myownskyW7
commited on
Commit
·
5985c08
1
Parent(s):
e19ed3c
init internlm-xcomposer-vl-7b
Browse files- added_tokens.json +4 -0
- config.json +56 -0
- configuration_InternLM_XComposer.py +62 -0
- modeling_InternLM.py +1247 -0
- modeling_InternLM_XComposer.py +259 -0
- modeling_perceive_sampler.py +1193 -0
- modeling_utils.py +122 -0
- modeling_vit.py +535 -0
- pytorch_model-00001-of-00004.bin +3 -0
- pytorch_model-00002-of-00004.bin +3 -0
- pytorch_model-00003-of-00004.bin +3 -0
- pytorch_model-00004-of-00004.bin +3 -0
- pytorch_model.bin.index.json +0 -0
- special_tokens_map.json +6 -0
- tokenization_InternLM_XComposer.py +240 -0
- tokenizer.model +3 -0
- tokenizer_config.json +15 -0
added_tokens.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<ITG_TOKEN>": 103168,
|
3 |
+
"<SOI_TOKEN>": 103169
|
4 |
+
}
|
config.json
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "performance",
|
3 |
+
"architectures": [
|
4 |
+
"InternLMXComposerForCausalLM"
|
5 |
+
],
|
6 |
+
"auto_map": {
|
7 |
+
"AutoConfig": "configuration_InternLM_XComposer.InternLMXComposerConfig",
|
8 |
+
"AutoModel": "modeling_InternLM_XComposer.InternLMXComposerForCausalLM",
|
9 |
+
"AutoModelForCausalLM": "modeling_InternLM_XComposer.InternLMXComposerForCausalLM"
|
10 |
+
},
|
11 |
+
"bias": true,
|
12 |
+
"bos_token_id": 1,
|
13 |
+
"device": "cuda",
|
14 |
+
"eos_token_id": 2,
|
15 |
+
"hidden_act": "silu",
|
16 |
+
"hidden_size": 4096,
|
17 |
+
"initializer_range": 0.02,
|
18 |
+
"intermediate_size": 11008,
|
19 |
+
"intern_converted_llm": true,
|
20 |
+
"internlm_lora": {
|
21 |
+
"freeze": false,
|
22 |
+
"learn_param": [
|
23 |
+
"q",
|
24 |
+
"v",
|
25 |
+
"ffn"
|
26 |
+
],
|
27 |
+
"lora_alpha": 256,
|
28 |
+
"lora_dropout": 0.05,
|
29 |
+
"lora_r": 256
|
30 |
+
},
|
31 |
+
"kqvo_bias": true,
|
32 |
+
"lora_cfg": {
|
33 |
+
"freeze": false,
|
34 |
+
"learn_param": [
|
35 |
+
"q",
|
36 |
+
"v",
|
37 |
+
"ffn"
|
38 |
+
],
|
39 |
+
"lora_alpha": 256,
|
40 |
+
"lora_dropout": 0.05,
|
41 |
+
"lora_r": 256
|
42 |
+
},
|
43 |
+
"max_position_embeddings": 2048,
|
44 |
+
"model_type": "InternLMXComposer",
|
45 |
+
"num_attention_heads": 32,
|
46 |
+
"num_hidden_layers": 32,
|
47 |
+
"num_quant": 32,
|
48 |
+
"num_query_token": 64,
|
49 |
+
"pad_token_id": -1,
|
50 |
+
"rms_norm_eps": 1e-05,
|
51 |
+
"tie_word_embeddings": false,
|
52 |
+
"torch_dtype": "float32",
|
53 |
+
"transformers_version": "4.30.2",
|
54 |
+
"use_cache": true,
|
55 |
+
"vocab_size": 103170
|
56 |
+
}
|
configuration_InternLM_XComposer.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers.configuration_utils import PretrainedConfig
|
2 |
+
from transformers.utils import logging
|
3 |
+
|
4 |
+
logger = logging.get_logger(__name__)
|
5 |
+
|
6 |
+
INTERNLM_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
|
7 |
+
|
8 |
+
|
9 |
+
class InternLMXComposerConfig(PretrainedConfig):
|
10 |
+
|
11 |
+
model_type = "InternLMXComposer"
|
12 |
+
_auto_class = "AutoConfig"
|
13 |
+
|
14 |
+
def __init__(
|
15 |
+
self,
|
16 |
+
vocab_size=103168,
|
17 |
+
hidden_size=4096,
|
18 |
+
intermediate_size=11008,
|
19 |
+
num_hidden_layers=32,
|
20 |
+
num_attention_heads=32,
|
21 |
+
hidden_act="silu",
|
22 |
+
max_position_embeddings=2048,
|
23 |
+
initializer_range=0.02,
|
24 |
+
rms_norm_eps=1e-5,
|
25 |
+
use_cache=True,
|
26 |
+
pad_token_id=-1,
|
27 |
+
bos_token_id=1,
|
28 |
+
eos_token_id=2,
|
29 |
+
tie_word_embeddings=False,
|
30 |
+
bias=True,
|
31 |
+
num_query_token=32,
|
32 |
+
num_quant=32,
|
33 |
+
intern_converted_llm=True,
|
34 |
+
kqvo_bias=True,
|
35 |
+
device='cuda',
|
36 |
+
internlm_lora=None,
|
37 |
+
**kwargs,
|
38 |
+
):
|
39 |
+
self.vocab_size = vocab_size
|
40 |
+
self.max_position_embeddings = max_position_embeddings
|
41 |
+
self.hidden_size = hidden_size
|
42 |
+
self.intermediate_size = intermediate_size
|
43 |
+
self.num_hidden_layers = num_hidden_layers
|
44 |
+
self.num_attention_heads = num_attention_heads
|
45 |
+
self.hidden_act = hidden_act
|
46 |
+
self.initializer_range = initializer_range
|
47 |
+
self.rms_norm_eps = rms_norm_eps
|
48 |
+
self.use_cache = use_cache
|
49 |
+
self.bias = bias
|
50 |
+
self.num_query_token = num_query_token
|
51 |
+
self.num_quant = num_quant
|
52 |
+
self.internlm_lora = internlm_lora
|
53 |
+
self.kqvo_bias = kqvo_bias
|
54 |
+
self.intern_converted_llm = intern_converted_llm
|
55 |
+
self.device = device
|
56 |
+
super().__init__(
|
57 |
+
pad_token_id=pad_token_id,
|
58 |
+
bos_token_id=bos_token_id,
|
59 |
+
eos_token_id=eos_token_id,
|
60 |
+
tie_word_embeddings=tie_word_embeddings,
|
61 |
+
**kwargs,
|
62 |
+
)
|
modeling_InternLM.py
ADDED
@@ -0,0 +1,1247 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from typing import List, Union
|
3 |
+
from typing import Optional, Tuple
|
4 |
+
|
5 |
+
import rotary_emb
|
6 |
+
import torch
|
7 |
+
import torch.utils.checkpoint
|
8 |
+
import torch.utils.checkpoint
|
9 |
+
from einops import rearrange
|
10 |
+
from flash_attn.layers.rotary import ApplyRotaryEmbQKV_ as LegacyApplyRotaryEmbQKV_
|
11 |
+
from torch import nn
|
12 |
+
from torch.nn import CrossEntropyLoss
|
13 |
+
from transformers.activations import ACT2FN
|
14 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
15 |
+
from transformers.modeling_utils import PreTrainedModel
|
16 |
+
from transformers.utils import logging
|
17 |
+
|
18 |
+
from .configuration_InternLM_XComposer import InternLMXComposerConfig
|
19 |
+
from .modeling_utils import LoRALinear
|
20 |
+
|
21 |
+
logger = logging.get_logger(__name__)
|
22 |
+
|
23 |
+
_CONFIG_FOR_DOC = "InternLMXComposerConfig"
|
24 |
+
|
25 |
+
|
26 |
+
class ApplyRotaryEmbQKV_(torch.autograd.Function):
|
27 |
+
"""
|
28 |
+
ApplyRotaryEmbQKV_
|
29 |
+
"""
|
30 |
+
@staticmethod
|
31 |
+
def forward(ctx, qkv, cos, sin, cos_k=None, sin_k=None):
|
32 |
+
"""
|
33 |
+
qkv: (total, 3, nheads, headdim)
|
34 |
+
cos, sin: (seqlen, rotary_dim / 2)
|
35 |
+
cos_k, sin_k: (seqlen, rotary_dim / 2), optional
|
36 |
+
rotary_dim must be <= headdim
|
37 |
+
Apply rotary embedding *inplace* to the first rotary_dim of q and k.
|
38 |
+
"""
|
39 |
+
_, three, _, headdim = qkv.shape
|
40 |
+
assert three == 3
|
41 |
+
rotary_seqlen, rotary_dim = cos.shape
|
42 |
+
rotary_dim *= 2
|
43 |
+
assert rotary_dim <= headdim
|
44 |
+
cos_k = cos if cos_k is None else cos_k
|
45 |
+
sin_k = sin if sin_k is None else sin_k
|
46 |
+
assert sin.shape == cos_k.shape == sin_k.shape == (rotary_seqlen,
|
47 |
+
rotary_dim // 2)
|
48 |
+
q1, q2 = qkv[:, 0, :, :rotary_dim].chunk(2, dim=-1)
|
49 |
+
rotary_emb.apply_rotary(q1, q2, rearrange(cos, "s d -> s 1 d"),
|
50 |
+
rearrange(sin, "s d -> s 1 d"), q1, q2, False)
|
51 |
+
k1, k2 = qkv[:, 1, :, :rotary_dim].chunk(2, dim=-1)
|
52 |
+
rotary_emb.apply_rotary(k1, k2, rearrange(cos_k, "s d -> s 1 d"),
|
53 |
+
rearrange(sin_k, "s d -> s 1 d"), k1, k2,
|
54 |
+
False)
|
55 |
+
ctx.save_for_backward(cos, sin, cos_k, sin_k)
|
56 |
+
return qkv
|
57 |
+
|
58 |
+
@staticmethod
|
59 |
+
def backward(ctx, dqkv):
|
60 |
+
cos, sin, cos_k, sin_k = ctx.saved_tensors
|
61 |
+
rotary_dim = cos.shape[-1]
|
62 |
+
rotary_dim *= 2
|
63 |
+
dq1, dq2 = dqkv[:, 0, :, :rotary_dim].chunk(2, dim=-1)
|
64 |
+
rotary_emb.apply_rotary(dq1, dq2, rearrange(cos, "s d -> s 1 d"),
|
65 |
+
rearrange(sin, "s d -> s 1 d"), dq1, dq2, True)
|
66 |
+
dk1, dk2 = dqkv[:, 1, :, :rotary_dim].chunk(2, dim=-1)
|
67 |
+
rotary_emb.apply_rotary(dk1, dk2, rearrange(cos_k, "s d -> s 1 d"),
|
68 |
+
rearrange(sin_k, "s d -> s 1 d"), dk1, dk2,
|
69 |
+
True)
|
70 |
+
return dqkv, None, None, None, None
|
71 |
+
|
72 |
+
|
73 |
+
class ConvertedInternLMRotaryEmbedding(torch.nn.Module):
|
74 |
+
def __init__(self, dim: int, base=10000, scale_base=0, device=None):
|
75 |
+
""" """
|
76 |
+
super().__init__()
|
77 |
+
# Generate and save the inverse frequency buffer (non trainable)
|
78 |
+
inv_freq = 1.0 / (base**(
|
79 |
+
torch.arange(0, dim, 2, device=device, dtype=torch.float32) / dim))
|
80 |
+
self.register_buffer("inv_freq", inv_freq)
|
81 |
+
self.scale_base = scale_base
|
82 |
+
scale = ((torch.arange(0, dim, 2, device=device, dtype=torch.float32) +
|
83 |
+
0.4 * dim) / (1.4 * dim) if scale_base > 0 else None)
|
84 |
+
self.register_buffer("scale", scale)
|
85 |
+
|
86 |
+
self._seq_len_cached = 0
|
87 |
+
self._cos_cached = None
|
88 |
+
self._sin_cached = None
|
89 |
+
self._cos_k_cached = None
|
90 |
+
self._sin_k_cached = None
|
91 |
+
|
92 |
+
def _update_cos_sin_cache(self, x, indexes):
|
93 |
+
"""x: (batch, seqlen, nheads, headdim) or (batch, seqlen, 3, nheads, headdim)"""
|
94 |
+
if not isinstance(indexes, int):
|
95 |
+
seqlen = indexes.max().item() + 1
|
96 |
+
else:
|
97 |
+
seqlen = indexes + 1 # eval_forward
|
98 |
+
# Reset the tables if the sequence length has changed,
|
99 |
+
# or if we're on a new device (possibly due to tracing for instance)
|
100 |
+
if seqlen > self._seq_len_cached or self._cos_cached.device != x.device or self._cos_cached.dtype != x.dtype:
|
101 |
+
self._seq_len_cached = seqlen
|
102 |
+
t = torch.arange(seqlen,
|
103 |
+
device=x.device,
|
104 |
+
dtype=self.inv_freq.dtype)
|
105 |
+
# Don't do einsum, it converts fp32 to fp16
|
106 |
+
# freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
107 |
+
freqs = torch.outer(t, self.inv_freq.to(device=t.device))
|
108 |
+
if self.scale is None:
|
109 |
+
self._cos_cached = torch.cos(freqs).to(x.dtype)
|
110 |
+
self._sin_cached = torch.sin(freqs).to(x.dtype)
|
111 |
+
else:
|
112 |
+
power = (torch.arange(
|
113 |
+
seqlen, dtype=self.scale.dtype, device=self.scale.device) -
|
114 |
+
seqlen // 2) / self.scale_base
|
115 |
+
scale = self.scale.to(device=power.device)**rearrange(
|
116 |
+
power, "s -> s 1")
|
117 |
+
# We want the multiplication by scale to happen in fp32
|
118 |
+
self._cos_cached = (torch.cos(freqs) * scale).to(x.dtype)
|
119 |
+
self._sin_cached = (torch.sin(freqs) * scale).to(x.dtype)
|
120 |
+
self._cos_k_cached = (torch.cos(freqs) / scale).to(x.dtype)
|
121 |
+
self._sin_k_cached = (torch.sin(freqs) / scale).to(x.dtype)
|
122 |
+
|
123 |
+
def forward(self,
|
124 |
+
qkv: torch.Tensor,
|
125 |
+
indexes=0) -> Tuple[torch.Tensor, torch.Tensor]:
|
126 |
+
self._update_cos_sin_cache(qkv, indexes)
|
127 |
+
if self.scale is None:
|
128 |
+
return apply_rotary_emb_qkv_(qkv, self._cos_cached[indexes],
|
129 |
+
self._sin_cached[indexes]).to(
|
130 |
+
qkv.dtype)
|
131 |
+
else:
|
132 |
+
return apply_rotary_emb_qkv_(
|
133 |
+
qkv,
|
134 |
+
self._cos_cached[indexes],
|
135 |
+
self._sin_cached[indexes],
|
136 |
+
self._cos_k_cached[indexes],
|
137 |
+
self._sin_k_cached[indexes],
|
138 |
+
).to(qkv.dtype)
|
139 |
+
|
140 |
+
def eval_forward(self, qkv, seqlen_offset=0):
|
141 |
+
"""
|
142 |
+
seqlen_offset: can be used in generation where the qkv being passed in is only the last
|
143 |
+
token in the batch.
