21.mlp.up_proj.biases": "model-00002-of-00004.safetensors",
342
+ "model.layers.21.mlp.up_proj.scales": "model-00002-of-00004.safetensors",
343
+ "model.layers.21.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
344
+ "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
345
+ "model.layers.21.self_attn.k_proj.biases": "model-00002-of-00004.safetensors",
346
+ "model.layers.21.self_attn.k_proj.scales": "model-00002-of-00004.safetensors",
347
+ "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
348
+ "model.layers.21.self_attn.o_proj.biases": "model-00002-of-00004.safetensors",
349
+ "model.layers.21.self_attn.o_proj.scales": "model-00002-of-00004.safetensors",
350
+ "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
351
+ "model.layers.21.self_attn.q_proj.biases": "model-00002-of-00004.safetensors",
352
+ "model.layers.21.self_attn.q_proj.scales": "model-00002-of-00004.safetensors",
353
+ "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
354
+ "model.layers.21.self_attn.v_proj.biases": "model-00002-of-00004.safetensors",
355
+ "model.layers.21.self_attn.v_proj.scales": "model-00002-of-00004.safetensors",
356
+ "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
357
+ "model.layers.22.input_layernorm.weight": "model-00002-of-00004.safetensors",
358
+ "model.layers.22.mlp.down_proj.biases": "model-00002-of-00004.safetensors",
359
+ "model.layers.22.mlp.down_proj.scales": "model-00002-of-00004.safetensors",
360
+ "model.layers.22.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
361
+ "model.layers.22.mlp.gate_proj.biases": "model-00002-of-00004.safetensors",
362
+ "model.layers.22.mlp.gate_proj.scales": "model-00002-of-00004.safetensors",
363
+ "model.layers.22.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
364
+ "model.layers.22.mlp.up_proj.biases": "model-00002-of-00004.safetensors",
365
+ "model.layers.22.mlp.up_proj.scales": "model-00002-of-00004.safetensors",
366
+ "model.layers.22.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
367
+ "model.layers.22.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
368
+ "model.layers.22.self_attn.k_proj.biases": "model-00002-of-00004.safetensors",
369
+ "model.layers.22.self_attn.k_proj.scales": "model-00002-of-00004.safetensors",
370
+ "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
371
+ "model.layers.22.self_attn.o_proj.biases": "model-00002-of-00004.safetensors",
372
+ "model.layers.22.self_attn.o_proj.scales": "model-00002-of-00004.safetensors",
373
+ "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
374
+ "model.layers.22.self_attn.q_proj.biases": "model-00002-of-00004.safetensors",
375
+ "model.layers.22.self_attn.q_proj.scales": "model-00002-of-00004.safetensors",
376
+ "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
377
+ "model.layers.22.self_attn.v_proj.biases": "model-00002-of-00004.safetensors",
378
+ "model.layers.22.self_attn.v_proj.scales": "model-00002-of-00004.safetensors",
379
+ "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
380
+ "model.layers.23.input_layernorm.weight": "model-00002-of-00004.safetensors",
381
+ "model.layers.23.mlp.down_proj.biases": "model-00002-of-00004.safetensors",
382
+ "model.layers.23.mlp.down_proj.scales": "model-00002-of-00004.safetensors",
383
+ "model.layers.23.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
384
+ "model.layers.23.mlp.gate_proj.biases": "model-00002-of-00004.safetensors",
385
+ "model.layers.23.mlp.gate_proj.scales": "model-00002-of-00004.safetensors",
386
+ "model.layers.23.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
387
+ "model.layers.23.mlp.up_proj.biases": "model-00002-of-00004.safetensors",
388
+ "model.layers.23.mlp.up_proj.scales": "model-00002-of-00004.safetensors",
389
+ "model.layers.23.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
390
+ "model.layers.23.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
391
+ "model.layers.23.self_attn.k_proj.biases": "model-00002-of-00004.safetensors",
392
+ "model.layers.23.self_attn.k_proj.scales": "model-00002-of-00004.safetensors",
393
+ "model.layers.23.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
394
+ "model.layers.23.self_attn.o_proj.biases": "model-00002-of-00004.safetensors",
395
+ "model.layers.23.self_attn.o_proj.scales": "model-00002-of-00004.safetensors",
396
+ "model.layers.23.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
397
+ "model.layers.23.self_attn.q_proj.biases": "model-00002-of-00004.safetensors",
398
+ "model.layers.23.self_attn.q_proj.scales": "model-00002-of-00004.safetensors",
399
+ "model.layers.23.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
400
+ "model.layers.23.self_attn.v_proj.biases": "model-00002-of-00004.safetensors",
401
+ "model.layers.23.self_attn.v_proj.scales": "model-00002-of-00004.safetensors",
402
+ "model.layers.23.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
403
+ "model.layers.24.input_layernorm.weight": "model-00002-of-00004.safetensors",
404
+ "model.layers.24.mlp.down_proj.biases": "model-00002-of-00004.safetensors",
405
+ "model.layers.24.mlp.down_proj.scales": "model-00002-of-00004.safetensors",
406
+ "model.layers.24.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
407
+ "model.layers.24.mlp.gate_proj.biases": "model-00002-of-00004.safetensors",
408
+ "model.layers.24.mlp.gate_proj.scales": "model-00002-of-00004.safetensors",
409
+ "model.layers.24.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
410
+ "model.layers.24.mlp.up_proj.biases": "model-00002-of-00004.safetensors",
411
+ "model.layers.24.mlp.up_proj.scales": "model-00002-of-00004.safetensors",
412
+ "model.layers.24.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
413
+ "model.layers.24.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
414
+ "model.layers.24.self_attn.k_proj.biases": "model-00002-of-00004.safetensors",
415
+ "model.layers.24.self_attn.k_proj.scales": "model-00002-of-00004.safetensors",
416
+ "model.layers.24.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
417
+ "model.layers.24.self_attn.o_proj.biases": "model-00002-of-00004.safetensors",
418
+ "model.layers.24.self_attn.o_proj.scales": "model-00002-of-00004.safetensors",
419
+ "model.layers.24.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
420
+ "model.layers.24.self_attn.q_proj.biases": "model-00002-of-00004.safetensors",
421
+ "model.layers.24.self_attn.q_proj.scales": "model-00002-of-00004.safetensors",
422
+ "model.layers.24.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
423
+ "model.layers.24.self_attn.v_proj.biases": "model-00002-of-00004.safetensors",
424
+ "model.layers.24.self_attn.v_proj.scales": "model-00002-of-00004.safetensors",
425
+ "model.layers.24.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
426
+ "model.layers.25.input_layernorm.weight": "model-00002-of-00004.safetensors",
427
+ "model.layers.25.mlp.down_proj.biases": "model-00002-of-00004.safetensors",
428
+ "model.layers.25.mlp.down_proj.scales": "model-00002-of-00004.safetensors",
429
+ "model.layers.25.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
430
+ "model.layers.25.mlp.gate_proj.biases": "model-00002-of-00004.safetensors",
431
+ "model.layers.25.mlp.gate_proj.scales": "model-00002-of-00004.safetensors",
432
+ "model.layers.25.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
433
+ "model.layers.25.mlp.up_proj.biases": "model-00002-of-00004.safetensors",
434
+ "model.layers.25.mlp.up_proj.scales": "model-00002-of-00004.safetensors",
435
+ "model.layers.25.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
436
+ "model.layers.25.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
437
+ "model.layers.25.self_attn.k_proj.biases": "model-00002-of-00004.safetensors",
438
+ "model.layers.25.self_attn.k_proj.scales": "model-00002-of-00004.safetensors",
439
+ "model.layers.25.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
440
+ "model.layers.25.self_attn.o_proj.biases": "model-00002-of-00004.safetensors",
441
+ "model.layers.25.self_attn.o_proj.scales": "model-00002-of-00004.safetensors",
442
+ "model.layers.25.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
443
+ "model.layers.25.self_attn.q_proj.biases": "model-00002-of-00004.safetensors",
444
+ "model.layers.25.self_attn.q_proj.scales": "model-00002-of-00004.safetensors",
445
+ "model.layers.25.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
446
+ "model.layers.25.self_attn.v_proj.biases": "model-00002-of-00004.safetensors",
447
+ "model.layers.25.self_attn.v_proj.scales": "model-00002-of-00004.safetensors",
448
+ "model.layers.25.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
449
+ "model.layers.26.input_layernorm.weight": "model-00002-of-00004.safetensors",
450
+ "model.layers.26.mlp.down_proj.biases": "model-00002-of-00004.safetensors",
451
+ "model.layers.26.mlp.down_proj.scales": "model-00002-of-00004.safetensors",
452
+ "model.layers.26.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
453
+ "model.layers.26.mlp.gate_proj.biases": "model-00002-of-00004.safetensors",
454
+ "model.layers.26.mlp.gate_proj.scales": "model-00002-of-00004.safetensors",
455
+ "model.layers.26.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
456
+ "model.layers.26.mlp.up_proj.biases": "model-00002-of-00004.safetensors",
457
+ "model.layers.26.mlp.up_proj.scales": "model-00002-of-00004.safetensors",
458
+ "model.layers.26.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
459
+ "model.layers.26.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
460
+ "model.layers.26.self_attn.k_proj.biases": "model-00002-of-00004.safetensors",
