x54-729 commited on
Commit
501934c
·
1 Parent(s): a230288

update modeling file to newest

Browse files
configuration_internlm2.py CHANGED
@@ -177,4 +177,4 @@ class InternLM2Config(PretrainedConfig):
177
  raise ValueError(
178
  f"`rope_scaling`'s factor field must be a number >= 1, got {rope_scaling_factor} "
179
  f"of type {type(rope_scaling_factor)}"
180
- )
 
177
  raise ValueError(
178
  f"`rope_scaling`'s factor field must be a number >= 1, got {rope_scaling_factor} "
179
  f"of type {type(rope_scaling_factor)}"
180
+ )
modeling_internlm2.py CHANGED
@@ -59,6 +59,10 @@ try:
59
  except:
60
  pass
61
 
 
 
 
 
62
 
63
  logger = logging.get_logger(__name__)
64
 
@@ -1093,7 +1097,11 @@ class InternLM2Model(InternLM2PreTrainedModel):
1093
  else:
1094
  causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device)
1095
  if sequence_length != 1:
1096
- causal_mask = torch.triu(causal_mask, diagonal=1)
 
 
 
 
1097
  causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
1098
  causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1)
1099
  if attention_mask is not None:
 
59
  except:
60
  pass
61
 
62
+ try:
63
+ support_bf16_triu = torch.__version__ >= "2.1.0"
64
+ except Exception:
65
+ support_bf16_triu = False
66
 
67
  logger = logging.get_logger(__name__)
68
 
 
1097
  else:
1098
  causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device)
1099
  if sequence_length != 1:
1100
+ if support_bf16_triu or dtype == torch.float32:
1101
+ causal_mask = torch.triu(causal_mask, diagonal=1)
1102
+ else:
1103
+ triu_mask = torch.triu(torch.ones(causal_mask.size(), device=device), diagonal=1).bool()
1104
+ causal_mask.masked_fill_(~triu_mask, 0)
1105
  causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
1106
  causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1)
1107
  if attention_mask is not None:
tokenization_internlm2_fast.py CHANGED
@@ -20,15 +20,17 @@ import os
20
  from shutil import copyfile
21
  from typing import Any, Dict, Optional, Tuple
22
 
23
- from tokenizers import Tokenizer, decoders, normalizers, processors
24
  from tokenizers.models import BPE
 
 
 
 
25
  from transformers.convert_slow_tokenizer import (
26
  SLOW_TO_FAST_CONVERTERS,
27
- SentencePieceExtractor,
28
  SpmConverter,
 
29
  )
30
- from transformers.tokenization_utils_fast import PreTrainedTokenizerFast
31
- from transformers.utils import logging
32
 
33
  from .tokenization_internlm2 import InternLM2Tokenizer
34
 
@@ -36,13 +38,8 @@ logger = logging.get_logger(__name__)
36
 
37
  VOCAB_FILES_NAMES = {"vocab_file": "./tokenizer.model"}
38
 
39
-
40
  # Modified from transformers.convert_slow_tokenizer.LlamaConverter
41
  class InternLM2Converter(SpmConverter):
42
- """
43
- Fast tokenizer converter for InternLM2.
44
- """
45
-
46
  handle_byte_fallback = True
47
 
48
  def vocab(self, proto):
@@ -54,11 +51,11 @@ class InternLM2Converter(SpmConverter):
54
  vocab += [(piece.piece, piece.score) for piece in proto.pieces[3:]]
55
  return vocab
56
 
57
- def unk_id(self, proto): # pylint: disable=W0613
58
  unk_id = 0
59
  return unk_id
60
 
61
- def decoder(self, replacement, add_prefix_space): # pylint: disable=W0613
62
  decoders_sequence = [
63
  decoders.Replace("▁", " "),
64
  decoders.ByteFallback(),
@@ -74,7 +71,7 @@ class InternLM2Converter(SpmConverter):
74
  # special tokens
75
  added_tokens = self.original_tokenizer.added_tokens_decoder
76
  for i in range(len(vocab_scores)):
77
- _, score = vocab_scores[i]
78
  if i in added_tokens:
79
  vocab_scores[i] = (added_tokens[i].content, score)
80
  if model_type == 1:
@@ -86,7 +83,9 @@ class InternLM2Converter(SpmConverter):
86
  tokenizer = Tokenizer(
87
  BPE(bpe_vocab, merges, unk_token=proto.trainer_spec.unk_piece, fuse_unk=True, byte_fallback=True)
88
  )
89
- tokenizer.add_special_tokens([added_token for index, added_token in added_tokens.items()])
 
 
90
  else:
91
  raise Exception(
92
  "You're trying to run a `Unigram` model but you're file was trained with a different algorithm"
@@ -101,19 +100,14 @@ class InternLM2Converter(SpmConverter):
101
  normalizers_list.append(normalizers.Replace(pattern=" ", content="▁"))
102
  return normalizers.Sequence(normalizers_list)
103
 