|
144 |
+
"""
|
145 |
+
self._update_cos_sin_cache(qkv, seqlen_offset + qkv.shape[1])
|
146 |
+
if self.scale is None:
|
147 |
+
return legacy_apply_rotary_embed_qkv(
|
148 |
+
qkv, self._cos_cached[seqlen_offset:],
|
149 |
+
self._sin_cached[seqlen_offset:])
|
150 |
+
else:
|
151 |
+
return legacy_apply_rotary_embed_qkv(
|
152 |
+
qkv,
|
153 |
+
self._cos_cached[seqlen_offset:],
|
154 |
+
self._sin_cached[seqlen_offset:],
|
155 |
+
self._cos_k_cached[seqlen_offset:],
|
156 |
+
self._sin_k_cached[seqlen_offset:],
|
157 |
+
)
|
158 |
+
|
159 |
+
|
160 |
+
apply_rotary_emb_qkv_ = ApplyRotaryEmbQKV_.apply
|
161 |
+
legacy_apply_rotary_embed_qkv = LegacyApplyRotaryEmbQKV_.apply
|
162 |
+
|
163 |
+
|
164 |
+
class InternConvertedInternLMAttention(nn.Module):
|
165 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
166 |
+
def __init__(self, config: InternLMXComposerConfig):
|
167 |
+
super().__init__()
|
168 |
+
self.config = config
|
169 |
+
self.hidden_size = config.hidden_size
|
170 |
+
self.num_heads = config.num_attention_heads
|
171 |
+
self.head_dim = self.hidden_size // self.num_heads
|
172 |
+
self.max_position_embeddings = config.max_position_embeddings
|
173 |
+
|
174 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
175 |
+
raise ValueError(
|
176 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
177 |
+
f" and `num_heads`: {self.num_heads}).")
|
178 |
+
if config.lora_cfg is None:
|
179 |
+
self.q_proj = nn.Linear(self.hidden_size,
|
180 |
+
self.num_heads * self.head_dim,
|
181 |
+
bias=config.kqvo_bias)
|
182 |
+
self.k_proj = nn.Linear(self.hidden_size,
|
183 |
+
self.num_heads * self.head_dim,
|
184 |
+
bias=config.kqvo_bias)
|
185 |
+
self.v_proj = nn.Linear(self.hidden_size,
|
186 |
+
self.num_heads * self.head_dim,
|
187 |
+
bias=config.kqvo_bias)
|
188 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim,
|
189 |
+
self.hidden_size,
|
190 |
+
bias=config.kqvo_bias)
|
191 |
+
|
192 |
+
else:
|
193 |
+
lora_cfg = config.lora_cfg
|
194 |
+
if 'q' in lora_cfg['learn_param']:
|
195 |
+
self.q_proj = LoRALinear(self.hidden_size,
|
196 |
+
self.num_heads * self.head_dim,
|
197 |
+
bias=config.kqvo_bias,
|
198 |
+
**lora_cfg)
|
199 |
+
else:
|
200 |
+
self.q_proj = nn.Linear(
|
201 |
+
self.hidden_size,
|
202 |
+
self.num_heads * self.head_dim,
|
203 |
+
bias=config.kqvo_bias,
|
204 |
+
)
|
205 |
+
if 'k' in lora_cfg['learn_param']:
|
206 |
+
self.k_proj = LoRALinear(self.hidden_size,
|
207 |
+
self.num_heads * self.head_dim,
|
208 |
+
bias=config.kqvo_bias,
|
209 |
+
**lora_cfg)
|
210 |
+
else:
|
211 |
+
self.k_proj = nn.Linear(
|
212 |
+
self.hidden_size,
|
213 |
+
self.num_heads * self.head_dim,
|
214 |
+
bias=config.kqvo_bias,
|
215 |
+
)
|
216 |
+
if 'v' in lora_cfg['learn_param']:
|
217 |
+
self.v_proj = LoRALinear(self.hidden_size,
|
218 |
+
self.num_heads * self.head_dim,
|
219 |
+
bias=config.kqvo_bias,
|
220 |
+
**lora_cfg)
|
221 |
+
else:
|
222 |
+
self.v_proj = nn.Linear(
|
223 |
+
self.hidden_size,
|
224 |
+
self.num_heads * self.head_dim,
|
225 |
+
bias=config.kqvo_bias,
|
226 |
+
)
|
227 |
+
|
228 |
+
if 'o' in lora_cfg['learn_param']:
|
229 |
+
self.o_proj = LoRALinear(self.num_heads * self.head_dim,
|
230 |
+
self.hidden_size,
|
231 |
+
bias=config.kqvo_bias,
|
232 |
+
**lora_cfg)
|
233 |
+
else:
|
234 |
+
self.o_proj = nn.Linear(
|
235 |
+
self.num_heads * self.head_dim,
|
236 |
+
self.hidden_size,
|
237 |
+
bias=config.kqvo_bias,
|
238 |
+
)
|
239 |
+
|
240 |
+
self.rotary_emb = ConvertedInternLMRotaryEmbedding(self.head_dim)
|
241 |
+
|
242 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
243 |
+
return tensor.view(bsz, seq_len, self.num_heads,
|
244 |
+
self.head_dim).transpose(1, 2).contiguous()
|
245 |
+
|
246 |
+
def forward(
|
247 |
+
self,
|
248 |
+
hidden_states: torch.Tensor,
|
249 |
+
attention_mask: Optional[torch.Tensor] = None,
|
250 |
+
position_ids: Optional[torch.LongTensor] = None,
|
251 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
252 |
+
output_attentions: bool = False,
|
253 |
+
use_cache: bool = False,
|
254 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor],
|
255 |
+
Optional[Tuple[torch.Tensor]]]:
|
256 |
+
bsz, q_len, _ = hidden_states.size()
|
257 |
+
|
258 |
+
query_states = self.q_proj(hidden_states)
|
259 |
+
key_states = self.k_proj(hidden_states)
|
260 |
+
value_states = self.v_proj(hidden_states)
|
261 |
+
|
262 |
+
q = query_states
|
263 |
+
k = key_states
|
264 |
+
v = value_states
|
265 |
+
|
266 |
+
qkv = torch.cat([q, k, v], dim=2).contiguous()
|
267 |
+
qkv = qkv.view(bsz, q_len, -1)
|
268 |
+
qkv = rearrange(qkv,
|
269 |
+
"b s (three h d) -> b s three h d",
|
270 |
+
three=3,
|
271 |
+
d=self.head_dim)
|
272 |
+
|
273 |
+
if past_key_value is not None:
|
274 |
+
qkv = self.rotary_emb.eval_forward(
|
275 |
+
qkv, seqlen_offset=past_key_value[0].shape[2])
|
276 |
+
else:
|
277 |
+
qkv = self.rotary_emb.eval_forward(qkv)
|
278 |
+
|
279 |
+
query_states, key_states, value_states = qkv.unbind(2)
|
280 |
+
query_states = query_states.transpose(1, 2)
|
281 |
+
key_states = key_states.transpose(1, 2)
|
282 |
+
value_states = value_states.transpose(1, 2)
|
283 |
+
|
284 |
+
kv_seq_len = key_states.shape[-2]
|
285 |
+
if past_key_value is not None:
|
286 |
+
kv_seq_len += past_key_value[0].shape[-2]
|
287 |
+
# cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
288 |
+
# query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
289 |
+
# [bsz, nh, t, hd]
|
290 |
+
|
291 |
+
if past_key_value is not None:
|
292 |
+
# reuse k, v, self_attention
|
293 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
294 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
295 |
+
|
296 |
+
past_key_value = (key_states, value_states) if use_cache else None
|
297 |
+
|
298 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(
|
299 |
+
2, 3)) / math.sqrt(self.head_dim)
|
300 |
+
|
301 |
+
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
302 |
+
raise ValueError(
|
303 |
+
f"Attention weights should be of size {(bsz * self.num_heads, q_len, kv_seq_len)}, but is"
|
304 |
+
f" {attn_weights.size()}")
|
305 |
+
|
306 |
+
if attention_mask is not None:
|
307 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
308 |
+
raise ValueError(
|
309 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
310 |
+
)
|
311 |
+
attn_weights = attn_weights + attention_mask
|
312 |
+
attn_weights = torch.max(
|
313 |
+
attn_weights,
|
314 |
+
torch.tensor(torch.finfo(attn_weights.dtype).min))
|
315 |
+
|
316 |
+
# upcast attention to fp32
|
317 |
+
attn_weights = nn.functional.softmax(attn_weights,
|
318 |
+
dim=-1,
|
319 |
+
dtype=torch.float32).to(
|
320 |
+
query_states.dtype)
|
321 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
322 |
+
|
323 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
324 |
+
raise ValueError(
|
325 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
326 |
+
f" {attn_output.size()}")
|
327 |
+
|
328 |
+
attn_output = attn_output.transpose(1, 2)
|
329 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
330 |
+
|
331 |
+
attn_output = self.o_proj(attn_output)
|
332 |
+
|
333 |
+
if not output_attentions:
|
334 |
+
attn_weights = None
|
335 |
+
|
336 |
+
return attn_output, attn_weights, past_key_value
|
337 |
+
|
338 |
+
|
339 |
+
class ConvertedLoRALinear(nn.Linear):
|
340 |
+
def __init__(self,
|
341 |
+
in_features: int,
|
342 |
+
out_features: int,
|
343 |
+
bias: bool = True,
|
344 |
+
device=None,
|
345 |
+
dtype=None,
|
346 |
+
lora_r=8,
|
347 |
+
lora_alpha=16,
|
348 |
+
lora_dropout=0.05,
|
349 |
+
**kwargs) -> None:
|
350 |
+
super().__init__(in_features, out_features, bias, device, dtype)
|
351 |
+
self.lora_r = lora_r
|
352 |
+
self.lora_alpha = lora_alpha
|
353 |
+
if lora_dropout > 0.:
|
354 |
+
self.lora_dropout = nn.Dropout(p=lora_dropout)
|
355 |
+
else:
|
356 |
+
self.lora_dropout = lambda x: x
|
357 |
+
self.lora_scaling = self.lora_alpha / self.lora_r
|
358 |
+
|
359 |
+
self.lora_A = nn.Linear(in_features,
|
360 |
+
self.lora_r,
|
361 |
+
bias=False,
|
362 |
+
device=device,
|
363 |
+
dtype=dtype)
|
364 |
+
self.lora_B = nn.Linear(self.lora_r,
|
365 |
+
out_features,
|
366 |
+
bias=False,
|
367 |
+
device=device,
|
368 |
+
dtype=dtype)
|
369 |
+
|
370 |
+
self.reset_parameters()
|
371 |
+
|
372 |
+
def reset_parameters(self):
|
373 |
+
if hasattr(self, 'lora_A'):
|
374 |
+
# initialize A the same way as the default for nn.Linear and B to zero
|
375 |
+
nn.init.kaiming_uniform_(self.lora_A.weight, a=math.sqrt(5))
|
376 |
+
nn.init.zeros_(self.lora_B.weight)
|
377 |
+
# print ("lora weight init {} {}".format(torch.mean(self.lora_A.weight), torch.mean(self.lora_B.weight)))
|
378 |
+
|
379 |
+
def forward(self, x):
|
380 |
+
orig_type = x.dtype
|
381 |
+
res = super().forward(x)
|
382 |
+
|
383 |
+
dim = int(res.shape[-1] // 2)
|
384 |
+
|
385 |
+
r1 = res[..., :dim]
|
386 |
+
r2 = res[..., dim:]
|
387 |
+
|
388 |
+
r1 = r1.float()
|
389 |
+
r2 = r2.float()
|
390 |
+
x_ = x.float()
|
391 |
+
|
392 |
+
tmp = self.lora_B(self.lora_A(
|
393 |
+
self.lora_dropout(x_))) * self.lora_scaling
|
394 |
+
tmp1 = tmp[..., ::2]
|
395 |
+
tmp2 = tmp[..., 1::2]
|
396 |
+
|
397 |
+
r1 += tmp1
|
398 |
+
r2 += tmp2
|
399 |
+
|
400 |
+
r1 = r1.to(orig_type)
|
401 |
+
r2 = r2.to(orig_type)
|
402 |
+
|
403 |
+
res = torch.cat([r1, r2], -1)
|
404 |
+
|
405 |
+
# res += self.lora_B(self.lora_A(
|
406 |
+
# self.lora_dropout(x))) * self.lora_scaling
|
407 |
+
return res
|
408 |
+
|
409 |
+
|
410 |
+
# Copied from transformers.models.bart.modeling_bart._make_causal_mask
|
411 |
+
def _make_causal_mask(input_ids_shape: torch.Size,
|
412 |
+
dtype: torch.dtype,
|
413 |
+
device: torch.device,
|
414 |
+
past_key_values_length: int = 0):
|
415 |
+
"""
|
416 |
+
Make causal mask used for bi-directional self-attention.
|
417 |
+
"""
|
418 |
+
bsz, tgt_len = input_ids_shape
|
419 |
+
mask = torch.full((tgt_len, tgt_len),
|
420 |
+
torch.tensor(torch.finfo(dtype).min, device=device),
|
421 |
+
device=device)
|
422 |
+
mask_cond = torch.arange(mask.size(-1), device=device)
|
423 |
+
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
|
424 |
+
mask = mask.to(dtype)
|
425 |
+
|
426 |
+
if past_key_values_length > 0:
|
427 |
+
mask = torch.cat([
|
428 |
+
torch.zeros(
|
429 |
+
tgt_len, past_key_values_length, dtype=dtype, device=device),
|
430 |
+
mask
|
431 |
+
],
|
432 |
+
dim=-1)
|
433 |
+
return mask[None, None, :, :].expand(bsz, 1, tgt_len,
|
434 |
+
tgt_len + past_key_values_length)
|
435 |
+
|
436 |
+
|
437 |
+
# Copied from transformers.models.bart.modeling_bart._expand_mask
|
438 |
+
def _expand_mask(mask: torch.Tensor,
|
439 |
+
dtype: torch.dtype,
|
440 |
+
tgt_len: Optional[int] = None):
|
441 |
+
"""
|
442 |
+
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
443 |
+
"""
|
444 |
+
bsz, src_len = mask.size()
|
445 |
+
tgt_len = tgt_len if tgt_len is not None else src_len
|
446 |
+
|
447 |
+
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len,
|
448 |
+
src_len).to(dtype)
|
449 |
+
|
450 |
+
inverted_mask = 1.0 - expanded_mask
|
451 |
+
|
452 |
+
return inverted_mask.masked_fill(inverted_mask.to(torch.bool),
|
453 |
+
torch.finfo(dtype).min)
|
454 |
+
|
455 |
+
|
456 |
+
class InternLMRMSNorm(nn.Module):
|
457 |
+
def __init__(self, hidden_size, eps=1e-6):
|
458 |
+
"""
|
459 |
+
InternLMRMSNorm is equivalent to T5LayerNorm
|
460 |
+
"""
|
461 |
+
super().__init__()
|
462 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
463 |
+
self.variance_epsilon = eps
|
464 |
+
|
465 |
+
def forward(self, hidden_states):
|
466 |
+
variance = hidden_states.to(torch.float32).pow(2).mean(-1,
|
467 |
+
keepdim=True)
|
468 |
+
hidden_states = hidden_states * torch.rsqrt(variance +
|
469 |
+
self.variance_epsilon)
|
470 |
+
|
471 |
+
# convert into half-precision if necessary
|
472 |
+
if self.weight.dtype in [torch.float16, torch.bfloat16]:
|
473 |
+
hidden_states = hidden_states.to(self.weight.dtype)
|
474 |
+
|
475 |
+
return self.weight * hidden_states
|
476 |
+
|
477 |
+
|
478 |
+
class InternLMRotaryEmbedding(torch.nn.Module):
|
479 |
+
def __init__(self,
|
480 |
+
dim,
|
481 |
+
max_position_embeddings=2048,
|
482 |
+
base=10000,
|
483 |
+
device=None):
|
484 |
+
super().__init__()
|
485 |
+
inv_freq = 1.0 / (base
|
486 |
+
**(torch.arange(0, dim, 2).float().to(device) / dim))
|
487 |
+
self.register_buffer("inv_freq", inv_freq)
|
488 |
+
|
489 |
+
# Build here to make `torch.jit.trace` work.
|
490 |
+
self.max_seq_len_cached = max_position_embeddings
|
491 |
+
t = torch.arange(self.max_seq_len_cached,
|
492 |
+
device=self.inv_freq.device,
|
493 |
+
dtype=self.inv_freq.dtype)
|
494 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
495 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
496 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
497 |
+
self.register_buffer("cos_cached",
|
498 |
+
emb.cos()[None, None, :, :],
|
499 |
+
persistent=False)
|
500 |
+
self.register_buffer("sin_cached",
|
501 |
+
emb.sin()[None, None, :, :],
|
502 |
+
persistent=False)
|
503 |
+
|
504 |
+
def forward(self, x, seq_len=None):
|
505 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
506 |
+
# This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case.
|
507 |
+
if seq_len > self.max_seq_len_cached:
|
508 |
+
self.max_seq_len_cached = seq_len
|
509 |
+
t = torch.arange(self.max_seq_len_cached,
|
510 |
+
device=x.device,
|
511 |
+
dtype=self.inv_freq.dtype)
|
512 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
513 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
514 |
+
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
|
515 |
+
self.register_buffer("cos_cached",
|
516 |
+
emb.cos()[None, None, :, :],
|
517 |
+
persistent=False)
|
518 |
+
self.register_buffer("sin_cached",
|
519 |
+
emb.sin()[None, None, :, :],
|
520 |
+
persistent=False)
|
521 |
+
return (
|
522 |
+
self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
523 |
+
self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
524 |
+
)
|
525 |
+
|
526 |
+
|
527 |
+
def rotate_half(x):
|
528 |
+
"""Rotates half the hidden dims of the input."""
|
529 |
+
x1 = x[..., :x.shape[-1] // 2]
|
530 |
+
x2 = x[..., x.shape[-1] // 2:]
|
531 |
+
return torch.cat((-x2, x1), dim=-1)
|
532 |
+
|
533 |
+
|
534 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
|
535 |
+
gather_indices = position_ids[:, None, :, None] # [bs, 1, seq_len, 1]
|
536 |
+
gather_indices = gather_indices.repeat(1, cos.shape[1], 1, cos.shape[3])
|
537 |
+
cos = torch.gather(cos.repeat(gather_indices.shape[0], 1, 1, 1), 2,
|
538 |
+
gather_indices)
|
539 |
+
sin = torch.gather(sin.repeat(gather_indices.shape[0], 1, 1, 1), 2,
|
540 |
+
gather_indices)
|
541 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
542 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
543 |
+
return q_embed, k_embed
|
544 |
+
|
545 |
+
|
546 |
+
class InternLMMLP(nn.Module):
|
547 |
+
def __init__(self, hidden_size: int, intermediate_size: int,
|
548 |
+
hidden_act: str, config: InternLMXComposerConfig):
|
549 |
+
super().__init__()
|
550 |
+
self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
|
551 |
+
if config.lora_cfg is not None and 'ffn' in config.lora_cfg[
|
552 |
+
'learn_param']:
|
553 |
+
lora_cfg = config.lora_cfg
|
554 |
+
self.down_proj = LoRALinear(intermediate_size,
|
555 |
+
hidden_size,
|
556 |
+
bias=False,
|
557 |
+
**lora_cfg)
|
558 |
+
self.up_proj = LoRALinear(hidden_size,
|
559 |
+
intermediate_size,
|
560 |
+
bias=False,
|
561 |
+
**lora_cfg)
|
562 |
+
else:
|
563 |
+
self.down_proj = nn.Linear(intermediate_size,
|
564 |
+
hidden_size,
|
565 |
+
bias=False)
|
566 |
+
self.up_proj = nn.Linear(hidden_size,
|
567 |
+
intermediate_size,
|
568 |
+
bias=False)
|
569 |
+
self.act_fn = ACT2FN[hidden_act]
|
570 |
+
|
571 |
+
def forward(self, x):
|
572 |
+
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
573 |
+
|
574 |
+
|
575 |
+
class InternLMAttention(nn.Module):
|
576 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
577 |
+
def __init__(self, config: InternLMXComposerConfig):
|
578 |
+
super().__init__()
|
579 |
+
self.config = config
|
580 |
+
self.hidden_size = config.hidden_size
|
581 |
+
self.num_heads = config.num_attention_heads
|
582 |
+
self.head_dim = self.hidden_size // self.num_heads
|
583 |
+
self.max_position_embeddings = config.max_position_embeddings
|
584 |
+
|
585 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
586 |
+
raise ValueError(
|
587 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
588 |
+
f" and `num_heads`: {self.num_heads}).")
|
589 |
+
if config.lora_cfg is None:
|
590 |
+
self.q_proj = nn.Linear(self.hidden_size,
|
591 |
+
self.num_heads * self.head_dim,
|
592 |
+
bias=False)
|
593 |
+
self.k_proj = nn.Linear(self.hidden_size,
|
594 |
+
self.num_heads * self.head_dim,
|
595 |
+
bias=False)
|
596 |
+
self.v_proj = nn.Linear(self.hidden_size,
|
597 |
+
self.num_heads * self.head_dim,
|
598 |
+
bias=False)
|
599 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim,
|
600 |
+
self.hidden_size,
|
601 |
+
bias=False)
|
602 |
+
else:
|
603 |
+
lora_cfg = config.lora_cfg
|
604 |
+
if 'q' in lora_cfg['learn_param']:
|
605 |
+
self.q_proj = LoRALinear(self.hidden_size,
|
606 |
+
self.num_heads * self.head_dim,
|
607 |
+
bias=False,
|
608 |
+
**lora_cfg)
|
609 |
+
else:
|
610 |
+
self.q_proj = nn.Linear(self.hidden_size,
|
611 |
+
self.num_heads * self.head_dim,
|
612 |
+
bias=False)
|
613 |
+
|
614 |
+
if 'k' in lora_cfg['learn_param']:
|
615 |
+
self.k_proj = LoRALinear(self.hidden_size,
|
616 |
+
self.num_heads * self.head_dim,
|
617 |
+
bias=False,
|
618 |
+
**lora_cfg)
|
619 |
+
else:
|
620 |
+
self.k_proj = nn.Linear(self.hidden_size,
|
621 |
+
self.num_heads * self.head_dim,
|
622 |
+
bias=False)
|
623 |
+
|
624 |
+
if 'v' in lora_cfg['learn_param']:
|
625 |
+
self.v_proj = LoRALinear(self.hidden_size,
|
626 |
+
self.num_heads * self.head_dim,
|
627 |
+
bias=False,
|
628 |
+
**lora_cfg)
|
629 |
+
else:
|
630 |
+
self.v_proj = nn.Linear(self.hidden_size,
|
631 |
+
self.num_heads * self.head_dim,
|
632 |
+
bias=False)
|
633 |
+
|
634 |
+
if 'o' in lora_cfg['learn_param']:
|
635 |
+
self.o_proj = LoRALinear(self.num_heads * self.head_dim,
|
636 |
+
self.hidden_size,
|
637 |
+
bias=False,
|
638 |
+
**lora_cfg)
|
639 |
+
else:
|
640 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim,
|
641 |
+
self.hidden_size,
|
642 |
+
bias=False)
|
643 |
+
|
644 |
+
self.rotary_emb = InternLMRotaryEmbedding(
|
645 |
+
self.head_dim,
|
646 |
+
max_position_embeddings=self.max_position_embeddings)
|
647 |
+
|
648 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
649 |
+
return tensor.view(bsz, seq_len, self.num_heads,
|
650 |
+
self.head_dim).transpose(1, 2).contiguous()
|
651 |
+
|
652 |
+
def forward(
|
653 |
+
self,
|
654 |
+
hidden_states: torch.Tensor,
|
655 |
+
attention_mask: Optional[torch.Tensor] = None,
|
656 |
+
position_ids: Optional[torch.LongTensor] = None,
|
657 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
658 |
+
output_attentions: bool = False,
|
659 |
+
use_cache: bool = False,
|
660 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor],
|
661 |
+
Optional[Tuple[torch.Tensor]]]:
|
662 |
+
bsz, q_len, _ = hidden_states.size()
|
663 |
+
|
664 |
+
query_states = self.q_proj(hidden_states).view(
|
665 |
+
bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
666 |
+
key_states = self.k_proj(hidden_states).view(
|
667 |
+
bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
668 |
+
value_states = self.v_proj(hidden_states).view(
|
669 |
+
bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
670 |
+
|
671 |
+
kv_seq_len = key_states.shape[-2]
|
672 |
+
if past_key_value is not None:
|
673 |
+
kv_seq_len += past_key_value[0].shape[-2]
|
674 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
675 |
+
query_states, key_states = apply_rotary_pos_emb(
|
676 |
+
query_states, key_states, cos, sin, position_ids)
|
677 |
+
# [bsz, nh, t, hd]
|
678 |
+
|
679 |
+
if past_key_value is not None:
|
680 |
+
# reuse k, v, self_attention
|
681 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
682 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
683 |
+
|
684 |
+
past_key_value = (key_states, value_states) if use_cache else None
|
685 |
+
|
686 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(
|
687 |
+
2, 3)) / math.sqrt(self.head_dim)
|
688 |
+
|
689 |
+
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
690 |
+
raise ValueError(
|
691 |
+
f"Attention weights should be of size {(bsz * self.num_heads, q_len, kv_seq_len)}, but is"
|
692 |
+
f" {attn_weights.size()}")
|
693 |
+
|
694 |
+
if attention_mask is not None:
|
695 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
696 |
+
raise ValueError(
|
697 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
698 |
+
)
|
699 |
+
attn_weights = attn_weights + attention_mask
|
700 |
+
attn_weights = torch.max(
|
701 |
+
attn_weights,
|
702 |
+
torch.tensor(torch.finfo(attn_weights.dtype).min))
|
703 |
+
|
704 |
+
# upcast attention to fp32
|
705 |
+
attn_weights = nn.functional.softmax(attn_weights,
|
706 |
+
dim=-1,
|
707 |
+
dtype=torch.float32).to(
|
708 |
+
query_states.dtype)
|
709 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
710 |
+
|
711 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
712 |
+
raise ValueError(
|
713 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
714 |
+
f" {attn_output.size()}")
|
715 |
+
|
716 |
+
attn_output = attn_output.transpose(1, 2)
|
717 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
718 |
+
|
719 |
+
attn_output = self.o_proj(attn_output)
|
720 |
+
|
721 |
+
if not output_attentions:
|
722 |
+
attn_weights = None
|
723 |
+
|
724 |
+
return attn_output, attn_weights, past_key_value
|
725 |
+
|
726 |
+
|
727 |
+
class InternLMDecoderLayer(nn.Module):
|
728 |
+
def __init__(self, config: InternLMXComposerConfig):
|
729 |
+
super().__init__()
|
730 |
+
self.hidden_size = config.hidden_size
|
731 |
+
if hasattr(config,
|
732 |
+
'intern_converted_llm') and config.intern_converted_llm:
|
733 |
+
self.self_attn = InternConvertedInternLMAttention(config=config)
|
734 |
+
else:
|
735 |
+
self.self_attn = InternLMAttention(config=config)
|
736 |
+
self.mlp = InternLMMLP(
|
737 |
+
hidden_size=self.hidden_size,
|
738 |
+
intermediate_size=config.intermediate_size,
|
739 |
+
hidden_act=config.hidden_act,
|
740 |
+
config=config,
|
741 |
+
)
|
742 |
+
self.input_layernorm = InternLMRMSNorm(config.hidden_size,
|
743 |
+
eps=config.rms_norm_eps)
|
744 |
+
self.post_attention_layernorm = InternLMRMSNorm(
|
745 |
+
config.hidden_size, eps=config.rms_norm_eps)
|
746 |
+
|
747 |
+
def forward(
|
748 |
+
self,
|
749 |
+
hidden_states: torch.Tensor,
|
750 |
+
attention_mask: Optional[torch.Tensor] = None,
|
751 |
+
position_ids: Optional[torch.LongTensor] = None,
|
752 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
753 |
+
output_attentions: Optional[bool] = False,
|
754 |
+
use_cache: Optional[bool] = False,
|
755 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor,
|
756 |
+
torch.FloatTensor]]]:
|
757 |
+
"""
|
758 |
+
Args:
|
759 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
760 |
+
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
761 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
762 |
+
output_attentions (`bool`, *optional*):
|
763 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
764 |
+
returned tensors for more detail.
|
765 |
+
use_cache (`bool`, *optional*):
|
766 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
767 |
+
(see `past_key_values`).
|
768 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
769 |
+
"""
|
770 |
+
|
771 |
+
residual = hidden_states
|
772 |
+
|
773 |
+
hidden_states = self.input_layernorm(hidden_states)
|
774 |
+
|
775 |
+
# Self Attention
|
776 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
777 |
+
hidden_states=hidden_states,
|
778 |
+
attention_mask=attention_mask,
|
779 |
+
position_ids=position_ids,
|
780 |
+
past_key_value=past_key_value,
|
781 |
+
output_attentions=output_attentions,
|
782 |
+
use_cache=use_cache,
|
783 |
+
)
|
784 |
+
hidden_states = residual + hidden_states
|
785 |
+
|
786 |
+
# Fully Connected
|
787 |
+
residual = hidden_states
|
788 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
789 |
+
hidden_states = self.mlp(hidden_states)
|
790 |
+
hidden_states = residual + hidden_states
|
791 |
+
|
792 |
+
outputs = (hidden_states, )
|
793 |
+
|
794 |
+
if output_attentions:
|
795 |
+
outputs += (self_attn_weights, )
|
796 |
+
|
797 |
+
if use_cache:
|
798 |
+
outputs += (present_key_value, )
|
799 |
+
|
800 |
+
return outputs
|
801 |
+
|
802 |
+
|
803 |
+
class InternLMPreTrainedModel(PreTrainedModel):
|
804 |
+
config_class = InternLMXComposerConfig
|
805 |
+
base_model_prefix = "model"
|
806 |
+
supports_gradient_checkpointing = True
|
807 |
+
_no_split_modules = ["InternLMDecoderLayer"]
|
808 |
+
_keys_to_ignore_on_load_unexpected = [r"decoder\.version"]
|
809 |
+
|
810 |
+
def _init_weights(self, module):
|
811 |
+
std = self.config.initializer_range
|
812 |
+
if isinstance(module, nn.Linear):
|
813 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
814 |
+
if module.bias is not None:
|
815 |
+
module.bias.data.zero_()
|
816 |
+
elif isinstance(module, nn.Embedding):
|
817 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
818 |
+
if module.padding_idx is not None:
|
819 |
+
module.weight.data[module.padding_idx].zero_()
|
820 |
+
|
821 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
822 |
+
if isinstance(module, InternLMModel):
|
823 |
+
module.gradient_checkpointing = value
|
824 |
+
|
825 |
+
|
826 |
+
class InternLMModel(InternLMPreTrainedModel):
|
827 |
+
"""
|
828 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`InternLMDecoderLayer`]
|
829 |
+
|
830 |
+
Args:
|
831 |
+
config: InternLMXComposerConfig
|
832 |
+
"""
|
833 |
+
def __init__(self, config: InternLMXComposerConfig):
|
834 |
+
super().__init__(config)
|
835 |
+
self.padding_idx = config.pad_token_id
|
836 |
+
self.vocab_size = config.vocab_size
|
837 |
+
|
838 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size,
|
839 |
+
self.padding_idx)
|
840 |
+
self.layers = nn.ModuleList([
|
841 |
+
InternLMDecoderLayer(config)
|
842 |
+
for _ in range(config.num_hidden_layers)
|
843 |
+
])
|
844 |
+
self.norm = InternLMRMSNorm(config.hidden_size,
|
845 |
+
eps=config.rms_norm_eps)
|
846 |
+
|
847 |
+
self.gradient_checkpointing = False
|
848 |
+
# Initialize weights and apply final processing
|
849 |
+
self.post_init()
|
850 |
+
|
851 |
+
def get_input_embeddings(self):
|
852 |
+
return self.embed_tokens
|
853 |
+
|
854 |
+
def set_input_embeddings(self, value):
|
855 |
+
self.embed_tokens = value
|
856 |
+
|
857 |
+
# Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
|
858 |
+
def _prepare_decoder_attention_mask(self, attention_mask, input_shape,
|
859 |
+
inputs_embeds, past_key_values_length):
|
860 |
+
# create causal mask
|
861 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
862 |
+
combined_attention_mask = None
|
863 |
+
if input_shape[-1] > 1:
|
864 |
+
combined_attention_mask = _make_causal_mask(
|
865 |
+
input_shape,
|
866 |
+
inputs_embeds.dtype,
|
867 |
+
device=inputs_embeds.device,
|
868 |
+
past_key_values_length=past_key_values_length,
|
869 |
+
)
|
870 |
+
|
871 |
+
if attention_mask is not None:
|
872 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
873 |
+
expanded_attn_mask = _expand_mask(attention_mask,
|
874 |
+
inputs_embeds.dtype,
|
875 |
+
tgt_len=input_shape[-1]).to(
|
876 |
+
inputs_embeds.device)
|
877 |
+
combined_attention_mask = (expanded_attn_mask
|
878 |
+
if combined_attention_mask is None else
|
879 |
+
expanded_attn_mask +
|
880 |
+
combined_attention_mask)
|
881 |
+
|
882 |
+
return combined_attention_mask
|
883 |
+
|
884 |
+
def forward(
|
885 |
+
self,
|
886 |
+
input_ids: torch.LongTensor = None,
|
887 |
+
attention_mask: Optional[torch.Tensor] = None,
|
888 |
+
position_ids: Optional[torch.LongTensor] = None,
|
889 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
890 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
891 |
+
query_embeds: Optional[torch.FloatTensor] = None,
|
892 |
+
use_cache: Optional[bool] = None,
|
893 |
+
output_attentions: Optional[bool] = None,
|
894 |
+
output_hidden_states: Optional[bool] = None,
|
895 |
+
return_dict: Optional[bool] = None,
|
896 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
897 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
898 |
+
output_hidden_states = (output_hidden_states
|
899 |
+
if output_hidden_states is not None else
|
900 |
+
self.config.output_hidden_states)
|
901 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
902 |
+
|
903 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
904 |
+
|
905 |
+
# retrieve input_ids and inputs_embeds
|
906 |
+
if input_ids is not None and inputs_embeds is not None:
|
907 |
+
raise ValueError(
|
908 |
+
"You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time"
|
909 |
+
)
|
910 |
+
elif input_ids is not None:
|
911 |
+
batch_size, seq_length = input_ids.shape
|
912 |
+
elif inputs_embeds is not None:
|
913 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
914 |
+
else:
|
915 |
+
raise ValueError(
|
916 |
+
"You have to specify either decoder_input_ids or decoder_inputs_embeds"
|
917 |
+
)
|
918 |
+
|
919 |
+
if inputs_embeds is None:
|
920 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
921 |
+
if query_embeds is not None:
|
922 |
+
inputs_embeds = torch.cat([query_embeds, inputs_embeds], dim=1)
|
923 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
924 |
+
|
925 |
+
seq_length_with_past = seq_length
|
926 |
+
past_key_values_length = 0
|
927 |
+
|
928 |
+
if past_key_values is not None:
|
929 |
+
past_key_values_length = past_key_values[0][0].shape[2]
|
930 |
+
seq_length_with_past = seq_length_with_past + past_key_values_length
|
931 |
+
|
932 |
+
if position_ids is None:
|
933 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
934 |
+
position_ids = torch.arange(past_key_values_length,
|
935 |
+
seq_length + past_key_values_length,
|
936 |
+
dtype=torch.long,
|
937 |
+
device=device)
|
938 |
+
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
939 |
+
else:
|
940 |
+
position_ids = position_ids.view(-1, seq_length).long()
|
941 |
+
|
942 |
+
# embed positions
|
943 |
+
if attention_mask is None:
|
944 |
+
attention_mask = torch.ones((batch_size, seq_length_with_past),
|
945 |
+
dtype=torch.bool,
|
946 |
+
device=inputs_embeds.device)
|
947 |
+
attention_mask = self._prepare_decoder_attention_mask(
|
948 |
+
attention_mask, (batch_size, seq_length), inputs_embeds,
|
949 |
+
past_key_values_length)
|
950 |
+
|
951 |
+
hidden_states = inputs_embeds
|
952 |
+
|
953 |
+
if self.gradient_checkpointing and self.training:
|
954 |
+
if use_cache:
|
955 |
+
logger.warning_once(
|
956 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
957 |
+
)
|
958 |
+
use_cache = False
|
959 |
+
|
960 |
+
# decoder layers
|
961 |
+
all_hidden_states = () if output_hidden_states else None
|
962 |
+
all_self_attns = () if output_attentions else None
|
963 |
+
next_decoder_cache = () if use_cache else None
|
964 |
+
|
965 |
+
for idx, decoder_layer in enumerate(self.layers):
|
966 |
+
if output_hidden_states:
|
967 |
+
all_hidden_states += (hidden_states, )
|
968 |
+
|
969 |
+
past_key_value = past_key_values[
|
970 |
+
idx] if past_key_values is not None else None
|
971 |
+
|
972 |
+
if self.gradient_checkpointing and self.training:
|
973 |
+
|
974 |
+
def create_custom_forward(module):
|
975 |
+
def custom_forward(*inputs):
|
976 |
+
# None for past_key_value
|
977 |
+
return module(*inputs, output_attentions, None)
|
978 |
+
|
979 |
+
return custom_forward
|
980 |
+
|
981 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
982 |
+
create_custom_forward(decoder_layer),
|
983 |
+
hidden_states,
|
984 |
+
attention_mask,
|
985 |
+
position_ids,
|
986 |
+
None,
|
987 |
+
)
|
988 |
+
else:
|
989 |
+
layer_outputs = decoder_layer(
|
990 |
+
hidden_states,
|
991 |
+
attention_mask=attention_mask,
|
992 |
+
position_ids=position_ids,
|
993 |
+
past_key_value=past_key_value,
|
994 |
+
output_attentions=output_attentions,
|
995 |
+
use_cache=use_cache,
|
996 |
+
)
|
997 |
+
|
998 |
+
hidden_states = layer_outputs[0]
|
999 |
+
|
1000 |
+
if use_cache:
|
1001 |
+
next_decoder_cache += (
|
1002 |
+
layer_outputs[2 if output_attentions else 1], )
|
1003 |
+
|
1004 |
+
if output_attentions:
|
1005 |
+
all_self_attns += (layer_outputs[1], )
|
1006 |
+
|
1007 |
+
hidden_states = self.norm(hidden_states)
|
1008 |
+
|
1009 |
+
# add hidden states from the last decoder layer
|
1010 |
+
if output_hidden_states:
|
1011 |
+
all_hidden_states += (hidden_states, )
|
1012 |
+
|
1013 |
+
next_cache = next_decoder_cache if use_cache else None
|
1014 |
+
if not return_dict:
|
1015 |
+
return tuple(
|
1016 |
+
v for v in
|
1017 |
+
[hidden_states, next_cache, all_hidden_states, all_self_attns]
|
1018 |
+
if v is not None)
|
1019 |
+
return BaseModelOutputWithPast(
|
1020 |
+
last_hidden_state=hidden_states,
|
1021 |
+
past_key_values=next_cache,
|
1022 |
+
hidden_states=all_hidden_states,
|
1023 |
+
attentions=all_self_attns,
|
1024 |
+
)
|
1025 |
+
|
1026 |
+
|
1027 |
+
class InternLMForCausalLM(InternLMPreTrainedModel):
|
1028 |
+
lora_cfg = None # init in MiniGPT4
|
1029 |
+
|
1030 |
+
def __init__(self, config):
|
1031 |
+
super().__init__(config)
|
1032 |
+
# TODO: find a way to explicitly initialize InternLM
|
1033 |
+
setattr(config, 'lora_cfg', self.lora_cfg)
|
1034 |
+
|
1035 |
+
if hasattr(config, 'kqvo_bias'):
|
1036 |
+
setattr(config, 'kqvo_bias', config.kqvo_bias)
|
1037 |
+
else:
|
1038 |
+
setattr(config, 'kqvo_bias', False)
|
1039 |
+
self.model = InternLMModel(config)
|
1040 |
+
|
1041 |
+
self.lm_head = nn.Linear(config.hidden_size,
|
1042 |
+
config.vocab_size,
|
1043 |
+
bias=False)
|
1044 |
+
if hasattr(config, 'ex_size'):
|
1045 |
+
self.ex_size = config.ex_size
|
1046 |
+
else:
|
1047 |
+
self.ex_size = 0
|
1048 |
+
|
1049 |
+
if hasattr(config, 'sp_id'):
|
1050 |
+
self.sp_id = config.sp_id
|
1051 |
+
else:
|
1052 |
+
self.sp_id = -1
|
1053 |
+
|
1054 |
+
# Initialize weights and apply final processing
|
1055 |
+
self.post_init()
|
1056 |
+
|
1057 |
+
@classmethod
|
1058 |
+
def from_pretrained(cls,
|
1059 |
+
pretrained_model_name_or_path,
|
1060 |
+
llm_cfg=None,
|
1061 |
+
*model_args,
|
1062 |
+
**kwargs):
|
1063 |
+
if llm_cfg:
|
1064 |
+
if 'torch_dtype' in kwargs:
|
1065 |
+
llm_cfg.torch_dtype = kwargs['torch_dtype']
|
1066 |
+
if 'load_in_8bit' in kwargs:
|
1067 |
+
llm_cfg.load_in_8bit = kwargs['load_in_8bit']
|
1068 |
+
if 'device_map' in kwargs:
|
1069 |
+
llm_cfg.device_map = kwargs['device_map']
|
1070 |
+
return cls._from_config(llm_cfg)
|
1071 |
+
else:
|
1072 |
+
return super().from_pretrained(pretrained_model_name_or_path,
|
1073 |
+
*model_args, **kwargs)
|
1074 |
+
|
1075 |
+
def get_input_embeddings(self):
|
1076 |
+
return self.model.embed_tokens
|
1077 |
+
|
1078 |
+
def set_input_embeddings(self, value):
|
1079 |
+
self.model.embed_tokens = value
|
1080 |
+
|
1081 |
+
def get_output_embeddings(self):
|
1082 |
+
return self.lm_head
|
1083 |
+
|
1084 |
+
def set_output_embeddings(self, new_embeddings):
|
1085 |
+
self.lm_head = new_embeddings
|
1086 |
+
|
1087 |
+
def set_decoder(self, decoder):
|
1088 |
+
self.model = decoder
|
1089 |
+
|
1090 |
+
def get_decoder(self):
|
1091 |
+
return self.model
|
1092 |
+
|
1093 |
+
def forward(
|
1094 |
+
self,
|
1095 |
+
input_ids: torch.LongTensor = None,
|
1096 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1097 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1098 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1099 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1100 |
+
query_embeds: Optional[torch.FloatTensor] = None,
|
1101 |
+
labels: Optional[torch.LongTensor] = None,
|
1102 |
+
use_cache: Optional[bool] = None,
|
1103 |
+
output_attentions: Optional[bool] = None,
|
1104 |
+
output_hidden_states: Optional[bool] = None,
|
1105 |
+
return_dict: Optional[bool] = None,
|
1106 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
1107 |
+
r"""
|
1108 |
+
Args:
|
1109 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1110 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
1111 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
1112 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
1113 |
+
|
1114 |
+
Returns:
|
1115 |
+
|
1116 |
+
Example:
|
1117 |
+
|
1118 |
+
```python
|
1119 |
+
>>> from transformers import AutoTokenizer, InternLMForCausalLM
|
1120 |
+
|
1121 |
+
>>> model = InternLMForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
|
1122 |
+
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
|
1123 |
+
|
1124 |
+
>>> prompt = "Hey, are you consciours? Can you talk to me?"
|
1125 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
1126 |
+
|
1127 |
+
>>> # Generate
|
1128 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
1129 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
1130 |
+
"Hey, are you consciours? Can you talk to me?\nI'm not consciours, but I can talk to you."