461
+ "model.layers.26.self_attn.k_proj.scales": "model-00002-of-00004.safetensors",
462
+ "model.layers.26.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
463
+ "model.layers.26.self_attn.o_proj.biases": "model-00002-of-00004.safetensors",
464
+ "model.layers.26.self_attn.o_proj.scales": "model-00002-of-00004.safetensors",
465
+ "model.layers.26.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
466
+ "model.layers.26.self_attn.q_proj.biases": "model-00002-of-00004.safetensors",
467
+ "model.layers.26.self_attn.q_proj.scales": "model-00002-of-00004.safetensors",
468
+ "model.layers.26.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
469
+ "model.layers.26.self_attn.v_proj.biases": "model-00002-of-00004.safetensors",
470
+ "model.layers.26.self_attn.v_proj.scales": "model-00002-of-00004.safetensors",
471
+ "model.layers.26.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
472
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
473
+ "model.layers.27.mlp.down_proj.biases": "model-00003-of-00004.safetensors",
474
+ "model.layers.27.mlp.down_proj.scales": "model-00003-of-00004.safetensors",
475
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
476
+ "model.layers.27.mlp.gate_proj.biases": "model-00003-of-00004.safetensors",
477
+ "model.layers.27.mlp.gate_proj.scales": "model-00003-of-00004.safetensors",
478
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
479
+ "model.layers.27.mlp.up_proj.biases": "model-00003-of-00004.safetensors",
480
+ "model.layers.27.mlp.up_proj.scales": "model-00003-of-00004.safetensors",
481
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
482
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
483
+ "model.layers.27.self_attn.k_proj.biases": "model-00003-of-00004.safetensors",
484
+ "model.layers.27.self_attn.k_proj.scales": "model-00003-of-00004.safetensors",
485
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
486
+ "model.layers.27.self_attn.o_proj.biases": "model-00003-of-00004.safetensors",
487
+ "model.layers.27.self_attn.o_proj.scales": "model-00003-of-00004.safetensors",
488
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
489
+ "model.layers.27.self_attn.q_proj.biases": "model-00003-of-00004.safetensors",
490
+ "model.layers.27.self_attn.q_proj.scales": "model-00003-of-00004.safetensors",
491
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
492
+ "model.layers.27.self_attn.v_proj.biases": "model-00003-of-00004.safetensors",
493
+ "model.layers.27.self_attn.v_proj.scales": "model-00003-of-00004.safetensors",
494
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
495
+ "model.layers.28.input_layernorm.weight": "model-00003-of-00004.safetensors",
496
+ "model.layers.28.mlp.down_proj.biases": "model-00003-of-00004.safetensors",
497
+ "model.layers.28.mlp.down_proj.scales": "model-00003-of-00004.safetensors",
498
+ "model.layers.28.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
499
+ "model.layers.28.mlp.gate_proj.biases": "model-00003-of-00004.safetensors",
500
+ "model.layers.28.mlp.gate_proj.scales": "model-00003-of-00004.safetensors",
501
+ "model.layers.28.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
502
+ "model.layers.28.mlp.up_proj.biases": "model-00003-of-00004.safetensors",
503
+ "model.layers.28.mlp.up_proj.scales": "model-00003-of-00004.safetensors",
504
+ "model.layers.28.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
505
+ "model.layers.28.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
506
+ "model.layers.28.self_attn.k_proj.biases": "model-00003-of-00004.safetensors",
507
+ "model.layers.28.self_attn.k_proj.scales": "model-00003-of-00004.safetensors",
508
+ "model.layers.28.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
509
+ "model.layers.28.self_attn.o_proj.biases": "model-00003-of-00004.safetensors",
510
+ "model.layers.28.self_attn.o_proj.scales": "model-00003-of-00004.safetensors",
511
+ "model.layers.28.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
512
+ "model.layers.28.self_attn.q_proj.biases": "model-00003-of-00004.safetensors",
513
+ "model.layers.28.self_attn.q_proj.scales": "model-00003-of-00004.safetensors",
514
+ "model.layers.28.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
515
+ "model.layers.28.self_attn.v_proj.biases": "model-00003-of-00004.safetensors",
516
+ "model.layers.28.self_attn.v_proj.scales": "model-00003-of-00004.safetensors",
517
+ "model.layers.28.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
518
+ "model.layers.29.input_layernorm.weight": "model-00003-of-00004.safetensors",
519
+ "model.layers.29.mlp.down_proj.biases": "model-00003-of-00004.safetensors",
520
+ "model.layers.29.mlp.down_proj.scales": "model-00003-of-00004.safetensors",
521
+ "model.layers.29.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
522
+ "model.layers.29.mlp.gate_proj.biases": "model-00003-of-00004.safetensors",
523
+ "model.layers.29.mlp.gate_proj.scales": "model-00003-of-00004.safetensors",
524
+ "model.layers.29.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
525
+ "model.layers.29.mlp.up_proj.biases": "model-00003-of-00004.safetensors",
526
+ "model.layers.29.mlp.up_proj.scales": "model-00003-of-00004.safetensors",
527
+ "model.layers.29.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
528
+ "model.layers.29.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
529
+ "model.layers.29.self_attn.k_proj.biases": "model-00003-of-00004.safetensors",
530
+ "model.layers.29.self_attn.k_proj.scales": "model-00003-of-00004.safetensors",
531
+ "model.layers.29.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
532
+ "model.layers.29.self_attn.o_proj.biases": "model-00003-of-00004.safetensors",
533
+ "model.layers.29.self_attn.o_proj.scales": "model-00003-of-00004.safetensors",
534
+ "model.layers.29.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
535
+ "model.layers.29.self_attn.q_proj.biases": "model-00003-of-00004.safetensors",
536
+ "model.layers.29.self_attn.q_proj.scales": "model-00003-of-00004.safetensors",
537
+ "model.layers.29.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
538
+ "model.layers.29.self_attn.v_proj.biases": "model-00003-of-00004.safetensors",
539
+ "model.layers.29.self_attn.v_proj.scales": "model-00003-of-00004.safetensors",
540
+ "model.layers.29.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
541
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
542
+ "model.layers.3.mlp.down_proj.biases": "model-00001-of-00004.safetensors",
543
+ "model.layers.3.mlp.down_proj.scales": "model-00001-of-00004.safetensors",
544
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
545
+ "model.layers.3.mlp.gate_proj.biases": "model-00001-of-00004.safetensors",
546
+ "model.layers.3.mlp.gate_proj.scales": "model-00001-of-00004.safetensors",
547
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
548
+ "model.layers.3.mlp.up_proj.biases": "model-00001-of-00004.safetensors",
549
+ "model.layers.3.mlp.up_proj.scales": "model-00001-of-00004.safetensors",
550
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
551
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
552
+ "model.layers.3.self_attn.k_proj.biases": "model-00001-of-00004.safetensors",
553
+ "model.layers.3.self_attn.k_proj.scales": "model-00001-of-00004.safetensors",
554
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
555
+ "model.layers.3.self_attn.o_proj.biases": "model-00001-of-00004.safetensors",
556
+ "model.layers.3.self_attn.o_proj.scales": "model-00001-of-00004.safetensors",
557
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
558
+ "model.layers.3.self_attn.q_proj.biases": "model-00001-of-00004.safetensors",
559
+ "model.layers.3.self_attn.q_proj.scales": "model-00001-of-00004.safetensors",
560
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
561
+ "model.layers.3.self_attn.v_proj.biases": "model-00001-of-00004.safetensors",
562
+ "model.layers.3.self_attn.v_proj.scales": "model-00001-of-00004.safetensors",
563
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
564
+ "model.layers.30.input_layernorm.weight": "model-00003-of-00004.safetensors",
565
+ "model.layers.30.mlp.down_proj.biases": "model-00003-of-00004.safetensors",
566
+ "model.layers.30.mlp.down_proj.scales": "model-00003-of-00004.safetensors",
567
+ "model.layers.30.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
568
+ "model.layers.30.mlp.gate_proj.biases": "model-00003-of-00004.safetensors",
569
+ "model.layers.30.mlp.gate_proj.scales": "model-00003-of-00004.safetensors",
570
+ "model.layers.30.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
571
+ "model.layers.30.mlp.up_proj.biases": "model-00003-of-00004.safetensors",
572
+ "model.layers.30.mlp.up_proj.scales": "model-00003-of-00004.safetensors",
573
+ "model.layers.30.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
574
+ "model.layers.30.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
575
+ "model.layers.30.self_attn.k_proj.biases": "model-00003-of-00004.safetensors",
576
+ "model.layers.30.self_attn.k_proj.scales": "model-00003-of-00004.safetensors",
577
+ "model.layers.30.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
578
+ "model.layers.30.self_attn.o_proj.biases": "model-00003-of-00004.safetensors",
579
+ "model.layers.30.self_attn.o_proj.scales": "model-00003-of-00004.safetensors",
580
+ "model.layers.30.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
581
+ "model.layers.30.self_attn.q_proj.biases": "model-00003-of-00004.safetensors",
582
+ "model.layers.30.self_attn.q_proj.scales": "model-00003-of-00004.safetensors",
583
+ "model.layers.30.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
584
+ "model.layers.30.self_attn.v_proj.biases": "model-00003-of-00004.safetensors",
585
+ "model.layers.30.self_attn.v_proj.scales": "model-00003-of-00004.safetensors",
586
+ "model.layers.30.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
587
+ "model.layers.31.input_layernorm.weight": "model-00003-of-00004.safetensors",
588
+ "model.layers.31.mlp.down_proj.biases": "model-00003-of-00004.safetensors",
589
+ "model.layers.31.mlp.down_proj.scales": "model-00003-of-00004.safetensors",
590
+ "model.layers.31.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
591
+ "model.layers.31.mlp.gate_proj.biases": "model-00003-of-00004.safetensors",
592
+ "model.layers.31.mlp.gate_proj.scales": "model-00003-of-00004.safetensors",
593
+ "model.layers.31.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
594
+ "model.layers.31.mlp.up_proj.biases": "model-00003-of-00004.safetensors",
595
+ "model.layers.31.mlp.up_proj.scales": "model-00003-of-00004.safetensors",
596
+ "model.layers.31.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
597
+ "model.layers.31.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
598
+ "model.layers.31.self_attn.k_proj.biases": "model-00003-of-00004.safetensors",
599
+ "model.layers.31.self_attn.k_proj.scales": "model-00003-of-00004.safetensors",
600
+ "model.layers.31.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
601
+ "model.layers.31.self_attn.o_proj.biases": "model-00003-of-00004.safetensors",
602
+ "model.layers.31.self_attn.o_proj.scales": "model-00003-of-00004.safetensors",
603
+ "model.layers.31.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
604
+ "model.layers.31.self_attn.q_proj.biases": "model-00003-of-00004.safetensors",
605
+ "model.layers.31.self_attn.q_proj.scales": "model-00003-of-00004.safetensors",
606
+ "model.layers.31.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
607
+ "model.layers.31.self_attn.v_proj.biases": "model-00003-of-00004.safetensors",
608
+ "model.layers.31.self_attn.v_proj.scales": "model-00003-of-00004.safetensors",
609
+ "model.layers.31.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
610
+ "model.layers.32.input_layernorm.weight": "model-00003-of-00004.safetensors",
611
+ "model.layers.32.mlp.down_proj.biases": "model-00003-of-00004.safetensors",
612
+ "model.layers.32.mlp.down_proj.scales": "model-00003-of-00004.safetensors",
613
+ "model.layers.32.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
614
+ "model.layers.32.mlp.gate_proj.biases": "model-00003-of-00004.safetensors",
615
+ "model.layers.32.mlp.gate_proj.scales": "model-00003-of-00004.safetensors",
616
+ "model.layers.32.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
617
+ "model.layers.32.mlp.up_proj.biases": "model-00003-of-00004.safetensors",
618
+ "model.layers.32.mlp.up_proj.scales": "model-00003-of-00004.safetensors",
619
+ "model.layers.32.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
620
+ "model.layers.32.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
621
+ "model.layers.32.self_attn.k_proj.biases": "model-00003-of-00004.safetensors",
622
+ "model.layers.32.self_attn.k_proj.scales": "model-00003-of-00004.safetensors",
623
+ "model.layers.32.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
624
+ "model.layers.32.self_attn.o_proj.biases": "model-00003-of-00004.safetensors",
625
+ "model.layers.32.self_attn.o_proj.scales": "model-00003-of-00004.safetensors",
626
+ "model.layers.32.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
627
+ "model.layers.32.self_attn.q_proj.biases": "model-00003-of-00004.safetensors",
628
+ "model.layers.32.self_attn.q_proj.scales": "model-00003-of-00004.safetensors",
629
+ "model.layers.32.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
630
+ "model.layers.32.self_attn.v_proj.biases": "model-00003-of-00004.safetensors",
631
+ "model.layers.32.self_attn.v_proj.scales": "model-00003-of-00004.safetensors",
632
+ "model.layers.32.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
633
+ "model.layers.33.input_layernorm.weight": "model-00003-of-00004.safetensors",
634
+ "model.layers.33.mlp.down_proj.biases": "model-00003-of-00004.safetensors",
635
+ "model.layers.33.mlp.down_proj.scales": "model-00003-of-00004.safetensors",
636
+ "model.layers.33.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
637
+ "model.layers.33.mlp.gate_proj.biases": "model-00003-of-00004.safetensors",
638
+ "model.layers.33.mlp.gate_proj.scales": "model-00003-of-00004.safetensors",
639
+ "model.layers.33.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
640
+ "model.layers.33.mlp.up_proj.biases": "model-00003-of-00004.safetensors",
641
+ "model.layers.33.mlp.up_proj.scales": "model-00003-of-00004.safetensors",
642
+ "model.layers.33.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
643
+ "model.layers.33.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
644
+ "model.layers.33.self_attn.k_proj.biases": "model-00003-of-00004.safetensors",
645
+ "model.layers.33.self_attn.k_proj.scales": "model-00003-of-00004.safetensors",
646
+ "model.layers.33.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
647
+ "model.layers.33.self_attn.o_proj.biases": "model-00003-of-00004.safetensors",
648
+ "model.layers.33.self_attn.o_proj.scales": "model-00003-of-00004.safetensors",
649
+ "model.layers.33.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
650
+ "model.layers.33.self_attn.q_proj.biases": "model-00003-of-00004.safetensors",
651
+ "model.layers.33.self_attn.q_proj.scales": "model-00003-of-00004.safetensors",
652
+ "model.layers.33.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
653
+ "model.layers.33.self_attn.v_proj.biases": "model-00003-of-00004.safetensors",
654
+ "model.layers.33.self_attn.v_proj.scales": "model-00003-of-00004.safetensors",
655
+ "model.layers.33.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
656
+ "model.layers.34.input_layernorm.weight": "model-00003-of-00004.safetensors",
657
+ "model.layers.34.mlp.down_proj.biases": "model-00003-of-00004.safetensors",
658
+ "model.layers.34.mlp.down_proj.scales": "model-00003-of-00004.safetensors",
659
+ "model.layers.34.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
660
+ "model.layers.34.mlp.gate_proj.biases": "model-00003-of-00004.safetensors",
661
+ "model.layers.34.mlp.gate_proj.scales": "model-00003-of-00004.safetensors",
662
+ "model.layers.34.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
663
+ "model.layers.34.mlp.up_proj.biases": "model-00003-of-00004.safetensors",
664
+ "model.layers.34.mlp.up_proj.scales": "model-00003-of-00004.safetensors",
665
+ "model.layers.34.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
666
+ "model.layers.34.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
667
+ "model.layers.34.self_attn.k_proj.biases": "model-00003-of-00004.safetensors",
668
+ "model.layers.34.self_attn.k_proj.scales": "model-00003-of-00004.safetensors",
669
+ "model.layers.34.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
670
+ "model.layers.34.self_attn.o_proj.biases": "model-00003-of-00004.safetensors",
671
+ "model.layers.34.self_attn.o_proj.scales": "model-00003-of-00004.safetensors",
672
+ "model.layers.34.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
673
+ "model.layers.34.self_attn.q_proj.biases": "model-00003-of-00004.safetensors",
674
+ "model.layers.34.self_attn.q_proj.scales": "model-00003-of-00004.safetensors",
675
+ "model.layers.34.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
676
+ "model.layers.34.self_attn.v_proj.biases": "model-00003-of-00004.safetensors",
677
+ "model.layers.34.self_attn.v_proj.scales": "model-00003-of-00004.safetensors",
678
+ "model.layers.34.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
679
+ "model.layers.35.input_layernorm.weight": "model-00003-of-00004.safetensors",
680
+ "model.layers.35.mlp.down_proj.biases": "model-00003-of-00004.safetensors",
681
+ "model.layers.35.mlp.down_proj.scales": "model-00003-of-00004.safetensors",
682
+ "model.layers.35.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
683
+ "model.layers.35.mlp.gate_proj.biases": "model-00003-of-00004.safetensors",
684
+ "model.layers.35.mlp.gate_proj.scales": "model-00003-of-00004.safetensors",
685
+ "model.layers.35.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
686
+ "model.layers.35.mlp.up_proj.biases": "model-00003-of-00004.safetensors",
687
+ "model.layers.35.mlp.up_proj.scales": "model-00003-of-00004.safetensors",
688
+ "model.layers.35.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
689
+ "model.layers.35.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
690
+ "model.layers.35.self_attn.k_proj.biases": "model-00003-of-00004.safetensors",
691
+ "model.layers.35.self_attn.k_proj.scales": "model-00003-of-00004.safetensors",
692
+ "model.layers.35.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
693
+ "model.layers.35.self_attn.o_proj.biases": "model-00003-of-00004.safetensors",
694
+ "model.layers.35.self_attn.o_proj.scales": "model-00003-of-00004.safetensors",
695
+ "model.layers.35.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
696
+ "model.layers.35.self_attn.q_proj.biases": "model-00003-of-00004.safetensors",
697
+ "model.layers.35.self_attn.q_proj.scales": "model-00003-of-00004.safetensors",
698
+ "model.layers.35.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
699
+ "model.layers.35.self_attn.v_proj.biases": "model-00003-of-00004.safetensors",
700
+ "model.layers.35.self_attn.v_proj.scales": "model-00003-of-00004.safetensors",
