internlm-xcomposer2-vl-7b-4bit / modeling_internlm_xcomposer2.py
DLight1551's picture
update
3b05b6b
raw
history blame
25 kB
# # Copyright (c) InternLM. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch InternLMXComposer2 model."""
import copy
import queue
import threading
from typing import List, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from PIL import Image
from torch import nn
from torch.nn import CrossEntropyLoss
from torchvision import transforms
from torchvision.transforms.functional import InterpolationMode
from transformers.modeling_outputs import CausalLMOutputWithPast
from transformers.utils import (add_start_docstrings_to_model_forward,
replace_return_docstrings)
try:
from transformers.generation.streamers import BaseStreamer
except: # noqa # pylint: disable=bare-except
BaseStreamer = None
from .build_mlp import build_vision_projector, build_vision_tower
from .configuration_internlm_xcomposer2 import InternLMXcomposer2Config
from .modeling_internlm2 import (InternLM2_INPUTS_DOCSTRING, InternLM2Model,
InternLM2PreTrainedModel)
_CONFIG_FOR_DOC = 'InternLMXcomposer2Config'
class InternLMXComposer2ForCausalLM(InternLM2PreTrainedModel):
_auto_class = 'AutoModelForCausalLM'
_tied_weights_keys = ['output.weight']
def __init__(self, config):
super().__init__(config)
self.model = InternLM2Model(config)
self.vocab_size = config.vocab_size
self.output = nn.Linear(
config.hidden_size, config.vocab_size, bias=False)
self.tokenizer = None
self.max_length = config.max_length
print(f'Set max length to {self.max_length}')
# Initialize weights and apply final processing
self.post_init()
self.vit = build_vision_tower()
self.vision_proj = build_vision_projector()
self.vis_processor = transforms.Compose([
transforms.Resize((config.img_size, config.img_size),
interpolation=InterpolationMode.BICUBIC),
transforms.ToTensor(),
transforms.Normalize((0.48145466, 0.4578275, 0.40821073),
(0.26862954, 0.26130258, 0.27577711)),
])
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, InternLM2Model):
module.gradient_checkpointing = value
if value:
self.vit.vision_tower.vision_model.encoder.gradient_checkpointing = value
def get_input_embeddings(self):
return self.model.tok_embeddings
def set_input_embeddings(self, value):
self.model.tok_embeddings = value
def get_output_embeddings(self):
return self.output
def set_output_embeddings(self, new_embeddings):
self.output = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
def encode_text(self, text, add_special_tokens=False):
token = self.tokenizer(
text, return_tensors='pt',
add_special_tokens=add_special_tokens).input_ids.to(self.device)
embs = self.model.tok_embeddings(token)
return embs
def encode_img(self, image):
if image is None:
return None
if isinstance(image, str):
image = Image.open(image).convert('RGB')
image = self.vis_processor(image).unsqueeze(0).to(self.device)
else:
assert isinstance(image, torch.Tensor)
img_embeds, atts_img, img_target = self.img2emb(image)
return img_embeds
def img2emb(self, image):
img_embeds = self.vision_proj(self.vit(image.to(self.device)))
atts_img = torch.ones(
img_embeds.size()[:-1], dtype=torch.long).to(img_embeds.device)
img_target = torch.ones(
img_embeds.size()[:2], dtype=torch.long).to(
img_embeds.device) * -100
return img_embeds, atts_img, img_target
def prompt_wrap(self, img_embeds, prompt):
batch_size = img_embeds.shape[0]
p_before, p_after = prompt.split('<ImageHere>')
p_before_tokens = self.tokenizer(
p_before, return_tensors='pt',
add_special_tokens=True).to(img_embeds.device)
p_before_embeds = self.model.tok_embeddings(
p_before_tokens.input_ids).expand(batch_size, -1, -1)
wrapped_img_embeds = torch.cat([p_before_embeds, img_embeds], dim=1)
wrapped_atts_img = torch.ones(
wrapped_img_embeds.size()[:-1],
dtype=torch.long).to(img_embeds.device)
wrapped_target = torch.ones(
batch_size, wrapped_img_embeds.shape[1], dtype=torch.long).to(
img_embeds.device) * -100
return wrapped_img_embeds, wrapped_atts_img, wrapped_target
def text2emb(self, text, add_special=False):
to_regress_tokens = self.tokenizer(
text,
return_tensors='pt',
padding='longest',
truncation=True,
add_special_tokens=add_special).to(self.device)
targets = self.mask_human_targets(to_regress_tokens.input_ids)
targets = targets.to(self.device)
return to_regress_tokens, targets
def interleav_wrap_chat(self, tokenizer, query, image, history, meta_instruction):
prompt = ''
if meta_instruction:
prompt += f"""[UNUSED_TOKEN_146]system\n{meta_instruction}[UNUSED_TOKEN_145]\n"""
for record in history:
prompt += f"""[UNUSED_TOKEN_146]user\n{record[0]}[UNUSED_TOKEN_145]\n[UNUSED_TOKEN_146]assistant\n{record[1]}[UNUSED_TOKEN_145]\n"""
prompt += f"""[UNUSED_TOKEN_146]user\n{query}[UNUSED_TOKEN_145]\n[UNUSED_TOKEN_146]assistant\n"""
im_len = image.shape[1]
image_nums = len(image)
parts = prompt.split('<ImageHere>')
wrap_embeds, wrap_im_mask = [], []
temp_len = 0
for idx, part in enumerate(parts):
if len(part) > 0:
part_tokens = tokenizer(part, return_tensors='pt').to(self.device)
part_embeds = self.model.tok_embeddings(
part_tokens.input_ids)
wrap_embeds.append(part_embeds)
wrap_im_mask.append(torch.zeros(part_embeds.shape[:2]))
temp_len += part_embeds.shape[1]
if idx < image_nums:
wrap_embeds.append(image[idx].unsqueeze(0))
wrap_im_mask.append(torch.ones(1, image[idx].shape[0]))
temp_len += im_len
if temp_len > self.max_length:
break
wrap_embeds = torch.cat(wrap_embeds, dim=1)
wrap_im_mask = torch.cat(wrap_im_mask, dim=1)
wrap_embeds = wrap_embeds[:, :self.max_length].to(self.device)
wrap_im_mask = wrap_im_mask[:, :self.max_length].to(self.device).bool()
inputs = {
'inputs_embeds': wrap_embeds
}
return inputs, wrap_im_mask
def interleav_wrap(self, img_list, text_list):
wrap_embeds_list, wrap_atts_list = [], []
wrap_target_list, wrap_im_mask_list = [], []
for image, text in zip(img_list, text_list):
img_embeds, atts_img, img_target = self.img2emb(image)
text = text[0]
parts = text.split('<ImageHere>')
wrap_tokens, wrap_embeds, wrap_atts, wrap_im_mask = [], [], [], []
temp_len = 0
image_nums, im_len = img_embeds.shape[:2]
need_bos = True
for idx, part in enumerate(parts):
if len(part) > 0:
part_tokens = self.tokenizer(
part,
return_tensors='pt',
padding='longest',
add_special_tokens=need_bos).to(self.device)
if need_bos:
need_bos = False
wrap_tokens.append(part_tokens.input_ids)
part_embeds = self.model.tok_embeddings(
part_tokens.input_ids)
wrap_embeds.append(part_embeds)
wrap_atts.append(part_tokens.attention_mask)
wrap_im_mask.append(
torch.zeros(part_embeds.shape[:2]).to(self.device))
temp_len += part_embeds.shape[1]
if idx < image_nums:
wrap_tokens.append(img_target[idx].unsqueeze(0))
wrap_embeds.append(img_embeds[idx].unsqueeze(0))
wrap_atts.append(atts_img[idx].unsqueeze(0))
wrap_im_mask.append(
torch.ones_like(atts_img[idx].unsqueeze(0)))
temp_len += im_len
if temp_len > self.max_length:
break
wrap_tokens = torch.cat(wrap_tokens, dim=1)
wrap_embeds = torch.cat(wrap_embeds, dim=1)
wrap_atts = torch.cat(wrap_atts, dim=1)
wrap_im_mask = torch.cat(wrap_im_mask, dim=1)
wrap_target = self.mask_human_targets(wrap_tokens).to(self.device)
wrap_embeds = wrap_embeds[:, :self.max_length].to(self.device)
wrap_atts = wrap_atts[:, :self.max_length].to(self.device)
wrap_target = wrap_target[:, :self.max_length].to(self.device)
wrap_im_mask = wrap_im_mask[:, :self.max_length].to(self.device)
wrap_embeds_list.append(wrap_embeds)
wrap_atts_list.append(wrap_atts)
wrap_target_list.append(wrap_target)
wrap_im_mask_list.append(wrap_im_mask)
wrap_embeds = torch.cat(wrap_embeds_list)
wrap_atts = torch.cat(wrap_atts_list)
wrap_target = torch.cat(wrap_target_list)
wrap_im_mask = torch.cat(wrap_im_mask_list)
return wrap_embeds, wrap_atts, wrap_target, wrap_im_mask
def mask_human_targets(self, input_ids, pure=False):
target_batch = []
for bs in range(input_ids.shape[0]):
ids = input_ids[bs]
targets = copy.deepcopy(ids)
end_count = 0
last_eoa = 0
for i, temp_id in enumerate(ids):
if temp_id == 92542:
if end_count % 2 == 0:
targets[last_eoa:i + 6] = -100
else:
last_eoa = i + 1
end_count += 1
# # eos and following pad
elif temp_id == 2:
# loss on eos, but not on pad
targets[i + 1:] = -100
break
# trunction, end at last question
if temp_id != 2 and end_count % 2 == 0:
# mask all after the last answer
targets[last_eoa + 1:] = -100
target_batch.append(targets.unsqueeze(0))
target_batch = torch.cat(target_batch, dim=0)
return target_batch
@add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
@replace_return_docstrings(
output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
def forward(self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs) -> Union[Tuple, CausalLMOutputWithPast]:
r"""
Args:
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Returns:
"""
samples = kwargs.get('samples', None)
if samples:
if samples['data_type'][0] == 'text':
has_img = False
elif samples['data_type'][0] == 'multi':
has_img = True
else:
raise NotImplementedError
# encode text
text = samples['text_input']
# encode image
if has_img:
image = samples['image']
to_regress_embeds, attention_mask, targets, im_mask = self.interleav_wrap(
image, text)
else:
to_regress_tokens, targets = self.text2emb(
text, add_special=True)
to_regress_embeds = self.model.tok_embeddings(
to_regress_tokens.input_ids)
attention_mask = to_regress_tokens.attention_mask
im_mask = torch.zeros(to_regress_embeds.shape[:2]).cuda()
inputs_embeds = to_regress_embeds[:, :self.max_length]
attention_mask = attention_mask[:, :self.max_length]
targets = targets[:, :self.max_length]
im_mask = im_mask[:, :self.max_length].bool()
labels = targets
else:
im_mask = kwargs.get('im_mask', None)
if im_mask is None and inputs_embeds is not None:
im_mask = torch.zeros(inputs_embeds.shape[:2]).to(
inputs_embeds.device)
im_mask = im_mask.bool()
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else
self.config.output_hidden_states)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
im_mask=im_mask,
)
hidden_states = outputs[0]
logits = self.output(hidden_states)
logits = logits.float()
loss = None
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
shift_logits = shift_logits.view(-1, self.config.vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
if not return_dict:
output = (logits, ) + outputs[1:]
return (loss, ) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def prepare_inputs_for_generation(self,
input_ids,
past_key_values=None,
attention_mask=None,
inputs_embeds=None,
im_mask=None,
**kwargs):
if past_key_values is not None:
past_length = past_key_values[0][0].shape[2]
# Some generation methods already pass only the last input ID
if input_ids.shape[1] > past_length:
remove_prefix_length = past_length
else:
# Default to old behavior: keep only final ID
remove_prefix_length = input_ids.shape[1] - 1
input_ids = input_ids[:, remove_prefix_length:]
position_ids = kwargs.get('position_ids', None)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
position_ids = position_ids[:, -input_ids.shape[1]:]
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {'inputs_embeds': inputs_embeds}
else:
model_inputs = {'input_ids': input_ids}
im_mask = im_mask
model_inputs.update({
'position_ids': position_ids,
'past_key_values': past_key_values,
'use_cache': kwargs.get('use_cache'),
'attention_mask': attention_mask,
'im_mask': im_mask,
})
return model_inputs
@staticmethod
def _reorder_cache(past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
reordered_past += (tuple(
past_state.index_select(0, beam_idx.to(past_state.device))
for past_state in layer_past), )
return reordered_past
def build_inputs(self,
tokenizer,
query: str,
history: List[Tuple[str, str]] = [],
meta_instruction=''):
prompt = ''
if meta_instruction:
prompt += f"""<s>[UNUSED_TOKEN_146]system\n{meta_instruction}[UNUSED_TOKEN_145]\n"""
else:
prompt += '<s>'
for record in history:
prompt += f"""[UNUSED_TOKEN_146]user\n{record[0]}[UNUSED_TOKEN_145]\n[UNUSED_TOKEN_146]assistant\n{record[1]}[UNUSED_TOKEN_145]\n"""
prompt += f"""[UNUSED_TOKEN_146]user\n{query}[UNUSED_TOKEN_145]\n[UNUSED_TOKEN_146]assistant\n"""
return tokenizer([prompt], return_tensors='pt')
@torch.no_grad()
def chat(
self,
tokenizer,
query: str,
image: torch.Tensor = None,
history: List[Tuple[str, str]] = [],
streamer: Optional[BaseStreamer] = None,
max_new_tokens: int = 1024,
do_sample: bool = True,
temperature: float = 1.0,
top_p: float = 0.8,
repetition_penalty: float=1.005,
meta_instruction:
str = 'You are an AI assistant whose name is InternLM-XComposer (浦语·灵笔).\n'
'- InternLM-XComposer (浦语·灵笔) is a multi-modality conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.\n'
'- InternLM-XComposer (浦语·灵笔) can understand and communicate fluently in the language chosen by the user such as English and 中文.\n'
'- InternLM-XComposer (浦语·灵笔) is capable of comprehending and articulating responses effectively based on the provided image.',
**kwargs,
):
if image is None:
inputs = self.build_inputs(tokenizer, query, history, meta_instruction)
im_mask = torch.zeros(inputs['input_ids'].shape[:2]).cuda().bool()
else:
image = self.encode_img(image)
inputs, im_mask = self.interleav_wrap_chat(tokenizer, query, image, history, meta_instruction)
inputs = {
k: v.to(self.device)
for k, v in inputs.items() if torch.is_tensor(v)
}
# also add end-of-assistant token in eos token id to avoid unnecessary generation
eos_token_id = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids(['[UNUSED_TOKEN_145]'])[0]
]
outputs = self.generate(
**inputs,
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=do_sample,
temperature=temperature,
top_p=top_p,
eos_token_id=eos_token_id,
repetition_penalty=repetition_penalty,
im_mask=im_mask,
**kwargs,
)
if image is None:
outputs = outputs[0].cpu().tolist()[len(inputs['input_ids'][0]):]
else:
outputs = outputs[0].cpu().tolist()
response = tokenizer.decode(outputs, skip_special_tokens=True)
response = response.split('[UNUSED_TOKEN_145]')[0]
history = history + [(query, response)]
return response, history
@torch.no_grad()
def stream_chat(
self,
tokenizer,
query: str,
history: List[Tuple[str, str]] = [],
max_new_tokens: int = 1024,
do_sample: bool = True,
temperature: float = 0.8,
top_p: float = 0.8,
**kwargs,
):
"""Return a generator in format: (response, history) Eg.
('你好,有什么可以帮助您的吗', [('你好', '你好,有什么可以帮助您的吗')]) ('你好,有什么可以帮助您的吗?', [('你好',
'你好,有什么可以帮助您的吗?')])
"""
if BaseStreamer is None:
raise ModuleNotFoundError(
'The version of `transformers` is too low. Please make sure '
'that you have installed `transformers>=4.28.0`.')
response_queue = queue.Queue(maxsize=20)
class ChatStreamer(BaseStreamer):
def __init__(self, tokenizer) -> None:
super().__init__()
self.tokenizer = tokenizer
self.queue = response_queue
self.query = query
self.history = history
self.response = ''
self.received_inputs = False
self.queue.put(
(self.response, history + [(self.query, self.response)]))
def put(self, value):
if len(value.shape) > 1 and value.shape[0] > 1:
raise ValueError('ChatStreamer only supports batch size 1')
elif len(value.shape) > 1:
value = value[0]
if not self.received_inputs:
# The first received value is input_ids, ignore here
self.received_inputs = True
return
token = self.tokenizer.decode([value[-1]],
skip_special_tokens=True)
if token.strip() != '[UNUSED_TOKEN_145]':
self.response = self.response + token
history = self.history + [(self.query, self.response)]
self.queue.put((self.response, history))
def end(self):
self.queue.put(None)
def stream_producer():
return self.chat(
tokenizer=tokenizer,
query=query,
streamer=ChatStreamer(tokenizer=tokenizer),
history=history,
max_new_tokens=max_new_tokens,
do_sample=do_sample,
temperature=temperature,
top_p=top_p,
**kwargs,
)
def consumer():
producer = threading.Thread(target=stream_producer)
producer.start()
while True:
res = response_queue.get()
if res is None:
return
yield res
return consumer()