|
1131 |
+
```"""
|
1132 |
+
|
1133 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1134 |
+
output_hidden_states = (output_hidden_states
|
1135 |
+
if output_hidden_states is not None else
|
1136 |
+
self.config.output_hidden_states)
|
1137 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1138 |
+
|
1139 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
1140 |
+
outputs = self.model(
|
1141 |
+
input_ids=input_ids,
|
1142 |
+
attention_mask=attention_mask,
|
1143 |
+
position_ids=position_ids,
|
1144 |
+
past_key_values=past_key_values,
|
1145 |
+
inputs_embeds=inputs_embeds,
|
1146 |
+
query_embeds=query_embeds,
|
1147 |
+
use_cache=use_cache,
|
1148 |
+
output_attentions=output_attentions,
|
1149 |
+
output_hidden_states=output_hidden_states,
|
1150 |
+
return_dict=return_dict,
|
1151 |
+
)
|
1152 |
+
|
1153 |
+
hidden_states = outputs[0]
|
1154 |
+
logits = self.lm_head(hidden_states)
|
1155 |
+
|
1156 |
+
loss = None
|
1157 |
+
if labels is not None:
|
1158 |
+
# Shift so that tokens < n predict n
|
1159 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
1160 |
+
shift_labels = labels[..., 1:].contiguous()
|
1161 |
+
# Flatten the tokens
|
1162 |
+
|
1163 |
+
loss_fct = CrossEntropyLoss(reduce=False)
|
1164 |
+
loss_reduce = CrossEntropyLoss()
|
1165 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
1166 |
+
shift_labels = shift_labels.view(-1)
|
1167 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
1168 |
+
###
|
1169 |
+
if self.sp_id >= 0:
|
1170 |
+
ori_mask = (shift_labels != self.sp_id).float()
|
1171 |
+
ori_mask = ori_mask * (shift_labels >= 0).float()
|
1172 |
+
local_mask = (shift_labels == self.sp_id).float()
|
1173 |
+
else:
|
1174 |
+
ori_mask = (shift_labels <
|
1175 |
+
self.config.vocab_size - self.ex_size).float()
|
1176 |
+
ori_mask = ori_mask * (shift_labels >= 0).float()
|
1177 |
+
local_mask = (shift_labels >=
|
1178 |
+
self.config.vocab_size - self.ex_size).float()
|
1179 |
+
|
1180 |
+
# Enable model parallelism
|
1181 |
+
|
1182 |
+
loss = loss_reduce(shift_logits, shift_labels)
|
1183 |
+
|
1184 |
+
loss_all = loss_fct(shift_logits, shift_labels)
|
1185 |
+
loss_o = (loss_all * ori_mask).sum() / ori_mask.sum()
|
1186 |
+
if torch.sum(local_mask) == 0:
|
1187 |
+
loss_l = loss_o * 0
|
1188 |
+
else:
|
1189 |
+
loss_l = (loss_all * local_mask).sum() / local_mask.sum()
|
1190 |
+
|
1191 |
+
if not return_dict:
|
1192 |
+
output = (logits, ) + outputs[1:]
|
1193 |
+
return (loss, ) + output if loss is not None else output
|
1194 |
+
|
1195 |
+
if (self.ex_size > 0 or self.sp_id >= 0) and labels is not None:
|
1196 |
+
return loss, loss_o, loss_l
|
1197 |
+
|
1198 |
+
return CausalLMOutputWithPast(
|
1199 |
+
loss=loss,
|
1200 |
+
logits=logits,
|
1201 |
+
past_key_values=outputs.past_key_values,
|
1202 |
+
hidden_states=outputs.hidden_states,
|
1203 |
+
attentions=outputs.attentions,
|
1204 |
+
)
|
1205 |
+
|
1206 |
+
def prepare_inputs_for_generation(self,
|
1207 |
+
input_ids,
|
1208 |
+
query_embeds=None,
|
1209 |
+
past_key_values=None,
|
1210 |
+
attention_mask=None,
|
1211 |
+
inputs_embeds=None,
|
1212 |
+
**kwargs):
|
1213 |
+
if past_key_values:
|
1214 |
+
input_ids = input_ids[:, -1:]
|
1215 |
+
|
1216 |
+
position_ids = kwargs.get("position_ids", None)
|
1217 |
+
if attention_mask is not None and position_ids is None:
|
1218 |
+
# create position_ids on the fly for batch generation
|
1219 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
1220 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
1221 |
+
if past_key_values:
|
1222 |
+
position_ids = position_ids[:, -1].unsqueeze(-1)
|
1223 |
+
query_embeds = None
|
1224 |
+
|
1225 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
1226 |
+
if inputs_embeds is not None and past_key_values is None:
|
1227 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
1228 |
+
else:
|
1229 |
+
model_inputs = {"input_ids": input_ids}
|
1230 |
+
|
1231 |
+
model_inputs.update({
|
1232 |
+
"position_ids": position_ids,
|
1233 |
+
"query_embeds": query_embeds,
|
1234 |
+
"past_key_values": past_key_values,
|
1235 |
+
"use_cache": kwargs.get("use_cache"),
|
1236 |
+
"attention_mask": attention_mask,
|
1237 |
+
})
|
1238 |
+
return model_inputs
|
1239 |
+
|
1240 |
+
@staticmethod
|
1241 |
+
def _reorder_cache(past_key_values, beam_idx):
|
1242 |
+
reordered_past = ()
|
1243 |
+
for layer_past in past_key_values:
|
1244 |
+
reordered_past += (tuple(
|
1245 |
+
past_state.index_select(0, beam_idx)
|
1246 |
+
for past_state in layer_past), )
|
1247 |
+
return reordered_past
|
modeling_InternLM_XComposer.py
ADDED
@@ -0,0 +1,259 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import os
|
3 |
+
import sys
|
4 |
+
|
5 |
+
dir_path = os.path.dirname(os.path.realpath(__file__))
|
6 |
+
sys.path.insert(0, dir_path)
|
7 |
+
|
8 |
+
import contextlib
|
9 |
+
|
10 |
+
import torch.utils.checkpoint
|
11 |
+
from torch.nn import LayerNorm
|
12 |
+
from torchvision import transforms
|
13 |
+
from torchvision.transforms.functional import InterpolationMode
|
14 |
+
from PIL import Image
|
15 |
+
|
16 |
+
from .modeling_perceive_sampler import BertConfig, BertLMHeadModel
|
17 |
+
from .modeling_vit import *
|
18 |
+
from .modeling_InternLM import *
|
19 |
+
from .modeling_utils import *
|
20 |
+
|
21 |
+
from transformers.utils import logging
|
22 |
+
logger = logging.get_logger(__name__)
|
23 |
+
|
24 |
+
|
25 |
+
class InternLMXComposerForCausalLM(PreTrainedModel):
|
26 |
+
config_class = InternLMXComposerConfig
|
27 |
+
_auto_class = "AutoModelForCausalLM"
|
28 |
+
|
29 |
+
gen_config = dict(
|
30 |
+
num_beams=5,
|
31 |
+
do_sample=False,
|
32 |
+
min_length=1,
|
33 |
+
repetition_penalty=1.5,
|
34 |
+
length_penalty=1.0,
|
35 |
+
temperature=1.0,
|
36 |
+
max_new_tokens=200,
|
37 |
+
)
|
38 |
+
|
39 |
+
def __init__(self, config):
|
40 |
+
super().__init__(config)
|
41 |
+
|
42 |
+
print('Init VIT ... ', end='')
|
43 |
+
self.visual_encoder = create_eva_vit_g()
|
44 |
+
self.ln_vision = LayerNorm(self.visual_encoder.num_features)
|
45 |
+
print('Done')
|
46 |
+
|
47 |
+
print('Init Perceive Sampler ... ', end='')
|
48 |
+
with all_logging_disabled():
|
49 |
+
self.Qformer, self.query_tokens = self.init_qformer(
|
50 |
+
config.num_query_token, self.visual_encoder.num_features)
|
51 |
+
self.Qformer.bert.embeddings.word_embeddings = None
|
52 |
+
self.Qformer.bert.embeddings.position_embeddings = None
|
53 |
+
for layer in self.Qformer.bert.encoder.layer:
|
54 |
+
layer.output = None
|
55 |
+
layer.intermediate = None
|
56 |
+
self.Qformer.cls = None
|
57 |
+
print('Done')
|
58 |
+
|
59 |
+
print('Init InternLM ... ', end='')
|
60 |
+
self.flag_image_start = nn.Parameter(torch.zeros([1, 1, 4096]))
|
61 |
+
self.flag_image_end = nn.Parameter(torch.zeros([1, 1, 4096]))
|
62 |
+
self.flag_image_start.requires_grad = False
|
63 |
+
self.flag_image_end.requires_grad = False
|
64 |
+
|
65 |
+
internlm_lora = config.internlm_lora
|
66 |
+
self.internlm_lora = internlm_lora
|
67 |
+
setattr(InternLMForCausalLM, 'lora_cfg', internlm_lora)
|
68 |
+
|
69 |
+
if int(torch.__version__[0]) == 1:
|
70 |
+
self.internlm_model = InternLMForCausalLM._from_config(config).to(
|
71 |
+
torch.float16)
|
72 |
+
else:
|
73 |
+
assert int(torch.__version__[0]) == 2
|
74 |
+
# speed up init llm
|
75 |
+
with torch.device('meta'):
|
76 |
+
self.internlm_model = InternLMForCausalLM._from_config(config)
|
77 |
+
self.internlm_model.to_empty(device=config.device).to(torch.float16)
|
78 |
+
for n, m in self.internlm_model.named_modules():
|
79 |
+
if 'lora' in n:
|
80 |
+
m.float()
|
81 |
+
|
82 |
+
self.internlm_proj = nn.Linear(self.Qformer.config.hidden_size,
|
83 |
+
self.internlm_model.config.hidden_size)
|
84 |
+
print('Done')
|
85 |
+
|
86 |
+
self.vis_processor = transforms.Compose([
|
87 |
+
transforms.Resize((224, 224),
|
88 |
+
interpolation=InterpolationMode.BICUBIC),
|
89 |
+
transforms.ToTensor(),
|
90 |
+
transforms.Normalize((0.48145466, 0.4578275, 0.40821073),
|
91 |
+
(0.26862954, 0.26130258, 0.27577711)),
|
92 |
+
])
|
93 |
+
|
94 |
+
self.tokenizer = None
|
95 |
+
|
96 |
+
@property
|
97 |
+
def eoh(self):
|
98 |
+
return self.tokenizer.decode(torch.Tensor([103027]),
|
99 |
+
skip_special_tokens=True)
|
100 |
+
|
101 |
+
@property
|
102 |
+
def eoa(self):
|
103 |
+
return self.tokenizer.decode(torch.Tensor([103028]),
|
104 |
+
skip_special_tokens=True)
|
105 |
+
|
106 |
+
def maybe_autocast(self, dtype=torch.float16):
|
107 |
+
# if on cpu, don't use autocast
|
108 |
+
# if on gpu, use autocast with dtype if provided, otherwise use torch.float16
|
109 |
+
enable_autocast = self.device != torch.device("cpu")
|
110 |
+
|
111 |
+
if enable_autocast:
|
112 |
+
return torch.cuda.amp.autocast(dtype=dtype)
|
113 |
+
else:
|
114 |
+
return contextlib.nullcontext()
|
115 |
+
|
116 |
+
@classmethod
|
117 |
+
def init_qformer(cls,
|
118 |
+
num_query_token,
|
119 |
+
vision_width,
|
120 |
+
cross_attention_freq=2,
|
121 |
+
pretrain=True):
|
122 |
+
encoder_config = BertConfig.from_pretrained("bert-base-uncased")
|
123 |
+
encoder_config.encoder_width = vision_width
|
124 |
+
# insert cross-attention layer every other block
|
125 |
+
encoder_config.add_cross_attention = True
|
126 |
+
encoder_config.cross_attention_freq = cross_attention_freq
|
127 |
+
encoder_config.query_length = num_query_token
|
128 |
+
if pretrain:
|
129 |
+
Qformer = BertLMHeadModel.from_pretrained("bert-base-uncased",
|
130 |
+
config=encoder_config)
|
131 |
+
else:
|
132 |
+
Qformer = BertLMHeadModel(config=encoder_config)
|
133 |
+
query_tokens = nn.Parameter(
|
134 |
+
torch.zeros(1, num_query_token, encoder_config.hidden_size))
|
135 |
+
query_tokens.data.normal_(mean=0.0,
|
136 |
+
std=encoder_config.initializer_range)
|
137 |
+
return Qformer, query_tokens
|
138 |
+
|
139 |
+
def encode_img(self, image):
|
140 |
+
if image is None:
|
141 |
+
return None
|
142 |
+
if isinstance(image, str):
|
143 |
+
image = Image.open(image).convert("RGB")
|
144 |
+
image = self.vis_processor(image).unsqueeze(0).to(self.device)
|
145 |
+
else:
|
146 |
+
assert isinstance(image, torch.Tensor)
|
147 |
+
device = image.device
|
148 |
+
with self.maybe_autocast():
|
149 |
+
image_embeds = self.ln_vision(
|
150 |
+
self.visual_encoder(image)).to(device)
|
151 |
+
image_atts = torch.ones(image_embeds.size()[:-1],
|
152 |
+
dtype=torch.long).to(device)
|
153 |
+
query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1,
|
154 |
+
-1)
|
155 |
+
query_output = self.Qformer.bert(
|
156 |
+
query_embeds=query_tokens,
|
157 |
+
encoder_hidden_states=image_embeds,
|
158 |
+
encoder_attention_mask=image_atts,
|
159 |
+
return_dict=True,
|
160 |
+
)
|
161 |
+
inputs_internlm = self.internlm_proj(query_output.last_hidden_state)
|
162 |
+
inputs_internlm = torch.cat([
|
163 |
+
self.flag_image_start.expand(inputs_internlm.shape[0], -1, -1),
|
164 |
+
inputs_internlm,
|
165 |
+
self.flag_image_end.expand(inputs_internlm.shape[0], -1, -1)
|
166 |
+
],
|
167 |
+
dim=1)
|
168 |
+
return inputs_internlm
|
169 |
+
|
170 |
+
def encode_text(self, text, add_special_tokens=False):
|
171 |
+
text_token_ids = self.tokenizer(
|
172 |
+
text,
|
173 |
+
return_tensors='pt',
|
174 |
+
add_special_tokens=add_special_tokens,
|
175 |
+
).input_ids.to(self.device)
|
176 |
+
text_embeds = self.internlm_model.model.embed_tokens(text_token_ids)
|
177 |
+
return text_embeds
|
178 |
+
|
179 |
+
def decode_text(self, out_embeds):
|
180 |
+
out_text = self.tokenizer.batch_decode(out_embeds,
|
181 |
+
skip_special_tokens=True)[0]
|
182 |
+
out_text = out_text.split(self.eoa)[0]
|
183 |
+
return out_text
|
184 |
+
|
185 |
+
def wrap_text(self, user_text, bot_text='', add_special=True):
|
186 |
+
if add_special:
|
187 |
+
eoh = self.eoh
|
188 |
+
else:
|
189 |
+
eoh = ''
|
190 |
+
text = f' <|User|>:{user_text} \n{eoh} <|Bot|>:{bot_text}'
|
191 |
+
return text
|
192 |
+
|
193 |
+
def get_gen_args(self, **kwargs):
|
194 |
+
new_kargs = copy.deepcopy(self.gen_config)
|
195 |
+
new_kargs.update(kwargs)
|
196 |
+
return new_kargs
|
197 |
+
|
198 |
+
def generate(self, text, image=None, **kwargs):
|
199 |
+
text_embeds = self.encode_text(text)
|
200 |
+
img_embeds = self.encode_img(image)
|
201 |
+
prompt_embeds = self.wrap_prompt(text_embeds, img_embeds)
|
202 |
+
out_embeds = self.internlm_model.generate(inputs_embeds=prompt_embeds,
|
203 |
+
**self.get_gen_args(**kwargs))
|
204 |
+
out_text = self.decode_text(out_embeds)
|
205 |
+
return out_text
|
206 |
+
|
207 |
+
def chat(self, text, image=None, history=None, **kwargs):
|
208 |
+
text_embeds = self.encode_text(text)
|
209 |
+
img_embeds = self.encode_img(image)
|
210 |
+
prompt_embeds = self.wrap_prompt(text_embeds,
|
211 |
+
img_embeds,
|
212 |
+
history=history)
|
213 |
+
out_embeds = self.internlm_model.generate(inputs_embeds=prompt_embeds,
|
214 |
+
**self.get_gen_args(**kwargs))
|
215 |
+
out_text = self.decode_text(out_embeds)
|
216 |
+
|
217 |
+
# trunc at eoh and eoa
|
218 |
+
clean_out_text_token_ids = self.tokenizer(
|
219 |
+
out_text, return_tensors='pt').input_ids.to(self.device)
|
220 |
+
clean_out_text_embeds = self.internlm_model.model.embed_tokens(
|
221 |
+
clean_out_text_token_ids)
|
222 |
+
clean_prompt_embeds = self.wrap_prompt(text_embeds,
|
223 |
+
img_embeds,
|
224 |
+
add_special=False)
|
225 |
+
cur_history = torch.cat([clean_prompt_embeds, clean_out_text_embeds],
|
226 |
+
dim=1)
|
227 |
+
if history is None:
|
228 |
+
history = []
|
229 |
+
history.append(cur_history)
|
230 |
+
return out_text, history
|
231 |
+
|
232 |
+
def wrap_prompt(self,
|
233 |
+
text_embeds,
|
234 |
+
img_embeds=None,
|
235 |
+
history=None,
|
236 |
+
add_special=True):
|
237 |
+
if add_special:
|
238 |
+
prompt_segs = [' <|User|>:', f'\n{self.eoh} <|Bot|>:']
|
239 |
+
else:
|
240 |
+
prompt_segs = [' <|User|>:', ' <|Bot|>:'] # used in wrap history
|
241 |
+
prompt_seg_embeds = []
|
242 |
+
for i, seg in enumerate(prompt_segs):
|
243 |
+
if history is not None:
|
244 |
+
add_special_tokens = False
|
245 |
+
else:
|
246 |
+
add_special_tokens = i == 0
|
247 |
+
seg_embeds = self.encode_text(
|
248 |
+
seg, add_special_tokens=add_special_tokens)
|
249 |
+
prompt_seg_embeds.append(seg_embeds)
|
250 |
+
if img_embeds is None:
|
251 |
+
img_embeds = text_embeds.new_empty(text_embeds.size(0), 0,
|
252 |
+
text_embeds.size(-1))
|
253 |
+
prompt_seg_embeds = [
|
254 |
+
prompt_seg_embeds[0], img_embeds, text_embeds, prompt_seg_embeds[1]
|
255 |
+
]
|
256 |
+
prompt_embeds = torch.cat(prompt_seg_embeds, dim=1)
|
257 |
+
if history is not None:
|
258 |
+
prompt_embeds = torch.cat([*history, prompt_embeds], dim=1)
|
259 |
+
return prompt_embeds
|
modeling_perceive_sampler.py
ADDED
@@ -0,0 +1,1193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
* Copyright (c) 2023, salesforce.com, inc.
|
3 |
+
* All rights reserved.
|
4 |
+
* SPDX-License-Identifier: BSD-3-Clause
|
5 |
+
* For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
6 |
+
* By Junnan Li
|
7 |
+
* Based on huggingface code base
|
8 |
+
* https://github.com/huggingface/transformers/blob/v4.15.0/src/transformers/models/bert
|
9 |
+
"""
|
10 |
+
|
11 |
+
import math
|
12 |
+
from typing import Tuple
|
13 |
+
|
14 |
+
import torch
|
15 |
+
import torch.utils.checkpoint
|
16 |
+
from torch import Tensor, device
|
17 |
+
from torch import nn
|
18 |
+
from torch.nn import CrossEntropyLoss
|
19 |
+
from transformers.activations import ACT2FN
|
20 |
+
from transformers.modeling_outputs import (
|
21 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
22 |
+
BaseModelOutputWithPoolingAndCrossAttentions,
|
23 |
+
CausalLMOutputWithCrossAttentions,
|
24 |
+
MaskedLMOutput,
|
25 |
+
)
|
26 |
+
from transformers.modeling_utils import (
|
27 |
+
PreTrainedModel,
|
28 |
+
apply_chunking_to_forward,
|
29 |
+
find_pruneable_heads_and_indices,
|
30 |
+
prune_linear_layer,
|
31 |
+
)
|
32 |
+
from transformers.models.bert.configuration_bert import BertConfig
|
33 |
+
from transformers.utils import logging
|
34 |
+
|
35 |
+
logger = logging.get_logger(__name__)
|
36 |
+
|
37 |
+
|
38 |
+
class BertEmbeddings(nn.Module):
|
39 |
+
"""Construct the embeddings from word and position embeddings."""
|
40 |
+
def __init__(self, config):
|
41 |
+
super().__init__()
|
42 |
+
self.word_embeddings = nn.Embedding(config.vocab_size,
|
43 |
+
config.hidden_size,
|
44 |
+
padding_idx=config.pad_token_id)
|
45 |
+
self.position_embeddings = nn.Embedding(config.max_position_embeddings,
|
46 |
+
config.hidden_size)
|
47 |
+
|
48 |
+
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
|
49 |
+
# any TensorFlow checkpoint file
|
50 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size,
|
51 |
+
eps=config.layer_norm_eps)
|
52 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
53 |
+
|
54 |
+
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
55 |
+
self.register_buffer(
|
56 |
+
"position_ids",
|
57 |
+
torch.arange(config.max_position_embeddings).expand((1, -1)))
|
58 |
+
self.position_embedding_type = getattr(config,
|
59 |
+
"position_embedding_type",
|
60 |
+
"absolute")
|
61 |
+
|
62 |
+
self.config = config
|
63 |
+
|
64 |
+
def forward(
|
65 |
+
self,
|
66 |
+
input_ids=None,
|
67 |
+
position_ids=None,
|
68 |
+
query_embeds=None,
|
69 |
+
past_key_values_length=0,
|
70 |
+
):
|
71 |
+
if input_ids is not None:
|
72 |
+
seq_length = input_ids.size()[1]
|
73 |
+
else:
|
74 |
+
seq_length = 0
|
75 |
+
|
76 |
+
if position_ids is None:
|
77 |
+
position_ids = self.position_ids[:, past_key_values_length:
|
78 |
+
seq_length +
|
79 |
+
past_key_values_length].clone()
|
80 |
+
|
81 |
+
if input_ids is not None:
|
82 |
+
embeddings = self.word_embeddings(input_ids)
|
83 |
+
if self.position_embedding_type == "absolute":
|
84 |
+
position_embeddings = self.position_embeddings(position_ids)
|
85 |
+
embeddings = embeddings + position_embeddings
|
86 |
+
|
87 |
+
if query_embeds is not None:
|
88 |
+
embeddings = torch.cat((query_embeds, embeddings), dim=1)
|
89 |
+
else:
|
90 |
+
embeddings = query_embeds
|
91 |
+
|
92 |
+
embeddings = self.LayerNorm(embeddings)
|
93 |
+
embeddings = self.dropout(embeddings)
|
94 |
+
return embeddings
|
95 |
+
|
96 |
+
|
97 |
+
class BertSelfAttention(nn.Module):
|
98 |
+
def __init__(self, config, is_cross_attention):
|
99 |
+
super().__init__()
|
100 |
+
self.config = config
|
101 |
+
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(
|
102 |
+
config, "embedding_size"):
|
103 |
+
raise ValueError(
|
104 |
+
"The hidden size (%d) is not a multiple of the number of attention "
|
105 |
+
"heads (%d)" %
|
106 |
+
(config.hidden_size, config.num_attention_heads))
|
107 |
+
|
108 |
+
self.num_attention_heads = config.num_attention_heads
|
109 |
+
self.attention_head_size = int(config.hidden_size /
|
110 |
+
config.num_attention_heads)
|
111 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
112 |
+
|
113 |
+
self.query = nn.Linear(config.hidden_size, self.all_head_size)
|
114 |
+
if is_cross_attention:
|
115 |
+
self.key = nn.Linear(config.encoder_width, self.all_head_size)
|
116 |
+
self.value = nn.Linear(config.encoder_width, self.all_head_size)
|
117 |
+
else:
|
118 |
+
self.key = nn.Linear(config.hidden_size, self.all_head_size)
|
119 |
+
self.value = nn.Linear(config.hidden_size, self.all_head_size)
|
120 |
+
|
121 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
122 |
+
self.position_embedding_type = getattr(config,
|
123 |
+
"position_embedding_type",
|
124 |
+
"absolute")
|
125 |
+
if (self.position_embedding_type == "relative_key"
|
126 |
+
or self.position_embedding_type == "relative_key_query"):
|
127 |
+
self.max_position_embeddings = config.max_position_embeddings
|
128 |
+
self.distance_embedding = nn.Embedding(
|
129 |
+
2 * config.max_position_embeddings - 1,
|
130 |
+
self.attention_head_size)
|
131 |
+
self.save_attention = False
|
132 |
+
|
133 |
+
def save_attn_gradients(self, attn_gradients):
|
134 |
+
self.attn_gradients = attn_gradients
|
135 |
+
|
136 |
+
def get_attn_gradients(self):
|
137 |
+
return self.attn_gradients
|
138 |
+
|
139 |
+
def save_attention_map(self, attention_map):
|
140 |
+
self.attention_map = attention_map
|
141 |
+
|
142 |
+
def get_attention_map(self):
|
143 |
+
return self.attention_map
|
144 |
+
|
145 |
+
def transpose_for_scores(self, x):
|
146 |
+
new_x_shape = x.size()[:-1] + (
|
147 |
+
self.num_attention_heads,
|
148 |
+
self.attention_head_size,
|
149 |
+
)
|
150 |
+
x = x.view(*new_x_shape)
|
151 |
+
return x.permute(0, 2, 1, 3)
|
152 |
+
|
153 |
+
def forward(
|
154 |
+
self,
|
155 |
+
hidden_states,
|
156 |
+
attention_mask=None,
|
157 |
+
head_mask=None,
|
158 |
+
encoder_hidden_states=None,
|
159 |
+
encoder_attention_mask=None,
|
160 |
+
past_key_value=None,
|
161 |
+
output_attentions=False,
|
162 |
+
):
|
163 |
+
|
164 |
+
# If this is instantiated as a cross-attention module, the keys
|
165 |
+
# and values come from an encoder; the attention mask needs to be
|
166 |
+
# such that the encoder's padding tokens are not attended to.
|
167 |
+
is_cross_attention = encoder_hidden_states is not None
|
168 |
+
|
169 |
+
if is_cross_attention:
|
170 |
+
key_layer = self.transpose_for_scores(
|
171 |
+
self.key(encoder_hidden_states))
|
172 |
+
value_layer = self.transpose_for_scores(
|
173 |
+
self.value(encoder_hidden_states))
|
174 |
+
attention_mask = encoder_attention_mask
|
175 |
+
elif past_key_value is not None:
|
176 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
177 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
178 |
+
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
|
179 |
+
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
|
180 |
+
else:
|
181 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
182 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
183 |
+
|
184 |
+
mixed_query_layer = self.query(hidden_states)
|
185 |
+
|
186 |
+
query_layer = self.transpose_for_scores(mixed_query_layer)
|
187 |
+
|
188 |
+
past_key_value = (key_layer, value_layer)
|
189 |
+
|
190 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
191 |
+
attention_scores = torch.matmul(query_layer,
|
192 |
+
key_layer.transpose(-1, -2))
|
193 |
+
|
194 |
+
if (self.position_embedding_type == "relative_key"
|
195 |
+
or self.position_embedding_type == "relative_key_query"):
|
196 |
+
seq_length = hidden_states.size()[1]
|
197 |
+
position_ids_l = torch.arange(seq_length,
|
198 |
+
dtype=torch.long,
|
199 |
+
device=hidden_states.device).view(
|
200 |
+
-1, 1)
|
201 |
+
position_ids_r = torch.arange(seq_length,
|
202 |
+
dtype=torch.long,
|
203 |
+
device=hidden_states.device).view(
|
204 |
+
1, -1)
|
205 |
+
distance = position_ids_l - position_ids_r
|
206 |
+
positional_embedding = self.distance_embedding(
|
207 |
+
distance + self.max_position_embeddings - 1)
|
208 |
+
positional_embedding = positional_embedding.to(
|
209 |
+
dtype=query_layer.dtype) # fp16 compatibility
|
210 |
+
|
211 |
+
if self.position_embedding_type == "relative_key":
|
212 |
+
relative_position_scores = torch.einsum(
|
213 |
+
"bhld,lrd->bhlr", query_layer, positional_embedding)
|
214 |
+
attention_scores = attention_scores + relative_position_scores
|
215 |
+
elif self.position_embedding_type == "relative_key_query":
|
216 |
+
relative_position_scores_query = torch.einsum(
|
217 |
+
"bhld,lrd->bhlr", query_layer, positional_embedding)
|
218 |
+
relative_position_scores_key = torch.einsum(
|
219 |
+
"bhrd,lrd->bhlr", key_layer, positional_embedding)
|
220 |
+
attention_scores = (attention_scores +
|
221 |
+
relative_position_scores_query +
|
222 |
+
relative_position_scores_key)
|
223 |
+
|
224 |
+
attention_scores = attention_scores / math.sqrt(
|
225 |
+
self.attention_head_size)
|
226 |
+
if attention_mask is not None:
|
227 |
+
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
|
228 |
+
attention_scores = attention_scores + attention_mask
|
229 |
+
|
230 |
+
# Normalize the attention scores to probabilities.
|
231 |
+
attention_probs = nn.Softmax(dim=-1)(attention_scores)
|
232 |
+
|
233 |
+
if is_cross_attention and self.save_attention:
|
234 |
+
self.save_attention_map(attention_probs)
|
235 |
+
attention_probs.register_hook(self.save_attn_gradients)
|
236 |
+
|
237 |
+
# This is actually dropping out entire tokens to attend to, which might
|
238 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
239 |
+
attention_probs_dropped = self.dropout(attention_probs)
|
240 |
+
|
241 |
+
# Mask heads if we want to
|
242 |
+
if head_mask is not None:
|
243 |
+
attention_probs_dropped = attention_probs_dropped * head_mask
|
244 |
+
|
245 |
+
context_layer = torch.matmul(attention_probs_dropped, value_layer)
|
246 |
+
|
247 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
248 |
+
new_context_layer_shape = context_layer.size()[:-2] + (
|
249 |
+
self.all_head_size, )
|
250 |
+
context_layer = context_layer.view(*new_context_layer_shape)
|
251 |
+
|
252 |
+
outputs = ((context_layer, attention_probs) if output_attentions else
|
253 |
+
(context_layer, ))
|
254 |
+
|
255 |
+
outputs = outputs + (past_key_value, )
|
256 |
+
return outputs
|
257 |
+
|
258 |
+
|
259 |
+
class BertSelfOutput(nn.Module):
|
260 |
+
def __init__(self, config):
|
261 |
+
super().__init__()
|
262 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
263 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size,
|
264 |
+
eps=config.layer_norm_eps)
|
265 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
266 |
+
|
267 |
+
def forward(self, hidden_states, input_tensor):
|
268 |
+
hidden_states = self.dense(hidden_states)
|
269 |
+
hidden_states = self.dropout(hidden_states)
|
270 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
271 |
+
return hidden_states
|
272 |
+
|
273 |
+
|
274 |
+
class BertAttention(nn.Module):
|
275 |
+
def __init__(self, config, is_cross_attention=False):
|
276 |
+
super().__init__()
|
277 |
+
self.self = BertSelfAttention(config, is_cross_attention)
|
278 |
+
self.output = BertSelfOutput(config)
|
279 |
+
self.pruned_heads = set()
|
280 |
+
|
281 |
+
def prune_heads(self, heads):
|
282 |
+
if len(heads) == 0:
|
283 |
+
return
|
284 |
+
heads, index = find_pruneable_heads_and_indices(
|
285 |
+
heads,
|
286 |
+
self.self.num_attention_heads,
|
287 |
+
self.self.attention_head_size,
|
288 |
+
self.pruned_heads,
|
289 |
+
)
|
290 |
+
|
291 |
+
# Prune linear layers
|
292 |
+
self.self.query = prune_linear_layer(self.self.query, index)
|
293 |
+
self.self.key = prune_linear_layer(self.self.key, index)
|
294 |
+
self.self.value = prune_linear_layer(self.self.value, index)
|
295 |
+
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
296 |
+
|
297 |
+
# Update hyper params and store pruned heads
|
298 |
+
self.self.num_attention_heads = self.self.num_attention_heads - len(
|
299 |
+
heads)
|
300 |
+
self.self.all_head_size = (self.self.attention_head_size *
|
301 |
+
self.self.num_attention_heads)
|
302 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
303 |
+
|
304 |
+
def forward(
|
305 |
+
self,
|
306 |
+
hidden_states,
|
307 |
+
attention_mask=None,
|
308 |
+
head_mask=None,
|
309 |
+
encoder_hidden_states=None,
|
310 |
+
encoder_attention_mask=None,
|
311 |
+
past_key_value=None,
|
312 |
+
output_attentions=False,
|
313 |
+
):
|
314 |
+
self_outputs = self.self(
|
315 |
+
hidden_states,
|
316 |
+
attention_mask,
|
317 |
+
head_mask,
|
318 |
+
encoder_hidden_states,
|
319 |
+
encoder_attention_mask,
|
320 |
+
past_key_value,
|
321 |
+
output_attentions,
|
322 |
+
)
|
323 |
+
attention_output = self.output(self_outputs[0], hidden_states)
|
324 |
+
|
325 |
+
outputs = (attention_output,
|
326 |
+
) + self_outputs[1:] # add attentions if we output them
|
327 |
+
return outputs
|
328 |
+
|
329 |
+
|
330 |
+
class BertIntermediate(nn.Module):
|
331 |
+
def __init__(self, config):
|
332 |
+
super().__init__()
|
333 |
+
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
334 |
+
if isinstance(config.hidden_act, str):
|
335 |
+
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
336 |
+
else:
|
337 |
+
self.intermediate_act_fn = config.hidden_act
|
338 |
+
|
339 |
+
def forward(self, hidden_states):
|
340 |
+
hidden_states = self.dense(hidden_states)
|
341 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
342 |
+
return hidden_states
|
343 |
+
|
344 |
+
|
345 |
+
class BertOutput(nn.Module):
|
346 |
+
def __init__(self, config):
|
347 |
+
super().__init__()
|
348 |
+
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