701
+ "model.layers.35.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
702
+ "model.layers.36.input_layernorm.weight": "model-00003-of-00004.safetensors",
703
+ "model.layers.36.mlp.down_proj.biases": "model-00003-of-00004.safetensors",
704
+ "model.layers.36.mlp.down_proj.scales": "model-00003-of-00004.safetensors",
705
+ "model.layers.36.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
706
+ "model.layers.36.mlp.gate_proj.biases": "model-00003-of-00004.safetensors",
707
+ "model.layers.36.mlp.gate_proj.scales": "model-00003-of-00004.safetensors",
708
+ "model.layers.36.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
709
+ "model.layers.36.mlp.up_proj.biases": "model-00003-of-00004.safetensors",
710
+ "model.layers.36.mlp.up_proj.scales": "model-00003-of-00004.safetensors",
711
+ "model.layers.36.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
712
+ "model.layers.36.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
713
+ "model.layers.36.self_attn.k_proj.biases": "model-00003-of-00004.safetensors",
714
+ "model.layers.36.self_attn.k_proj.scales": "model-00003-of-00004.safetensors",
715
+ "model.layers.36.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
716
+ "model.layers.36.self_attn.o_proj.biases": "model-00003-of-00004.safetensors",
717
+ "model.layers.36.self_attn.o_proj.scales": "model-00003-of-00004.safetensors",
718
+ "model.layers.36.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
719
+ "model.layers.36.self_attn.q_proj.biases": "model-00003-of-00004.safetensors",
720
+ "model.layers.36.self_attn.q_proj.scales": "model-00003-of-00004.safetensors",
721
+ "model.layers.36.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
722
+ "model.layers.36.self_attn.v_proj.biases": "model-00003-of-00004.safetensors",
723
+ "model.layers.36.self_attn.v_proj.scales": "model-00003-of-00004.safetensors",
724
+ "model.layers.36.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
725
+ "model.layers.37.input_layernorm.weight": "model-00003-of-00004.safetensors",
726
+ "model.layers.37.mlp.down_proj.biases": "model-00003-of-00004.safetensors",
727
+ "model.layers.37.mlp.down_proj.scales": "model-00003-of-00004.safetensors",
728
+ "model.layers.37.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
729
+ "model.layers.37.mlp.gate_proj.biases": "model-00003-of-00004.safetensors",
730
+ "model.layers.37.mlp.gate_proj.scales": "model-00003-of-00004.safetensors",
731
+ "model.layers.37.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
732
+ "model.layers.37.mlp.up_proj.biases": "model-00003-of-00004.safetensors",
733
+ "model.layers.37.mlp.up_proj.scales": "model-00003-of-00004.safetensors",
734
+ "model.layers.37.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
735
+ "model.layers.37.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
736
+ "model.layers.37.self_attn.k_proj.biases": "model-00003-of-00004.safetensors",
737
+ "model.layers.37.self_attn.k_proj.scales": "model-00003-of-00004.safetensors",
738
+ "model.layers.37.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
739
+ "model.layers.37.self_attn.o_proj.biases": "model-00003-of-00004.safetensors",
740
+ "model.layers.37.self_attn.o_proj.scales": "model-00003-of-00004.safetensors",
741
+ "model.layers.37.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
742
+ "model.layers.37.self_attn.q_proj.biases": "model-00003-of-00004.safetensors",
743
+ "model.layers.37.self_attn.q_proj.scales": "model-00003-of-00004.safetensors",
744
+ "model.layers.37.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
745
+ "model.layers.37.self_attn.v_proj.biases": "model-00003-of-00004.safetensors",
746
+ "model.layers.37.self_attn.v_proj.scales": "model-00003-of-00004.safetensors",
747
+ "model.layers.37.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
748
+ "model.layers.38.input_layernorm.weight": "model-00003-of-00004.safetensors",
749
+ "model.layers.38.mlp.down_proj.biases": "model-00003-of-00004.safetensors",
750
+ "model.layers.38.mlp.down_proj.scales": "model-00003-of-00004.safetensors",
751
+ "model.layers.38.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
752
+ "model.layers.38.mlp.gate_proj.biases": "model-00003-of-00004.safetensors",
753
+ "model.layers.38.mlp.gate_proj.scales": "model-00003-of-00004.safetensors",
754
+ "model.layers.38.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
755
+ "model.layers.38.mlp.up_proj.biases": "model-00003-of-00004.safetensors",
756
+ "model.layers.38.mlp.up_proj.scales": "model-00003-of-00004.safetensors",
757
+ "model.layers.38.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
758
+ "model.layers.38.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
759
+ "model.layers.38.self_attn.k_proj.biases": "model-00003-of-00004.safetensors",
760
+ "model.layers.38.self_attn.k_proj.scales": "model-00003-of-00004.safetensors",
761
+ "model.layers.38.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
762
+ "model.layers.38.self_attn.o_proj.biases": "model-00003-of-00004.safetensors",
763
+ "model.layers.38.self_attn.o_proj.scales": "model-00003-of-00004.safetensors",
764
+ "model.layers.38.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
765
+ "model.layers.38.self_attn.q_proj.biases": "model-00003-of-00004.safetensors",
766
+ "model.layers.38.self_attn.q_proj.scales": "model-00003-of-00004.safetensors",
767
+ "model.layers.38.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
768
+ "model.layers.38.self_attn.v_proj.biases": "model-00003-of-00004.safetensors",
769
+ "model.layers.38.self_attn.v_proj.scales": "model-00003-of-00004.safetensors",
770
+ "model.layers.38.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
771
+ "model.layers.39.input_layernorm.weight": "model-00003-of-00004.safetensors",
772
+ "model.layers.39.mlp.down_proj.biases": "model-00003-of-00004.safetensors",
773
+ "model.layers.39.mlp.down_proj.scales": "model-00003-of-00004.safetensors",
774
+ "model.layers.39.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
775
+ "model.layers.39.mlp.gate_proj.biases": "model-00003-of-00004.safetensors",
776
+ "model.layers.39.mlp.gate_proj.scales": "model-00003-of-00004.safetensors",
777
+ "model.layers.39.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
778
+ "model.layers.39.mlp.up_proj.biases": "model-00003-of-00004.safetensors",
779
+ "model.layers.39.mlp.up_proj.scales": "model-00003-of-00004.safetensors",
780
+ "model.layers.39.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
781
+ "model.layers.39.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
782
+ "model.layers.39.self_attn.k_proj.biases": "model-00003-of-00004.safetensors",
783
+ "model.layers.39.self_attn.k_proj.scales": "model-00003-of-00004.safetensors",
784
+ "model.layers.39.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
785
+ "model.layers.39.self_attn.o_proj.biases": "model-00003-of-00004.safetensors",
786
+ "model.layers.39.self_attn.o_proj.scales": "model-00003-of-00004.safetensors",
787
+ "model.layers.39.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
788
+ "model.layers.39.self_attn.q_proj.biases": "model-00003-of-00004.safetensors",
789
+ "model.layers.39.self_attn.q_proj.scales": "model-00003-of-00004.safetensors",
790
+ "model.layers.39.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
791
+ "model.layers.39.self_attn.v_proj.biases": "model-00003-of-00004.safetensors",
792
+ "model.layers.39.self_attn.v_proj.scales": "model-00003-of-00004.safetensors",
793
+ "model.layers.39.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
794
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
795
+ "model.layers.4.mlp.down_proj.biases": "model-00001-of-00004.safetensors",
796
+ "model.layers.4.mlp.down_proj.scales": "model-00001-of-00004.safetensors",
797
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
798
+ "model.layers.4.mlp.gate_proj.biases": "model-00001-of-00004.safetensors",
799
+ "model.layers.4.mlp.gate_proj.scales": "model-00001-of-00004.safetensors",
800
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
801
+ "model.layers.4.mlp.up_proj.biases": "model-00001-of-00004.safetensors",
802
+ "model.layers.4.mlp.up_proj.scales": "model-00001-of-00004.safetensors",
803
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
804
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
805
+ "model.layers.4.self_attn.k_proj.biases": "model-00001-of-00004.safetensors",
806
+ "model.layers.4.self_attn.k_proj.scales": "model-00001-of-00004.safetensors",
807
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
808
+ "model.layers.4.self_attn.o_proj.biases": "model-00001-of-00004.safetensors",
809
+ "model.layers.4.self_attn.o_proj.scales": "model-00001-of-00004.safetensors",
810
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
811
+ "model.layers.4.self_attn.q_proj.biases": "model-00001-of-00004.safetensors",
812
+ "model.layers.4.self_attn.q_proj.scales": "model-00001-of-00004.safetensors",
813
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
814
+ "model.layers.4.self_attn.v_proj.biases": "model-00001-of-00004.safetensors",
815
+ "model.layers.4.self_attn.v_proj.scales": "model-00001-of-00004.safetensors",
816
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
817
+ "model.layers.40.input_layernorm.weight": "model-00004-of-00004.safetensors",
818
+ "model.layers.40.mlp.down_proj.biases": "model-00003-of-00004.safetensors",
819
+ "model.layers.40.mlp.down_proj.scales": "model-00003-of-00004.safetensors",
820
+ "model.layers.40.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
821