104
- def pre_tokenizer(self, replacement, add_prefix_space): # pylint: disable=W0613
105
  return None
106
 
107
-
108
  SLOW_TO_FAST_CONVERTERS["InternLM2Tokenizer"] = InternLM2Converter
109
 
110
 
111
  # Modified from transformers.model.llama.tokenization_llama_fast.LlamaTokenizerFast -> InternLM2TokenizerFast
112
  class InternLM2TokenizerFast(PreTrainedTokenizerFast):
113
- """
114
- Fast tokenizer for InternLM2.
115
- """
116
-
117
  vocab_files_names = VOCAB_FILES_NAMES
118
  slow_tokenizer_class = InternLM2Tokenizer
119
  padding_side = "left"
@@ -171,9 +165,7 @@ class InternLM2TokenizerFast(PreTrainedTokenizerFast):
171
  raise ValueError("add_eos_token = True but eos_token = None")
172
 
173
  single = f"{(bos+':0 ') if self.add_bos_token else ''}$A:0{(' '+eos+':0') if self.add_eos_token else ''}"
174
- pair = (
175
- f"{single}{(' '+bos+':1') if self.add_bos_token else ''} $B:1{(' '+eos+':1') if self.add_eos_token else ''}"
176
- )
177
 
178
  special_tokens = []
179
  if self.add_bos_token:
 
20
  from shutil import copyfile
21
  from typing import Any, Dict, Optional, Tuple
22
 
23
+ from tokenizers import processors, decoders, Tokenizer, normalizers
24
  from tokenizers.models import BPE
25
+
26
+ from transformers.tokenization_utils_fast import PreTrainedTokenizerFast
27
+ from transformers.utils import logging
28
+
29
  from transformers.convert_slow_tokenizer import (
30
  SLOW_TO_FAST_CONVERTERS,
 
31
  SpmConverter,
32
+ SentencePieceExtractor,
33
  )
 
 
34
 
35
  from .tokenization_internlm2 import InternLM2Tokenizer
36
 
 
38
 
39
  VOCAB_FILES_NAMES = {"vocab_file": "./tokenizer.model"}
40
 
 
41
  # Modified from transformers.convert_slow_tokenizer.LlamaConverter
42
  class InternLM2Converter(SpmConverter):
 
 
 
 
43
  handle_byte_fallback = True
44
 
45
  def vocab(self, proto):
 
51
  vocab += [(piece.piece, piece.score) for piece in proto.pieces[3:]]
52
  return vocab
53
 
54
+ def unk_id(self, proto):
55
  unk_id = 0
56
  return unk_id
57
 
58
+ def decoder(self, replacement, add_prefix_space):
59
  decoders_sequence = [
60
  decoders.Replace("▁", " "),
61
  decoders.ByteFallback(),
 
71
  # special tokens
72
  added_tokens = self.original_tokenizer.added_tokens_decoder
73
  for i in range(len(vocab_scores)):
74
+ piece, score = vocab_scores[i]
75
  if i in added_tokens:
76
  vocab_scores[i] = (added_tokens[i].content, score)
77
  if model_type == 1:
 
83
  tokenizer = Tokenizer(
84
  BPE(bpe_vocab, merges, unk_token=proto.trainer_spec.unk_piece, fuse_unk=True, byte_fallback=True)
85
  )
86
+ tokenizer.add_special_tokens(
87
+ [ added_token for index, added_token in added_tokens.items()]
88
+ )
89
  else:
90
  raise Exception(
91
  "You're trying to run a `Unigram` model but you're file was trained with a different algorithm"
 
100
  normalizers_list.append(normalizers.Replace(pattern=" ", content="▁"))
101
  return normalizers.Sequence(normalizers_list)
102
 
103
+ def pre_tokenizer(self, replacement, add_prefix_space):
104
  return None
105
 
 
106
  SLOW_TO_FAST_CONVERTERS["InternLM2Tokenizer"] = InternLM2Converter
107
 
108
 
109
  # Modified from transformers.model.llama.tokenization_llama_fast.LlamaTokenizerFast -> InternLM2TokenizerFast
110
  class InternLM2TokenizerFast(PreTrainedTokenizerFast):
 
 
 
 
111
  vocab_files_names = VOCAB_FILES_NAMES
112
  slow_tokenizer_class = InternLM2Tokenizer
113
  padding_side = "left"
 
165
  raise ValueError("add_eos_token = True but eos_token = None")
166
 
167
  single = f"{(bos+':0 ') if self.add_bos_token else ''}$A:0{(' '+eos+':0') if self.add_eos_token else ''}"
168
+ pair = f"{single}{(' '+bos+':1') if self.add_bos_token else ''} $B:1{(' '+eos+':1') if self.add_eos_token else ''}"
 
 
169
 
170
  special_tokens = []
171
  if self.add_bos_token: