Update configuration_internlm2.py
Browse files- configuration_internlm2.py +44 -15
configuration_internlm2.py
CHANGED
@@ -37,16 +37,16 @@ class InternLM2Config(PretrainedConfig):
|
|
37 |
|
38 |
Args:
|
39 |
vocab_size (`int`, *optional*, defaults to 32000):
|
40 |
-
Vocabulary size of the InternLM2 model. Defines the number of different tokens that can be represented
|
41 |
-
|
42 |
hidden_size (`int`, *optional*, defaults to 4096):
|
43 |
Dimension of the hidden representations.
|
44 |
intermediate_size (`int`, *optional*, defaults to 11008):
|
45 |
Dimension of the MLP representations.
|
46 |
num_hidden_layers (`int`, *optional*, defaults to 32):
|
47 |
-
Number of hidden layers in the Transformer
|
48 |
num_attention_heads (`int`, *optional*, defaults to 32):
|
49 |
-
Number of attention heads for each attention layer in the Transformer
|
50 |
num_key_value_heads (`int`, *optional*):
|
51 |
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
52 |
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
@@ -58,22 +58,42 @@ class InternLM2Config(PretrainedConfig):
|
|
58 |
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
59 |
The non-linear activation function (function or string) in the decoder.
|
60 |
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
61 |
-
The maximum sequence length that this model might ever be used with.
|
62 |
-
just in case (e.g., 512 or 1024 or 2048).
|
63 |
initializer_range (`float`, *optional*, defaults to 0.02):
|
64 |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
65 |
-
rms_norm_eps (`float`, *optional*, defaults to 1e-
|
66 |
The epsilon used by the rms normalization layers.
|
67 |
use_cache (`bool`, *optional*, defaults to `True`):
|
68 |
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
69 |
relevant if `config.is_decoder=True`.
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
Whether to tie weight embeddings
|
72 |
-
|
73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
"""
|
75 |
-
model_type = "internlm2"
|
76 |
_auto_class = "AutoConfig"
|
|
|
|
|
77 |
|
78 |
def __init__( # pylint: disable=W0102
|
79 |
self,
|
@@ -91,11 +111,12 @@ class InternLM2Config(PretrainedConfig):
|
|
91 |
pad_token_id=0,
|
92 |
bos_token_id=1,
|
93 |
eos_token_id=2,
|
|
|
94 |
tie_word_embeddings=False,
|
95 |
bias=True,
|
96 |
rope_theta=10000,
|
97 |
rope_scaling=None,
|
98 |
-
attn_implementation=
|
99 |
**kwargs,
|
100 |
):
|
101 |
self.vocab_size = vocab_size
|
@@ -113,14 +134,15 @@ class InternLM2Config(PretrainedConfig):
|
|
113 |
self.hidden_act = hidden_act
|
114 |
self.initializer_range = initializer_range
|
115 |
self.rms_norm_eps = rms_norm_eps
|
|
|
116 |
self.use_cache = use_cache
|
117 |
self.rope_theta = rope_theta
|
118 |
self.rope_scaling = rope_scaling
|
119 |
self._rope_scaling_validation()
|
120 |
-
|
121 |
self.attn_implementation = attn_implementation
|
122 |
if self.attn_implementation is None:
|
123 |
self.attn_implementation = "eager"
|
|
|
124 |
super().__init__(
|
125 |
pad_token_id=pad_token_id,
|
126 |
bos_token_id=bos_token_id,
|
@@ -147,5 +169,12 @@ class InternLM2Config(PretrainedConfig):
|
|
147 |
raise ValueError(
|
148 |
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
|
149 |
)
|
150 |
-
if
|
151 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
Args:
|
39 |
vocab_size (`int`, *optional*, defaults to 32000):
|
40 |
+
Vocabulary size of the InternLM2 model. Defines the number of different tokens that can be represented by the
|
41 |
+
`inputs_ids` passed when calling [`InternLM2Model`]
|
42 |
hidden_size (`int`, *optional*, defaults to 4096):
|
43 |
Dimension of the hidden representations.
|
44 |
intermediate_size (`int`, *optional*, defaults to 11008):
|
45 |
Dimension of the MLP representations.