+ "model.layers.40.mlp.gate_proj.biases": "model-00003-of-00004.safetensors",
822
+ "model.layers.40.mlp.gate_proj.scales": "model-00003-of-00004.safetensors",
823
+ "model.layers.40.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
824
+ "model.layers.40.mlp.up_proj.biases": "model-00004-of-00004.safetensors",
825
+ "model.layers.40.mlp.up_proj.scales": "model-00004-of-00004.safetensors",
826
+ "model.layers.40.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
827
+ "model.layers.40.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
828
+ "model.layers.40.self_attn.k_proj.biases": "model-00003-of-00004.safetensors",
829
+ "model.layers.40.self_attn.k_proj.scales": "model-00003-of-00004.safetensors",
830
+ "model.layers.40.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
831
+ "model.layers.40.self_attn.o_proj.biases": "model-00003-of-00004.safetensors",
832
+ "model.layers.40.self_attn.o_proj.scales": "model-00003-of-00004.safetensors",
833
+ "model.layers.40.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
834
+ "model.layers.40.self_attn.q_proj.biases": "model-00003-of-00004.safetensors",
835
+ "model.layers.40.self_attn.q_proj.scales": "model-00003-of-00004.safetensors",
836
+ "model.layers.40.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
837
+ "model.layers.40.self_attn.v_proj.biases": "model-00003-of-00004.safetensors",
838
+ "model.layers.40.self_attn.v_proj.scales": "model-00003-of-00004.safetensors",
839
+ "model.layers.40.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
840
+ "model.layers.41.input_layernorm.weight": "model-00004-of-00004.safetensors",
841
+ "model.layers.41.mlp.down_proj.biases": "model-00004-of-00004.safetensors",
842
+ "model.layers.41.mlp.down_proj.scales": "model-00004-of-00004.safetensors",
843
+ "model.layers.41.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
844
+ "model.layers.41.mlp.gate_proj.biases": "model-00004-of-00004.safetensors",
845
+ "model.layers.41.mlp.gate_proj.scales": "model-00004-of-00004.safetensors",
846
+ "model.layers.41.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
847
+ "model.layers.41.mlp.up_proj.biases": "model-00004-of-00004.safetensors",
848
+ "model.layers.41.mlp.up_proj.scales": "model-00004-of-00004.safetensors",
849
+ "model.layers.41.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
850
+ "model.layers.41.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
851
+ "model.layers.41.self_attn.k_proj.biases": "model-00004-of-00004.safetensors",
852
+ "model.layers.41.self_attn.k_proj.scales": "model-00004-of-00004.safetensors",
853
+ "model.layers.41.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
854
+ "model.layers.41.self_attn.o_proj.biases": "model-00004-of-00004.safetensors",
855
+ "model.layers.41.self_attn.o_proj.scales": "model-00004-of-00004.safetensors",
856
+ "model.layers.41.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
857
+ "model.layers.41.self_attn.q_proj.biases": "model-00004-of-00004.safetensors",
858
+ "model.layers.41.self_attn.q_proj.scales": "model-00004-of-00004.safetensors",
859
+ "model.layers.41.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
860
+ "model.layers.41.self_attn.v_proj.biases": "model-00004-of-00004.safetensors",
861
+ "model.layers.41.self_attn.v_proj.scales": "model-00004-of-00004.safetensors",
862
+ "model.layers.41.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
863
+ "model.layers.42.input_layernorm.weight": "model-00004-of-00004.safetensors",
864
+ "model.layers.42.mlp.down_proj.biases": "model-00004-of-00004.safetensors",
865
+ "model.layers.42.mlp.down_proj.scales": "model-00004-of-00004.safetensors",
866
+ "model.layers.42.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
867
+ "model.layers.42.mlp.gate_proj.biases": "model-00004-of-00004.safetensors",
868
+ "model.layers.42.mlp.gate_proj.scales": "model-00004-of-00004.safetensors",
869
+ "model.layers.42.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
870
+ "model.layers.42.mlp.up_proj.biases": "model-00004-of-00004.safetensors",
871
+ "model.layers.42.mlp.up_proj.scales": "model-00004-of-00004.safetensors",
872
+ "model.layers.42.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
873
+ "model.layers.42.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
874
+ "model.layers.42.self_attn.k_proj.biases": "model-00004-of-00004.safetensors",
875
+ "model.layers.42.self_attn.k_proj.scales": "model-00004-of-00004.safetensors",
876
+ "model.layers.42.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
877
+ "model.layers.42.self_attn.o_proj.biases": "model-00004-of-00004.safetensors",
878
+ "model.layers.42.self_attn.o_proj.scales": "model-00004-of-00004.safetensors",
879
+ "model.layers.42.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
880
+ "model.layers.42.self_attn.q_proj.biases": "model-00004-of-00004.safetensors",
881
+ "model.layers.42.self_attn.q_proj.scales": "model-00004-of-00004.safetensors",
882
+ "model.layers.42.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
883
+ "model.layers.42.self_attn.v_proj.biases": "model-00004-of-00004.safetensors",
884
+ "model.layers.42.self_attn.v_proj.scales": "model-00004-of-00004.safetensors",
885
+ "model.layers.42.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
886
+ "model.layers.43.input_layernorm.weight": "model-00004-of-00004.safetensors",
887
+ "model.layers.43.mlp.down_proj.biases": "model-00004-of-00004.safetensors",
888
+ "model.layers.43.mlp.down_proj.scales": "model-00004-of-00004.safetensors",
889
+ "model.layers.43.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
890
+ "model.layers.43.mlp.gate_proj.biases": "model-00004-of-00004.safetensors",
891
+ "model.layers.43.mlp.gate_proj.scales": "model-00004-of-00004.safetensors",
892
+ "model.layers.43.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
893
+ "model.layers.43.mlp.up_proj.biases": "model-00004-of-00004.safetensors",
894
+ "model.layers.43.mlp.up_proj.scales": "model-00004-of-00004.safetensors",
895
+ "model.layers.43.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
896
+ "model.layers.43.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
897
+ "model.layers.43.self_attn.k_proj.biases": "model-00004-of-00004.safetensors",
898
+ "model.layers.43.self_attn.k_proj.scales": "model-00004-of-00004.safetensors",
899
+ "model.layers.43.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
900
+ "model.layers.43.self_attn.o_proj.biases": "model-00004-of-00004.safetensors",
901
+ "model.layers.43.self_attn.o_proj.scales": "model-00004-of-00004.safetensors",
902
+ "model.layers.43.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
903
+ "model.layers.43.self_attn.q_proj.biases": "model-00004-of-00004.safetensors",
904
+ "model.layers.43.self_attn.q_proj.scales": "model-00004-of-00004.safetensors",
905
+ "model.layers.43.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
906
+ "model.layers.43.self_attn.v_proj.biases": "model-00004-of-00004.safetensors",
907
+ "model.layers.43.self_attn.v_proj.scales": "model-00004-of-00004.safetensors",
908
+ "model.layers.43.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
909
+ "model.layers.44.input_layernorm.weight": "model-00004-of-00004.safetensors",
910
+ "model.layers.44.mlp.down_proj.biases": "model-00004-of-00004.safetensors",
911
+ "model.layers.44.mlp.down_proj.scales": "model-00004-of-00004.safetensors",
912
+ "model.layers.44.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
913
+ "model.layers.44.mlp.gate_proj.biases": "model-00004-of-00004.safetensors",
914
+ "model.layers.44.mlp.gate_proj.scales": "model-00004-of-00004.safetensors",
915
+ "model.layers.44.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
916
+ "model.layers.44.mlp.up_proj.biases": "model-00004-of-00004.safetensors",
917
+ "model.layers.44.mlp.up_proj.scales": "model-00004-of-00004.safetensors",
918
+ "model.layers.44.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
919
+ "model.layers.44.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
920
+ "model.layers.44.self_attn.k_proj.biases": "model-00004-of-00004.safetensors",
921
+ "model.layers.44.self_attn.k_proj.scales": "model-00004-of-00004.safetensors",
922
+ "model.layers.44.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
923
+ "model.layers.44.self_attn.o_proj.biases": "model-00004-of-00004.safetensors",
924
+ "model.layers.44.self_attn.o_proj.scales": "model-00004-of-00004.safetensors",
925
+ "model.layers.44.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
926
+ "model.layers.44.self_attn.q_proj.biases": "model-00004-of-00004.safetensors",
927
+ "model.layers.44.self_attn.q_proj.scales": "model-00004-of-00004.safetensors",
928
+ "model.layers.44.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
929
+ "model.layers.44.self_attn.v_proj.biases": "model-00004-of-00004.safetensors",
930
+ "model.layers.44.self_attn.v_proj.scales": "model-00004-of-00004.safetensors",
931
+ "model.layers.44.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
932
+ "model.layers.45.input_layernorm.weight": "model-00004-of-00004.safetensors",
933
+ "model.layers.45.mlp.down_proj.biases": "model-00004-of-00004.safetensors",
934
+ "model.layers.45.mlp.down_proj.scales": "model-00004-of-00004.safetensors",
935
+ "model.layers.45.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
936
+ "model.layers.45.mlp.gate_proj.biases": "model-00004-of-00004.safetensors",
937
+ "model.layers.45.mlp.gate_proj.scales": "model-00004-of-00004.safetensors",
938
+ "model.layers.45.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