349 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size,
|
350 |
+
eps=config.layer_norm_eps)
|
351 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
352 |
+
|
353 |
+
def forward(self, hidden_states, input_tensor):
|
354 |
+
hidden_states = self.dense(hidden_states)
|
355 |
+
hidden_states = self.dropout(hidden_states)
|
356 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
357 |
+
return hidden_states
|
358 |
+
|
359 |
+
|
360 |
+
class BertLayer(nn.Module):
|
361 |
+
def __init__(self, config, layer_num):
|
362 |
+
super().__init__()
|
363 |
+
self.config = config
|
364 |
+
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
365 |
+
self.seq_len_dim = 1
|
366 |
+
self.attention = BertAttention(config)
|
367 |
+
self.layer_num = layer_num
|
368 |
+
if (self.config.add_cross_attention
|
369 |
+
and layer_num % self.config.cross_attention_freq == 0):
|
370 |
+
self.crossattention = BertAttention(
|
371 |
+
config, is_cross_attention=self.config.add_cross_attention)
|
372 |
+
self.has_cross_attention = True
|
373 |
+
else:
|
374 |
+
self.has_cross_attention = False
|
375 |
+
self.intermediate = BertIntermediate(config)
|
376 |
+
self.output = BertOutput(config)
|
377 |
+
|
378 |
+
self.intermediate_query = BertIntermediate(config)
|
379 |
+
self.output_query = BertOutput(config)
|
380 |
+
|
381 |
+
def forward(
|
382 |
+
self,
|
383 |
+
hidden_states,
|
384 |
+
attention_mask=None,
|
385 |
+
head_mask=None,
|
386 |
+
encoder_hidden_states=None,
|
387 |
+
encoder_attention_mask=None,
|
388 |
+
past_key_value=None,
|
389 |
+
output_attentions=False,
|
390 |
+
query_length=0,
|
391 |
+
):
|
392 |
+
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
393 |
+
self_attn_past_key_value = (past_key_value[:2]
|
394 |
+
if past_key_value is not None else None)
|
395 |
+
self_attention_outputs = self.attention(
|
396 |
+
hidden_states,
|
397 |
+
attention_mask,
|
398 |
+
head_mask,
|
399 |
+
output_attentions=output_attentions,
|
400 |
+
past_key_value=self_attn_past_key_value,
|
401 |
+
)
|
402 |
+
attention_output = self_attention_outputs[0]
|
403 |
+
outputs = self_attention_outputs[1:-1]
|
404 |
+
|
405 |
+
present_key_value = self_attention_outputs[-1]
|
406 |
+
|
407 |
+
if query_length > 0:
|
408 |
+
query_attention_output = attention_output[:, :query_length, :]
|
409 |
+
|
410 |
+
if self.has_cross_attention:
|
411 |
+
assert (
|
412 |
+
encoder_hidden_states is not None
|
413 |
+
), "encoder_hidden_states must be given for cross-attention layers"
|
414 |
+
cross_attention_outputs = self.crossattention(
|
415 |
+
query_attention_output,
|
416 |
+
attention_mask,
|
417 |
+
head_mask,
|
418 |
+
encoder_hidden_states,
|
419 |
+
encoder_attention_mask,
|
420 |
+
output_attentions=output_attentions,
|
421 |
+
)
|
422 |
+
query_attention_output = cross_attention_outputs[0]
|
423 |
+
outputs = (
|
424 |
+
outputs + cross_attention_outputs[1:-1]
|
425 |
+
) # add cross attentions if we output attention weights
|
426 |
+
|
427 |
+
layer_output = apply_chunking_to_forward(
|
428 |
+
self.feed_forward_chunk_query,
|
429 |
+
self.chunk_size_feed_forward,
|
430 |
+
self.seq_len_dim,
|
431 |
+
query_attention_output,
|
432 |
+
)
|
433 |
+
if attention_output.shape[1] > query_length:
|
434 |
+
layer_output_text = apply_chunking_to_forward(
|
435 |
+
self.feed_forward_chunk,
|
436 |
+
self.chunk_size_feed_forward,
|
437 |
+
self.seq_len_dim,
|
438 |
+
attention_output[:, query_length:, :],
|
439 |
+
)
|
440 |
+
layer_output = torch.cat([layer_output, layer_output_text],
|
441 |
+
dim=1)
|
442 |
+
else:
|
443 |
+
layer_output = apply_chunking_to_forward(
|
444 |
+
self.feed_forward_chunk,
|
445 |
+
self.chunk_size_feed_forward,
|
446 |
+
self.seq_len_dim,
|
447 |
+
attention_output,
|
448 |
+
)
|
449 |
+
outputs = (layer_output, ) + outputs
|
450 |
+
|
451 |
+
outputs = outputs + (present_key_value, )
|
452 |
+
|
453 |
+
return outputs
|
454 |
+
|
455 |
+
def feed_forward_chunk(self, attention_output):
|
456 |
+
intermediate_output = self.intermediate(attention_output)
|
457 |
+
layer_output = self.output(intermediate_output, attention_output)
|
458 |
+
return layer_output
|
459 |
+
|
460 |
+
def feed_forward_chunk_query(self, attention_output):
|
461 |
+
intermediate_output = self.intermediate_query(attention_output)
|
462 |
+
layer_output = self.output_query(intermediate_output, attention_output)
|
463 |
+
return layer_output
|
464 |
+
|
465 |
+
|
466 |
+
class BertEncoder(nn.Module):
|
467 |
+
def __init__(self, config):
|
468 |
+
super().__init__()
|
469 |
+
self.config = config
|
470 |
+
self.layer = nn.ModuleList(
|
471 |
+
[BertLayer(config, i) for i in range(config.num_hidden_layers)])
|
472 |
+
|
473 |
+
def forward(
|
474 |
+
self,
|
475 |
+
hidden_states,
|
476 |
+
attention_mask=None,
|
477 |
+
head_mask=None,
|
478 |
+
encoder_hidden_states=None,
|
479 |
+
encoder_attention_mask=None,
|
480 |
+
past_key_values=None,
|
481 |
+
use_cache=None,
|
482 |
+
output_attentions=False,
|
483 |
+
output_hidden_states=False,
|
484 |
+
return_dict=True,
|
485 |
+
query_length=0,
|
486 |
+
):
|
487 |
+
all_hidden_states = () if output_hidden_states else None
|
488 |
+
all_self_attentions = () if output_attentions else None
|
489 |
+
all_cross_attentions = (() if output_attentions
|
490 |
+
and self.config.add_cross_attention else None)
|
491 |
+
|
492 |
+
next_decoder_cache = () if use_cache else None
|
493 |
+
|
494 |
+
for i in range(self.config.num_hidden_layers):
|
495 |
+
layer_module = self.layer[i]
|
496 |
+
if output_hidden_states:
|
497 |
+
all_hidden_states = all_hidden_states + (hidden_states, )
|
498 |
+
|
499 |
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
500 |
+
past_key_value = past_key_values[
|
501 |
+
i] if past_key_values is not None else None
|
502 |
+
|
503 |
+
if getattr(self.config, "gradient_checkpointing",
|
504 |
+
False) and self.training:
|
505 |
+
|
506 |
+
if use_cache:
|
507 |
+
logger.warn(
|
508 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
509 |
+
)
|
510 |
+
use_cache = False
|
511 |
+
|
512 |
+
def create_custom_forward(module):
|
513 |
+
def custom_forward(*inputs):
|
514 |
+
return module(*inputs, past_key_value,
|
515 |
+
output_attentions, query_length)
|
516 |
+
|
517 |
+
return custom_forward
|
518 |
+
|
519 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
520 |
+
create_custom_forward(layer_module),
|
521 |
+
hidden_states,
|
522 |
+
attention_mask,
|
523 |
+
layer_head_mask,
|
524 |
+
encoder_hidden_states,
|
525 |
+
encoder_attention_mask,
|
526 |
+
)
|
527 |
+
else:
|
528 |
+
layer_outputs = layer_module(
|
529 |
+
hidden_states,
|
530 |
+
attention_mask,
|
531 |
+
layer_head_mask,
|
532 |
+
encoder_hidden_states,
|
533 |
+
encoder_attention_mask,
|
534 |
+
past_key_value,
|
535 |
+
output_attentions,
|
536 |
+
query_length,
|
537 |
+
)
|
538 |
+
|
539 |
+
hidden_states = layer_outputs[0]
|
540 |
+
if use_cache:
|
541 |
+
next_decoder_cache += (layer_outputs[-1], )
|
542 |
+
if output_attentions:
|
543 |
+
all_self_attentions = all_self_attentions + (
|
544 |
+
layer_outputs[1], )
|
545 |
+
all_cross_attentions = all_cross_attentions + (
|
546 |
+
layer_outputs[2], )
|
547 |
+
|
548 |
+
if output_hidden_states:
|
549 |
+
all_hidden_states = all_hidden_states + (hidden_states, )
|
550 |
+
|
551 |
+
if not return_dict:
|
552 |
+
return tuple(v for v in [
|
553 |
+
hidden_states,
|
554 |
+
next_decoder_cache,
|
555 |
+
all_hidden_states,
|
556 |
+
all_self_attentions,
|
557 |
+
all_cross_attentions,
|
558 |
+
] if v is not None)
|
559 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
560 |
+
last_hidden_state=hidden_states,
|
561 |
+
past_key_values=next_decoder_cache,
|
562 |
+
hidden_states=all_hidden_states,
|
563 |
+
attentions=all_self_attentions,
|
564 |
+
cross_attentions=all_cross_attentions,
|
565 |
+
)
|
566 |
+
|
567 |
+
|
568 |
+
class BertPooler(nn.Module):
|
569 |
+
def __init__(self, config):
|
570 |
+
super().__init__()
|
571 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
572 |
+
self.activation = nn.Tanh()
|
573 |
+
|
574 |
+
def forward(self, hidden_states):
|
575 |
+
# We "pool" the model by simply taking the hidden state corresponding
|
576 |
+
# to the first token.
|
577 |
+
first_token_tensor = hidden_states[:, 0]
|
578 |
+
pooled_output = self.dense(first_token_tensor)
|
579 |
+
pooled_output = self.activation(pooled_output)
|
580 |
+
return pooled_output
|
581 |
+
|
582 |
+
|
583 |
+
class BertPredictionHeadTransform(nn.Module):
|
584 |
+
def __init__(self, config):
|
585 |
+
super().__init__()
|
586 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
587 |
+
if isinstance(config.hidden_act, str):
|
588 |
+
self.transform_act_fn = ACT2FN[config.hidden_act]
|
589 |
+
else:
|
590 |
+
self.transform_act_fn = config.hidden_act
|
591 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size,
|
592 |
+
eps=config.layer_norm_eps)
|
593 |
+
|
594 |
+
def forward(self, hidden_states):
|
595 |
+
hidden_states = self.dense(hidden_states)
|
596 |
+
hidden_states = self.transform_act_fn(hidden_states)
|
597 |
+
hidden_states = self.LayerNorm(hidden_states)
|
598 |
+
return hidden_states
|
599 |
+
|
600 |
+
|
601 |
+
class BertLMPredictionHead(nn.Module):
|
602 |
+
def __init__(self, config):
|
603 |
+
super().__init__()
|
604 |
+
self.transform = BertPredictionHeadTransform(config)
|
605 |
+
|
606 |
+
# The output weights are the same as the input embeddings, but there is
|
607 |
+
# an output-only bias for each token.
|
608 |
+
self.decoder = nn.Linear(config.hidden_size,
|
609 |
+
config.vocab_size,
|
610 |
+
bias=False)
|
611 |
+
|
612 |
+
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
|
613 |
+
|
614 |
+
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
|
615 |
+
self.decoder.bias = self.bias
|
616 |
+
|
617 |
+
def forward(self, hidden_states):
|
618 |
+
hidden_states = self.transform(hidden_states)
|
619 |
+
hidden_states = self.decoder(hidden_states)
|
620 |
+
return hidden_states
|
621 |
+
|
622 |
+
|
623 |
+
class BertOnlyMLMHead(nn.Module):
|
624 |
+
def __init__(self, config):
|
625 |
+
super().__init__()
|
626 |
+
self.predictions = BertLMPredictionHead(config)
|
627 |
+
|
628 |
+
def forward(self, sequence_output):
|
629 |
+
prediction_scores = self.predictions(sequence_output)
|
630 |
+
return prediction_scores
|
631 |
+
|
632 |
+
|
633 |
+
class BertPreTrainedModel(PreTrainedModel):
|
634 |
+
"""
|
635 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
636 |
+
models.
|
637 |
+
"""
|
638 |
+
|
639 |
+
config_class = BertConfig
|
640 |
+
base_model_prefix = "bert"
|
641 |
+
_keys_to_ignore_on_load_missing = [r"position_ids"]
|
642 |
+
|
643 |
+
def _init_weights(self, module):
|
644 |
+
"""Initialize the weights"""
|
645 |
+
if isinstance(module, (nn.Linear, nn.Embedding)):
|
646 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
647 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
648 |
+
module.weight.data.normal_(mean=0.0,
|
649 |
+
std=self.config.initializer_range)
|
650 |
+
elif isinstance(module, nn.LayerNorm):
|
651 |
+
module.bias.data.zero_()
|
652 |
+
module.weight.data.fill_(1.0)
|
653 |
+
if isinstance(module, nn.Linear) and module.bias is not None:
|
654 |
+
module.bias.data.zero_()
|
655 |
+
|
656 |
+
|
657 |
+
class BertModel(BertPreTrainedModel):
|
658 |
+
"""
|
659 |
+
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
|
660 |
+
cross-attention is added between the self-attention layers, following the architecture described in `Attention is
|
661 |
+
all you need <https://arxiv.org/abs/1706.03762>`__ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
|
662 |
+
Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
|
663 |
+
argument and :obj:`add_cross_attention` set to :obj:`True`; an :obj:`encoder_hidden_states` is then expected as an
|
664 |
+
input to the forward pass.
|
665 |
+
"""
|
666 |
+
def __init__(self, config, add_pooling_layer=False):
|
667 |
+
super().__init__(config)
|
668 |
+
self.config = config
|
669 |
+
|
670 |
+
self.embeddings = BertEmbeddings(config)
|
671 |
+
|
672 |
+
self.encoder = BertEncoder(config)
|
673 |
+
|
674 |
+
self.pooler = BertPooler(config) if add_pooling_layer else None
|
675 |
+
|
676 |
+
self.init_weights()
|
677 |
+
|
678 |
+
def get_input_embeddings(self):
|
679 |
+
return self.embeddings.word_embeddings
|
680 |
+
|
681 |
+
def set_input_embeddings(self, value):
|
682 |
+
self.embeddings.word_embeddings = value
|
683 |
+
|
684 |
+
def _prune_heads(self, heads_to_prune):
|
685 |
+
"""
|
686 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
687 |
+
class PreTrainedModel
|
688 |
+
"""
|
689 |
+
for layer, heads in heads_to_prune.items():
|
690 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
691 |
+
|
692 |
+
def get_extended_attention_mask(
|
693 |
+
self,
|
694 |
+
attention_mask: Tensor,
|
695 |
+
input_shape: Tuple[int],
|
696 |
+
device: device,
|
697 |
+
is_decoder: bool,
|
698 |
+
has_query: bool = False,
|
699 |
+
) -> Tensor:
|
700 |
+
"""
|
701 |
+
Makes broadcastable attention and causal masks so that future and masked tokens are ignored.
|
702 |
+
|
703 |
+
Arguments:
|
704 |
+
attention_mask (:obj:`torch.Tensor`):
|
705 |
+
Mask with ones indicating tokens to attend to, zeros for tokens to ignore.
|
706 |
+
input_shape (:obj:`Tuple[int]`):
|
707 |
+
The shape of the input to the model.
|
708 |
+
device: (:obj:`torch.device`):
|
709 |
+
The device of the input to the model.
|
710 |
+
|
711 |
+
Returns:
|
712 |
+
:obj:`torch.Tensor` The extended attention mask, with a the same dtype as :obj:`attention_mask.dtype`.