|
46 |
num_hidden_layers (`int`, *optional*, defaults to 32):
|
47 |
+
Number of hidden layers in the Transformer decoder.
|
48 |
num_attention_heads (`int`, *optional*, defaults to 32):
|
49 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
50 |
num_key_value_heads (`int`, *optional*):
|
51 |
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
52 |
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
|
|
58 |
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
59 |
The non-linear activation function (function or string) in the decoder.
|
60 |
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
61 |
+
The maximum sequence length that this model might ever be used with. InternLM2 supports up to 32768 tokens.
|
|
|
62 |
initializer_range (`float`, *optional*, defaults to 0.02):
|
63 |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
64 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
65 |
The epsilon used by the rms normalization layers.
|
66 |
use_cache (`bool`, *optional*, defaults to `True`):
|
67 |
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
68 |
relevant if `config.is_decoder=True`.
|
69 |
+
pad_token_id (`int`, *optional*):
|
70 |
+
Padding token id.
|
71 |
+
bos_token_id (`int`, *optional*, defaults to 1):
|
72 |
+
Beginning of stream token id.
|
73 |
+
eos_token_id (`int`, *optional*, defaults to 2):
|
74 |
+
End of stream token id.
|
75 |
+
pretraining_tp (`int`, *optional*, defaults to 1):
|
76 |
+
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
|
77 |
+
document](https://huggingface.co/docs/transformers/main/perf_train_gpu_many#tensor-parallelism)
|
78 |
+
to understand more about it. This value is necessary to ensure exact reproducibility
|
79 |
+
of the pretraining results. Please refer to [this
|
80 |
+
issue](https://github.com/pytorch/pytorch/issues/76232).
|
81 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
82 |
Whether to tie weight embeddings
|
83 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
84 |
+
The base period of the RoPE embeddings.
|
85 |
+
rope_scaling (`Dict`, *optional*):
|
86 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
|
87 |
+
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
|
88 |
+
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
|
89 |
+
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how
|
90 |
+
these scaling strategies behave:
|
91 |
+
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
|
92 |
+
experimental feature, subject to breaking API changes in future versions.
|
93 |
"""
|
|
|
94 |
_auto_class = "AutoConfig"
|
95 |
+
model_type = "internlm2"
|
96 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
97 |
|
98 |
def __init__( # pylint: disable=W0102
|
99 |
self,
|
|
|
111 |
pad_token_id=0,
|
112 |
bos_token_id=1,
|
113 |
eos_token_id=2,
|
114 |
+
pretraining_tp=1,
|
115 |
tie_word_embeddings=False,
|
116 |
bias=True,
|
117 |
rope_theta=10000,
|
118 |
rope_scaling=None,
|
119 |
+
attn_implementation=None,
|
120 |
**kwargs,
|
121 |
):
|
122 |
self.vocab_size = vocab_size
|
|
|
134 |
self.hidden_act = hidden_act
|
135 |
self.initializer_range = initializer_range
|
136 |
self.rms_norm_eps = rms_norm_eps
|
137 |
+
self.pretraining_tp = pretraining_tp
|
138 |
self.use_cache = use_cache
|
139 |
self.rope_theta = rope_theta
|
140 |
self.rope_scaling = rope_scaling
|
141 |
self._rope_scaling_validation()
|
|
|
142 |
self.attn_implementation = attn_implementation
|
143 |
if self.attn_implementation is None:
|
144 |
self.attn_implementation = "eager"
|
145 |
+
|
146 |
super().__init__(
|
147 |
pad_token_id=pad_token_id,
|
148 |
bos_token_id=bos_token_id,
|
|
|
169 |
raise ValueError(
|
170 |
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
|
171 |
)
|
172 |
+
if (
|
173 |
+
rope_scaling_factor is None
|
174 |
+
or not isinstance(rope_scaling_factor, (float, int))
|
175 |
+
or rope_scaling_factor < 1.0
|
176 |
+
):
|
177 |
+
raise ValueError(
|
178 |
+
f"`rope_scaling`'s factor field must be a number >= 1, got {rope_scaling_factor} "
|
179 |
+
f"of type {type(rope_scaling_factor)}"
|
180 |
+
)
|