939
+ "model.layers.45.mlp.up_proj.biases": "model-00004-of-00004.safetensors",
940
+ "model.layers.45.mlp.up_proj.scales": "model-00004-of-00004.safetensors",
941
+ "model.layers.45.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
942
+ "model.layers.45.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
943
+ "model.layers.45.self_attn.k_proj.biases": "model-00004-of-00004.safetensors",
944
+ "model.layers.45.self_attn.k_proj.scales": "model-00004-of-00004.safetensors",
945
+ "model.layers.45.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
946
+ "model.layers.45.self_attn.o_proj.biases": "model-00004-of-00004.safetensors",
947
+ "model.layers.45.self_attn.o_proj.scales": "model-00004-of-00004.safetensors",
948
+ "model.layers.45.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
949
+ "model.layers.45.self_attn.q_proj.biases": "model-00004-of-00004.safetensors",
950
+ "model.layers.45.self_attn.q_proj.scales": "model-00004-of-00004.safetensors",
951
+ "model.layers.45.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
952
+ "model.layers.45.self_attn.v_proj.biases": "model-00004-of-00004.safetensors",
953
+ "model.layers.45.self_attn.v_proj.scales": "model-00004-of-00004.safetensors",
954
+ "model.layers.45.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
955
+ "model.layers.46.input_layernorm.weight": "model-00004-of-00004.safetensors",
956
+ "model.layers.46.mlp.down_proj.biases": "model-00004-of-00004.safetensors",
957
+ "model.layers.46.mlp.down_proj.scales": "model-00004-of-00004.safetensors",
958
+ "model.layers.46.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
959
+ "model.layers.46.mlp.gate_proj.biases": "model-00004-of-00004.safetensors",
960
+ "model.layers.46.mlp.gate_proj.scales": "model-00004-of-00004.safetensors",
961
+ "model.layers.46.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
962
+ "model.layers.46.mlp.up_proj.biases": "model-00004-of-00004.safetensors",
963
+ "model.layers.46.mlp.up_proj.scales": "model-00004-of-00004.safetensors",
964
+ "model.layers.46.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
965
+ "model.layers.46.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
966
+ "model.layers.46.self_attn.k_proj.biases": "model-00004-of-00004.safetensors",
967
+ "model.layers.46.self_attn.k_proj.scales": "model-00004-of-00004.safetensors",
968
+ "model.layers.46.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
969
+ "model.layers.46.self_attn.o_proj.biases": "model-00004-of-00004.safetensors",
970
+ "model.layers.46.self_attn.o_proj.scales": "model-00004-of-00004.safetensors",
971
+ "model.layers.46.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
972
+ "model.layers.46.self_attn.q_proj.biases": "model-00004-of-00004.safetensors",
973
+ "model.layers.46.self_attn.q_proj.scales": "model-00004-of-00004.safetensors",
974
+ "model.layers.46.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
975
+ "model.layers.46.self_attn.v_proj.biases": "model-00004-of-00004.safetensors",
976
+ "model.layers.46.self_attn.v_proj.scales": "model-00004-of-00004.safetensors",
977
+ "model.layers.46.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
978
+ "model.layers.47.input_layernorm.weight": "model-00004-of-00004.safetensors",
979
+ "model.layers.47.mlp.down_proj.biases": "model-00004-of-00004.safetensors",
980
+ "model.layers.47.mlp.down_proj.scales": "model-00004-of-00004.safetensors",
981
+ "model.layers.47.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
982
+ "model.layers.47.mlp.gate_proj.biases": "model-00004-of-00004.safetensors",
983
+ "model.layers.47.mlp.gate_proj.scales": "model-00004-of-00004.safetensors",
984
+ "model.layers.47.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
985
+ "model.layers.47.mlp.up_proj.biases": "model-00004-of-00004.safetensors",
986
+ "model.layers.47.mlp.up_proj.scales": "model-00004-of-00004.safetensors",
987
+ "model.layers.47.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
988
+ "model.layers.47.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
989
+ "model.layers.47.self_attn.k_proj.biases": "model-00004-of-00004.safetensors",
990
+ "model.layers.47.self_attn.k_proj.scales": "model-00004-of-00004.safetensors",
991
+ "model.layers.47.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
992
+ "model.layers.47.self_attn.o_proj.biases": "model-00004-of-00004.safetensors",
993
+ "model.layers.47.self_attn.o_proj.scales": "model-00004-of-00004.safetensors",
994
+ "model.layers.47.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
995
+ "model.layers.47.self_attn.q_proj.biases": "model-00004-of-00004.safetensors",
996
+ "model.layers.47.self_attn.q_proj.scales": "model-00004-of-00004.safetensors",
997
+ "model.layers.47.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
998
+ "model.layers.47.self_attn.v_proj.biases": "model-00004-of-00004.safetensors",
999
+ "model.layers.47.self_attn.v_proj.scales": "model-00004-of-00004.safetensors",
1000
+ "model.layers.47.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
1001
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
1002
+ "model.layers.5.mlp.down_proj.biases": "model-00001-of-00004.safetensors",
1003
+ "model.layers.5.mlp.down_proj.scales": "model-00001-of-00004.safetensors",
1004
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
1005
+ "model.layers.5.mlp.gate_proj.biases": "model-00001-of-00004.safetensors",
1006
+ "model.layers.5.mlp.gate_proj.scales": "model-00001-of-00004.safetensors",
1007
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
1008
+ "model.layers.5.mlp.up_proj.biases": "model-00001-of-00004.safetensors",
1009
+ "model.layers.5.mlp.up_proj.scales": "model-00001-of-00004.safetensors",
1010
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
1011
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
1012
+ "model.layers.5.self_attn.k_proj.biases": "model-00001-of-00004.safetensors",
1013
+ "model.layers.5.self_attn.k_proj.scales": "model-00001-of-00004.safetensors",
1014
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
1015
+ "model.layers.5.self_attn.o_proj.biases": "model-00001-of-00004.safetensors",
1016
+ "model.layers.5.self_attn.o_proj.scales": "model-00001-of-00004.safetensors",
1017
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
1018
+ "model.layers.5.self_attn.q_proj.biases": "model-00001-of-00004.safetensors",
1019
+ "model.layers.5.self_attn.q_proj.scales": "model-00001-of-00004.safetensors",
1020
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
1021
+ "model.layers.5.self_attn.v_proj.biases": "model-00001-of-00004.safetensors",
1022
+ "model.layers.5.self_attn.v_proj.scales": "model-00001-of-00004.safetensors",
1023
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
1024
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
1025
+ "model.layers.6.mlp.down_proj.biases": "model-00001-of-00004.safetensors",
1026
+ "model.layers.6.mlp.down_proj.scales": "model-00001-of-00004.safetensors",
1027
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
1028
+ "model.layers.6.mlp.gate_proj.biases": "model-00001-of-00004.safetensors",
1029
+ "model.layers.6.mlp.gate_proj.scales": "model-00001-of-00004.safetensors",
1030
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
1031
+ "model.layers.6.mlp.up_proj.biases": "model-00001-of-00004.safetensors",
1032
+ "model.layers.6.mlp.up_proj.scales": "model-00001-of-00004.safetensors",
1033
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
1034
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
1035
+ "model.layers.6.self_attn.k_proj.biases": "model-00001-of-00004.safetensors",
1036
+ "model.layers.6.self_attn.k_proj.scales": "model-00001-of-00004.safetensors",
1037
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
1038
+ "model.layers.6.self_attn.o_proj.biases": "model-00001-of-00004.safetensors",
1039
+ "model.layers.6.self_attn.o_proj.scales": "model-00001-of-00004.safetensors",
1040
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
1041
+ "model.layers.6.self_attn.q_proj.biases": "model-00001-of-00004.safetensors",
1042
+ "model.layers.6.self_attn.q_proj.scales": "model-00001-of-00004.safetensors",
1043
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
1044
+ "model.layers.6.self_attn.v_proj.biases": "model-00001-of-00004.safetensors",
1045
+ "model.layers.6.self_attn.v_proj.scales": "model-00001-of-00004.safetensors",
1046
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
1047
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
1048
+ "model.layers.7.mlp.down_proj.biases": "model-00001-of-00004.safetensors",
1049
+ "model.layers.7.mlp.down_proj.scales": "model-00001-of-00004.safetensors",
1050
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
1051
+ "model.layers.7.mlp.gate_proj.biases": "model-00001-of-00004.safetensors",
1052
+ "model.layers.7.mlp.gate_proj.scales": "model-00001-of-00004.safetensors",
1053
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
1054
+ "model.layers.7.mlp.up_proj.biases": "model-00001-of-00004.safetensors",
1055
+ "model.layers.7.mlp.up_proj.scales": "model-00001-of-00004.safetensors",
1056
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
1057
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
1058
+ "model.layers.7.self_attn.k_proj.biases": "model-00001-of-00004.safetensors",
1059
+ "model.layers.7.self_attn.k_proj.scales": "model-00001-of-00004.safetensors",
1060
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
1061
+ "model.layers.7.self_attn.o_proj.biases": "model-00001-of-00004.safetensors",
1062
+ "model.layers.7.self_attn.o_proj.scales": "model-00001-of-00004.safetensors",
1063
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
1064
+ "model.layers.7.self_attn.q_proj.biases": "model-00001-of-00004.safetensors",
1065
+ "model.layers.7.self_attn.q_proj.scales": "model-00001-of-00004.safetensors",
1066
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
1067
+ "model.layers.7.self_attn.v_proj.biases": "model-00001-of-00004.safetensors",
1068
+ "model.layers.7.self_attn.v_proj.scales": "model-00001-of-00004.safetensors",
1069
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
1070
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00004.safetensors",
1071
+ "model.layers.8.mlp.down_proj.biases": "model-00001-of-00004.safetensors",
1072
+ "model.layers.8.mlp.down_proj.scales": "model-00001-of-00004.safetensors",
1073
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
1074
+ "model.layers.8.mlp.gate_proj.biases": "model-00001-of-00004.safetensors",
1075
+ "model.layers.8.mlp.gate_proj.scales": "model-00001-of-00004.safetensors",
1076
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
1077
+ "model.layers.8.mlp.up_proj.biases": "model-00001-of-00004.safetensors",
1078
+ "model.layers.8.mlp.up_proj.scales": "model-00001-of-00004.safetensors",
1079
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
1080
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
1081
+ "model.layers.8.self_attn.k_proj.biases": "model-00001-of-00004.safetensors",
1082
+ "model.layers.8.self_attn.k_proj.scales": "model-00001-of-00004.safetensors",
1083
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
1084
+ "model.layers.8.self_attn.o_proj.biases": "model-00001-of-00004.safetensors",
1085
+ "model.layers.8.self_attn.o_proj.scales": "model-00001-of-00004.safetensors",
1086
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
1087
+ "model.layers.8.self_attn.q_proj.biases": "model-00001-of-00004.safetensors",
1088
+ "model.layers.8.self_attn.q_proj.scales": "model-00001-of-00004.safetensors",
1089
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
1090
+ "model.layers.8.self_attn.v_proj.biases": "model-00001-of-00004.safetensors",
1091
+ "model.layers.8.self_attn.v_proj.scales": "model-00001-of-00004.safetensors",
1092
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
1093
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00004.safetensors",
1094
+ "model.layers.9.mlp.down_proj.biases": "model-00001-of-00004.safetensors",
1095
+ "model.layers.9.mlp.down_proj.scales": "model-00001-of-00004.safetensors",
1096
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
1097
+ "model.layers.9.mlp.gate_proj.biases": "model-00001-of-00004.safetensors",
1098
+ "model.layers.9.mlp.gate_proj.scales": "model-00001-of-00004.safetensors",
1099
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
1100
+ "model.layers.9.mlp.up_proj.biases": "model-00001-of-00004.safetensors",
1101
+ "model.layers.9.mlp.up_proj.scales": "model-00001-of-00004.safetensors",
1102
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
1103
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
1104
+ "model.layers.9.self_attn.k_proj.biases": "model-00001-of-00004.safetensors",
1105
+ "model.layers.9.self_attn.k_proj.scales": "model-00001-of-00004.safetensors",
1106
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
1107
+ "model.layers.9.self_attn.o_proj.biases": "model-00001-of-00004.safetensors",
1108
+ "model.layers.9.self_attn.o_proj.scales": "model-00001-of-00004.safetensors",
1109
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
1110
+ "model.layers.9.self_attn.q_proj.biases": "model-00001-of-00004.safetensors",
1111
+ "model.layers.9.self_attn.q_proj.scales": "model-00001-of-00004.safetensors",
1112
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
1113
+ "model.layers.9.self_attn.v_proj.biases": "model-00001-of-00004.safetensors",
1114
+ "model.layers.9.self_attn.v_proj.scales": "model-00001-of-00004.safetensors",
1115
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
1116
+ "model.norm.weight": "model-00004-of-00004.safetensors"
1117
+ }
1118
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "▁<PRE>",
4
+ "▁<MID>",
5
+ "▁<SUF>",
6
+ "▁<EOT>"
7
+ ],
8
+ "bos_token": {
9
+ "content": "<s>",
10
+ "lstrip": false,
11
+ "normalized": false,
12
+ "rstrip": false,
13
+ "single_word": false
14
+ },
15
+ "eos_token": {
16
+ "content": "</s>",
17
+ "lstrip": false,
18
+ "normalized": false,
19
+ "rstrip": false,
20
+ "single_word": false
21
+ },
22
+ "unk_token": {
23
+ "content": "<unk>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false
28
+ }
29
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
tokenizer_config.json ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "32000": {
30
+ "content": "▁<PRE>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "32001": {
38
+ "content": "▁<MID>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "32002": {
46
+ "content": "▁<SUF>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "32003": {
54
+ "content": "▁<EOT>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ }
61
+ },
62
+ "additional_special_tokens": [
63
+ "▁<PRE>",
64
+ "▁<MID>",
65
+ "▁<SUF>",
66
+ "▁<EOT>"
67
+ ],
68
+ "bos_token": "<s>",
69
+ "chat_template": "{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% else %}{% set loop_messages = messages %}{% set system_message = false %}{% endif %}{% for message in loop_messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if loop.index0 == 0 and system_message != false %}{% set content = '<<SYS>>\\n' + system_message + '\\n<</SYS>>\\n\\n' + message['content'] %}{% else %}{% set content = message['content'] %}{% endif %}{% if message['role'] == 'user' %}{{ bos_token + '[INST] ' + content | trim + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ ' ' + content | trim + ' ' + eos_token }}{% endif %}{% endfor %}",
70
+ "clean_up_tokenization_spaces": false,
71
+ "eos_token": "</s>",
72
+ "eot_token": "▁<EOT>",
73
+ "fill_token": "<FILL_ME>",
74
+ "legacy": null,
75
+ "middle_token": "▁<MID>",
76
+ "model_max_length": 1000000000000000019884624838656,
77
+ "pad_token": null,
78
+ "prefix_token": "▁<PRE>",
79
+ "sp_model_kwargs": {},
80
+ "suffix_token": "▁<SUF>",
81
+ "tokenizer_class": "CodeLlamaTokenizer",
82
+ "unk_token": "<unk>",
83
+ "use_default_system_prompt": false
84
+ }
zero_to_fp32.py ADDED
@@ -0,0 +1,578 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage == 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dicts.append(torch.load(f, map_location=device))
147
+
148
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
149
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
150
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
151
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
152
+
153
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
154
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
155
+ # use the max of the partition_count to get the dp world_size.
156
+
157
+ if type(world_size) is list:
158
+ world_size = max(world_size)
159
+
160
+ if world_size != total_files:
161
+ raise ValueError(
162
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
163
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
164
+ )
165
+
166
+ # the groups are named differently in each stage
167
+ if zero_stage == 2:
168
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
169
+ elif zero_stage == 3:
170
+ fp32_groups_key = FP32_FLAT_GROUPS
171
+ else:
172
+ raise ValueError(f"unknown zero stage {zero_stage}")
173
+
174
+ if zero_stage == 2:
175
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
176
+ elif zero_stage == 3:
177
+ # if there is more than one param group, there will be multiple flattened tensors - one
178
+ # flattened tensor per group - for simplicity merge them into a single tensor
179
+ #
180
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
181
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
182
+
183
+ fp32_flat_groups = [
184
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
185
+ ]
186
+
187
+ return zero_stage, world_size, fp32_flat_groups
188
+
189
+
190
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
191
+ """
192
+ Returns fp32 state_dict reconstructed from ds checkpoint
193
+
194
+ Args:
195
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
196
+
197
+ """
198
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
199
+
200
+ optim_files = get_optim_files(ds_checkpoint_dir)
201
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
202
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
203
+
204
+ model_files = get_model_state_files(ds_checkpoint_dir)
205
+
206
+ zero_model_states = parse_model_states(model_files)
207
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
208
+
209
+ if zero_stage == 2:
210
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
211
+ elif zero_stage == 3:
212
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
213
+
214
+
215
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
216
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
217
+ return
218
+
219
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
220
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
221
+
222
+ if debug:
223
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
224
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
225
+
226
+ wanted_params = len(frozen_param_shapes)
227
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
228
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
229
+ print(f'Frozen params: Have {avail_numel} numels to process.')
230
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
231
+
232
+ total_params = 0
233
+ total_numel = 0
234
+ for name, shape in frozen_param_shapes.items():
235
+ total_params += 1
236
+ unpartitioned_numel = shape.numel()
237
+ total_numel += unpartitioned_numel
238
+
239
+ state_dict[name] = frozen_param_fragments[name]
240
+
241
+ if debug:
242
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
243
+
244
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
245
+
246
+
247
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
248
+ param_shapes = zero_model_states[0].param_shapes
249
+
250
+ # Reconstruction protocol:
251
+ #
252
+ # XXX: document this
253
+
254
+ if debug:
255
+ for i in range(world_size):
256
+ for j in range(len(fp32_flat_groups[0])):
257
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
258
+
259
+ # XXX: memory usage doubles here (zero2)
260
+ num_param_groups = len(fp32_flat_groups[0])
261
+ merged_single_partition_of_fp32_groups = []
262
+ for i in range(num_param_groups):
263
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
264
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
265
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
266
+ avail_numel = sum(
267
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
268
+
269
+ if debug:
270
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
271
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
272
+ # not asserting if there is a mismatch due to possible padding
273
+ print(f"Have {avail_numel} numels to process.")
274
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
275
+
276
+ # params
277
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
278
+ # out-of-core computing solution
279
+ total_numel = 0
280
+ total_params = 0
281
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
282
+ offset = 0
283
+ avail_numel = full_single_fp32_vector.numel()
284
+ for name, shape in shapes.items():
285
+
286
+ unpartitioned_numel = shape.numel()
287
+ total_numel += unpartitioned_numel
288
+ total_params += 1
289
+
290
+ if debug:
291
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
292
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
293
+ offset += unpartitioned_numel
294
+
295
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
296
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
297
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
298
+ # live optimizer object, so we are checking that the numbers are within the right range
299
+ align_to = 2 * world_size
300
+
301
+ def zero2_align(x):
302
+ return align_to * math.ceil(x / align_to)
303
+
304
+ if debug:
305
+ print(f"original offset={offset}, avail_numel={avail_numel}")
306
+
307
+ offset = zero2_align(offset)
308
+ avail_numel = zero2_align(avail_numel)
309
+
310
+ if debug:
311
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
312
+
313
+ # Sanity check
314
+ if offset != avail_numel:
315
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
316
+
317
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
318
+
319
+
320
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
321
+ state_dict = OrderedDict()
322
+
323
+ # buffers
324
+ buffers = zero_model_states[0].buffers
325
+ state_dict.update(buffers)
326
+ if debug:
327
+ print(f"added {len(buffers)} buffers")
328
+
329
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
330
+
331
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
332
+
333
+ # recover shared parameters
334
+ for pair in zero_model_states[0].shared_params:
335
+ if pair[1] in state_dict:
336
+ state_dict[pair[0]] = state_dict[pair[1]]
337
+
338
+ return state_dict
339
+
340
+
341
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
342
+ remainder = unpartitioned_numel % world_size
343
+ padding_numel = (world_size - remainder) if remainder else 0
344
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
345
+ return partitioned_numel, padding_numel
346
+
347
+
348
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
349
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
350
+ return
351
+
352
+ if debug:
353
+ for i in range(world_size):
354
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
355
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
356
+
357
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
358
+ wanted_params = len(frozen_param_shapes)
359
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
360
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
361
+ print(f'Frozen params: Have {avail_numel} numels to process.')
362
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
363
+
364
+ total_params = 0
365
+ total_numel = 0
366
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
367
+ total_params += 1
368
+ unpartitioned_numel = shape.numel()
369
+ total_numel += unpartitioned_numel
370
+
371
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
372
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
373
+
374
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
375
+
376
+ if debug:
377
+ print(
378
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
379
+ )
380
+
381
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
382
+
383
+
384
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
385
+ param_shapes = zero_model_states[0].param_shapes
386
+ avail_numel = fp32_flat_groups[0].numel() * world_size
387
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
388
+ # param, re-consolidating each param, while dealing with padding if any
389
+
390
+ # merge list of dicts, preserving order
391
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
392
+
393
+ if debug:
394
+ for i in range(world_size):
395
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
396
+
397
+ wanted_params = len(param_shapes)
398
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
399
+ # not asserting if there is a mismatch due to possible padding
400
+ avail_numel = fp32_flat_groups[0].numel() * world_size
401
+ print(f"Trainable params: Have {avail_numel} numels to process.")
402
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
403
+
404
+ # params
405
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
406
+ # out-of-core computing solution
407
+ offset = 0
408
+ total_numel = 0
409
+ total_params = 0
410
+ for name, shape in param_shapes.items():
411
+
412
+ unpartitioned_numel = shape.numel()
413
+ total_numel += unpartitioned_numel
414
+ total_params += 1
415
+
416
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
417
+
418
+ if debug:
419
+ print(
420
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
421
+ )
422
+
423
+ # XXX: memory usage doubles here
424
+ state_dict[name] = torch.cat(
425
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
426
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
427
+ offset += partitioned_numel
428
+
429
+ offset *= world_size
430
+
431
+ # Sanity check
432
+ if offset != avail_numel:
433
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
434
+
435
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
436
+
437
+
438
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
439
+ state_dict = OrderedDict()
440
+
441
+ # buffers
442
+ buffers = zero_model_states[0].buffers
443
+ state_dict.update(buffers)
444
+ if debug:
445
+ print(f"added {len(buffers)} buffers")
446
+
447
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
448
+
449
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
450
+
451
+ # recover shared parameters
452
+ for pair in zero_model_states[0].shared_params:
453
+ if pair[1] in state_dict:
454
+ state_dict[pair[0]] = state_dict[pair[1]]
455
+
456
+ return state_dict
457
+
458
+
459
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
460
+ """
461
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
462
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
463
+ via a model hub.
464
+
465
+ Args:
466
+ - ``checkpoint_dir``: path to the desired checkpoint folder
467
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
468
+
469
+ Returns:
470
+ - pytorch ``state_dict``
471
+
472
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
473
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
474
+ the checkpoint.
475
+
476
+ A typical usage might be ::
477
+
478
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
479
+ # do the training and checkpoint saving
480
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
481
+ model = model.cpu() # move to cpu
482
+ model.load_state_dict(state_dict)
483
+ # submit to model hub or save the model to share with others
484
+
485
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
486
+ application. i.e. you will need to re-initialize the deepspeed engine, since
487
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
488
+
489
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
490
+
491
+ """
492
+ if tag is None:
493
+ latest_path = os.path.join(checkpoint_dir, 'latest')
494
+ if os.path.isfile(latest_path):
495
+ with open(latest_path, 'r') as fd:
496
+ tag = fd.read().strip()
497
+ else:
498
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
499
+
500
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
501
+
502
+ if not os.path.isdir(ds_checkpoint_dir):
503
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
504
+
505
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
506
+
507
+
508
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
509
+ """
510
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
511
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
512
+
513
+ Args:
514
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
515
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
516
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
517
+ """
518
+
519
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
520
+ print(f"Saving fp32 state dict to {output_file}")
521
+ torch.save(state_dict, output_file)
522
+
523
+
524
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
525
+ """
526
+ 1. Put the provided model to cpu
527
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
528
+ 3. Load it into the provided model
529
+
530
+ Args:
531
+ - ``model``: the model object to update
532
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
533
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
534
+
535
+ Returns:
536
+ - ``model`: modified model
537
+
538
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
539
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
540
+ conveniently placed for you in the checkpoint folder.
541
+
542
+ A typical usage might be ::
543
+
544
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
545
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
546
+ # submit to model hub or save the model to share with others
547
+
548
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
549
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
550
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
551
+
552
+ """
553
+ logger.info(f"Extracting fp32 weights")
554
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
555
+
556
+ logger.info(f"Overwriting model with fp32 weights")
557
+ model = model.cpu()
558
+ model.load_state_dict(state_dict, strict=False)
559
+
560
+ return model
561
+
562
+
563
+ if __name__ == "__main__":
564
+
565
+ parser = argparse.ArgumentParser()
566
+ parser.add_argument("checkpoint_dir",
567
+ type=str,
568
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
569
+ parser.add_argument(
570
+ "output_file",
571
+ type=str,
572
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
573
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
574
+ args = parser.parse_args()
575
+
576
+ debug = args.debug
577
+
578
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file)