|
713 |
+
"""
|
714 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
715 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
716 |
+
if attention_mask.dim() == 3:
|
717 |
+
extended_attention_mask = attention_mask[:, None, :, :]
|
718 |
+
elif attention_mask.dim() == 2:
|
719 |
+
# Provided a padding mask of dimensions [batch_size, seq_length]
|
720 |
+
# - if the model is a decoder, apply a causal mask in addition to the padding mask
|
721 |
+
# - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
722 |
+
if is_decoder:
|
723 |
+
batch_size, seq_length = input_shape
|
724 |
+
|
725 |
+
seq_ids = torch.arange(seq_length, device=device)
|
726 |
+
causal_mask = (seq_ids[None, None, :].repeat(
|
727 |
+
batch_size, seq_length, 1) <= seq_ids[None, :, None])
|
728 |
+
|
729 |
+
# add a prefix ones mask to the causal mask
|
730 |
+
# causal and attention masks must have same type with pytorch version < 1.3
|
731 |
+
causal_mask = causal_mask.to(attention_mask.dtype)
|
732 |
+
|
733 |
+
if causal_mask.shape[1] < attention_mask.shape[1]:
|
734 |
+
prefix_seq_len = attention_mask.shape[
|
735 |
+
1] - causal_mask.shape[1]
|
736 |
+
if has_query: # UniLM style attention mask
|
737 |
+
causal_mask = torch.cat(
|
738 |
+
[
|
739 |
+
torch.zeros(
|
740 |
+
(batch_size, prefix_seq_len, seq_length),
|
741 |
+
device=device,
|
742 |
+
dtype=causal_mask.dtype,
|
743 |
+
),
|
744 |
+
causal_mask,
|
745 |
+
],
|
746 |
+
axis=1,
|
747 |
+
)
|
748 |
+
causal_mask = torch.cat(
|
749 |
+
[
|
750 |
+
torch.ones(
|
751 |
+
(batch_size, causal_mask.shape[1],
|
752 |
+
prefix_seq_len),
|
753 |
+
device=device,
|
754 |
+
dtype=causal_mask.dtype,
|
755 |
+
),
|
756 |
+
causal_mask,
|
757 |
+
],
|
758 |
+
axis=-1,
|
759 |
+
)
|
760 |
+
extended_attention_mask = (causal_mask[:, None, :, :] *
|
761 |
+
attention_mask[:, None, None, :])
|
762 |
+
else:
|
763 |
+
extended_attention_mask = attention_mask[:, None, None, :]
|
764 |
+
else:
|
765 |
+
raise ValueError(
|
766 |
+
"Wrong shape for input_ids (shape {}) or attention_mask (shape {})"
|
767 |
+
.format(input_shape, attention_mask.shape))
|
768 |
+
|
769 |
+
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
770 |
+
# masked positions, this operation will create a tensor which is 0.0 for
|
771 |
+
# positions we want to attend and -10000.0 for masked positions.
|
772 |
+
# Since we are adding it to the raw scores before the softmax, this is
|
773 |
+
# effectively the same as removing these entirely.
|
774 |
+
extended_attention_mask = extended_attention_mask.to(
|
775 |
+
dtype=self.dtype) # fp16 compatibility
|
776 |
+
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
|
777 |
+
return extended_attention_mask
|
778 |
+
|
779 |
+
def forward(
|
780 |
+
self,
|
781 |
+
input_ids=None,
|
782 |
+
attention_mask=None,
|
783 |
+
position_ids=None,
|
784 |
+
head_mask=None,
|
785 |
+
query_embeds=None,
|
786 |
+
encoder_hidden_states=None,
|
787 |
+
encoder_attention_mask=None,
|
788 |
+
past_key_values=None,
|
789 |
+
use_cache=None,
|
790 |
+
output_attentions=None,
|
791 |
+
output_hidden_states=None,
|
792 |
+
return_dict=None,
|
793 |
+
is_decoder=False,
|
794 |
+
):
|
795 |
+
r"""
|
796 |
+
encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
|
797 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
798 |
+
the model is configured as a decoder.
|
799 |
+
encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
800 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
801 |
+
the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``:
|
802 |
+
- 1 for tokens that are **not masked**,
|
803 |
+
- 0 for tokens that are **masked**.
|
804 |
+
past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
805 |
+
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
806 |
+
If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
|
807 |
+
(those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
|
808 |
+
instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`.
|
809 |
+
use_cache (:obj:`bool`, `optional`):
|
810 |
+
If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
|
811 |
+
decoding (see :obj:`past_key_values`).
|
812 |
+
"""
|
813 |
+
output_attentions = (output_attentions if output_attentions is not None
|
814 |
+
else self.config.output_attentions)
|
815 |
+
output_hidden_states = (output_hidden_states
|
816 |
+
if output_hidden_states is not None else
|
817 |
+
self.config.output_hidden_states)
|
818 |
+
return_dict = (return_dict if return_dict is not None else
|
819 |
+
self.config.use_return_dict)
|
820 |
+
|
821 |
+
# use_cache = use_cache if use_cache is not None else self.config.use_cache
|
822 |
+
|
823 |
+
if input_ids is None:
|
824 |
+
assert (
|
825 |
+
query_embeds is not None
|
826 |
+
), "You have to specify query_embeds when input_ids is None"
|
827 |
+
|
828 |
+
# past_key_values_length
|
829 |
+
past_key_values_length = (past_key_values[0][0].shape[2] -
|
830 |
+
self.config.query_length
|
831 |
+
if past_key_values is not None else 0)
|
832 |
+
|
833 |
+
query_length = query_embeds.shape[1] if query_embeds is not None else 0
|
834 |
+
|
835 |
+
embedding_output = self.embeddings(
|
836 |
+
input_ids=input_ids,
|
837 |
+
position_ids=position_ids,
|
838 |
+
query_embeds=query_embeds,
|
839 |
+
past_key_values_length=past_key_values_length,
|
840 |
+
)
|
841 |
+
|
842 |
+
input_shape = embedding_output.size()[:-1]
|
843 |
+
batch_size, seq_length = input_shape
|
844 |
+
device = embedding_output.device
|
845 |
+
|
846 |
+
if attention_mask is None:
|
847 |
+
attention_mask = torch.ones(
|
848 |
+
((batch_size, seq_length + past_key_values_length)),
|
849 |
+
device=device)
|
850 |
+
|
851 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
852 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
853 |
+
if is_decoder:
|
854 |
+
extended_attention_mask = self.get_extended_attention_mask(
|
855 |
+
attention_mask,
|
856 |
+
input_ids.shape,
|
857 |
+
device,
|
858 |
+
is_decoder,
|
859 |
+
has_query=(query_embeds is not None),
|
860 |
+
)
|
861 |
+
else:
|
862 |
+
extended_attention_mask = self.get_extended_attention_mask(
|
863 |
+
attention_mask, input_shape, device, is_decoder)
|
864 |
+
|
865 |
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
866 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
867 |
+
if encoder_hidden_states is not None:
|
868 |
+
if type(encoder_hidden_states) == list:
|
869 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states[
|
870 |
+
0].size()
|
871 |
+
else:
|
872 |
+
(
|
873 |
+
encoder_batch_size,
|
874 |
+
encoder_sequence_length,
|
875 |
+
_,
|
876 |
+
) = encoder_hidden_states.size()
|
877 |
+
encoder_hidden_shape = (encoder_batch_size,
|
878 |
+
encoder_sequence_length)
|
879 |
+
|
880 |
+
if type(encoder_attention_mask) == list:
|
881 |
+
encoder_extended_attention_mask = [
|
882 |
+
self.invert_attention_mask(mask)
|
883 |
+
for mask in encoder_attention_mask
|
884 |
+
]
|
885 |
+
elif encoder_attention_mask is None:
|
886 |
+
encoder_attention_mask = torch.ones(encoder_hidden_shape,
|
887 |
+
device=device)
|
888 |
+
encoder_extended_attention_mask = self.invert_attention_mask(
|
889 |
+
encoder_attention_mask)
|
890 |
+
else:
|
891 |
+
encoder_extended_attention_mask = self.invert_attention_mask(
|
892 |
+
encoder_attention_mask)
|
893 |
+
else:
|
894 |
+
encoder_extended_attention_mask = None
|
895 |
+
|
896 |
+
# Prepare head mask if needed
|
897 |
+
# 1.0 in head_mask indicate we keep the head
|
898 |
+
# attention_probs has shape bsz x n_heads x N x N
|
899 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
900 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
901 |
+
head_mask = self.get_head_mask(head_mask,
|
902 |
+
self.config.num_hidden_layers)
|
903 |
+
|
904 |
+
encoder_outputs = self.encoder(
|
905 |
+
embedding_output,
|
906 |
+
attention_mask=extended_attention_mask,
|
907 |
+
head_mask=head_mask,
|
908 |
+
encoder_hidden_states=encoder_hidden_states,
|
909 |
+
encoder_attention_mask=encoder_extended_attention_mask,
|
910 |
+
past_key_values=past_key_values,
|
911 |
+
use_cache=use_cache,
|
912 |
+
output_attentions=output_attentions,
|
913 |
+
output_hidden_states=output_hidden_states,
|
914 |
+
return_dict=return_dict,
|
915 |
+
query_length=query_length,
|
916 |
+
)
|
917 |
+
sequence_output = encoder_outputs[0]
|
918 |
+
pooled_output = (self.pooler(sequence_output)
|
919 |
+
if self.pooler is not None else None)
|
920 |
+
|
921 |
+
if not return_dict:
|
922 |
+
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
923 |
+
|
924 |
+
return BaseModelOutputWithPoolingAndCrossAttentions(
|
925 |
+
last_hidden_state=sequence_output,
|
926 |
+
pooler_output=pooled_output,
|
927 |
+
past_key_values=encoder_outputs.past_key_values,
|
928 |
+
hidden_states=encoder_outputs.hidden_states,
|
929 |
+
attentions=encoder_outputs.attentions,
|
930 |
+
cross_attentions=encoder_outputs.cross_attentions,
|
931 |
+
)
|
932 |
+
|
933 |
+
|
934 |
+
class BertLMHeadModel(BertPreTrainedModel):
|
935 |
+
|
936 |
+
_keys_to_ignore_on_load_unexpected = [r"pooler"]
|
937 |
+
_keys_to_ignore_on_load_missing = [
|
938 |
+
r"position_ids", r"predictions.decoder.bias"
|
939 |
+
]
|
940 |
+
|
941 |
+
def __init__(self, config):
|
942 |
+
super().__init__(config)
|
943 |
+
|
944 |
+
self.bert = BertModel(config, add_pooling_layer=False)
|
945 |
+
self.cls = BertOnlyMLMHead(config)
|
946 |
+
|
947 |
+
self.init_weights()
|
948 |
+
|
949 |
+
def get_output_embeddings(self):
|
950 |
+
return self.cls.predictions.decoder
|
951 |
+
|
952 |
+
def set_output_embeddings(self, new_embeddings):
|
953 |
+
self.cls.predictions.decoder = new_embeddings
|
954 |
+
|
955 |
+
def forward(
|
956 |
+
self,
|
957 |
+
input_ids=None,
|
958 |
+
attention_mask=None,
|
959 |
+
position_ids=None,
|
960 |
+
head_mask=None,
|
961 |
+
query_embeds=None,
|
962 |
+
encoder_hidden_states=None,
|
963 |
+
encoder_attention_mask=None,
|
964 |
+
labels=None,
|
965 |
+
past_key_values=None,
|
966 |
+
use_cache=True,
|
967 |
+
output_attentions=None,
|
968 |
+
output_hidden_states=None,
|
969 |
+
return_dict=None,
|
970 |
+
return_logits=False,
|
971 |
+
is_decoder=True,
|
972 |
+
reduction="mean",
|
973 |
+
):
|
974 |
+
r"""
|
975 |
+
encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
|
976 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
977 |
+
the model is configured as a decoder.
|
978 |
+
encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
979 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
980 |
+
the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``:
|
981 |
+
- 1 for tokens that are **not masked**,
|
982 |
+
- 0 for tokens that are **masked**.
|
983 |
+
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
984 |
+
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
|
985 |
+
``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are
|
986 |
+
ignored (masked), the loss is only computed for the tokens with labels n ``[0, ..., config.vocab_size]``
|
987 |
+
past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
988 |
+
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
989 |
+
If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
|
990 |
+
(those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
|
991 |
+
instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`.
|
992 |
+
use_cache (:obj:`bool`, `optional`):
|
993 |
+
If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
|
994 |
+
decoding (see :obj:`past_key_values`).
|
995 |
+
Returns:
|
996 |
+
Example::
|
997 |
+
>>> from transformers import BertTokenizer, BertLMHeadModel, BertConfig
|
998 |
+
>>> import torch
|
999 |
+
>>> tokenizer = BertTokenizer.from_pretrained('bert-base-cased')
|
1000 |
+
>>> config = BertConfig.from_pretrained("bert-base-cased")
|
1001 |
+
>>> model = BertLMHeadModel.from_pretrained('bert-base-cased', config=config)
|
1002 |
+
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
|
1003 |
+
>>> outputs = model(**inputs)
|
1004 |
+
>>> prediction_logits = outputs.logits
|
1005 |
+
"""
|
1006 |
+
return_dict = (return_dict if return_dict is not None else
|
1007 |
+
self.config.use_return_dict)
|
1008 |
+
if labels is not None:
|
1009 |
+
use_cache = False
|
1010 |
+
if past_key_values is not None:
|
1011 |
+
query_embeds = None
|
1012 |
+
|
1013 |
+
outputs = self.bert(
|
1014 |
+
input_ids,
|
1015 |
+
attention_mask=attention_mask,
|
1016 |
+
position_ids=position_ids,
|
1017 |
+
head_mask=head_mask,
|
1018 |
+
query_embeds=query_embeds,
|
1019 |
+
encoder_hidden_states=encoder_hidden_states,
|
1020 |
+
encoder_attention_mask=encoder_attention_mask,
|
1021 |
+
past_key_values=past_key_values,
|
1022 |
+
use_cache=use_cache,
|
1023 |
+
output_attentions=output_attentions,
|
1024 |
+
output_hidden_states=output_hidden_states,
|
1025 |
+
return_dict=return_dict,
|
1026 |
+
is_decoder=is_decoder,
|
1027 |
+
)
|
1028 |
+
|
1029 |
+
sequence_output = outputs[0]
|
1030 |
+
if query_embeds is not None:
|
1031 |
+
sequence_output = outputs[0][:, query_embeds.shape[1]:, :]
|
1032 |
+
|
1033 |
+
prediction_scores = self.cls(sequence_output)
|
1034 |
+
|
1035 |
+
if return_logits:
|
1036 |
+
return prediction_scores[:, :-1, :].contiguous()
|
1037 |
+
|
1038 |
+
lm_loss = None
|
1039 |
+
if labels is not None:
|
1040 |
+
# we are doing next-token prediction; shift prediction scores and input ids by one
|
1041 |
+
shifted_prediction_scores = prediction_scores[:, :
|
1042 |
+
-1, :].contiguous()
|
1043 |
+
labels = labels[:, 1:].contiguous()
|
1044 |
+
loss_fct = CrossEntropyLoss(reduction=reduction,
|
1045 |
+
label_smoothing=0.1)
|
1046 |
+
lm_loss = loss_fct(
|
1047 |
+
shifted_prediction_scores.view(-1, self.config.vocab_size),
|
1048 |
+
labels.view(-1),
|
1049 |
+
)
|
1050 |
+
if reduction == "none":
|
1051 |
+
lm_loss = lm_loss.view(prediction_scores.size(0), -1).sum(1)
|
1052 |
+
|
1053 |
+
if not return_dict:
|
1054 |
+
output = (prediction_scores, ) + outputs[2:]
|
1055 |
+
return ((lm_loss, ) + output) if lm_loss is not None else output
|
1056 |
+
|
1057 |
+
return CausalLMOutputWithCrossAttentions(
|
1058 |
+
loss=lm_loss,
|
1059 |
+
logits=prediction_scores,
|
1060 |
+
past_key_values=outputs.past_key_values,
|
1061 |
+
hidden_states=outputs.hidden_states,
|
1062 |
+
attentions=outputs.attentions,
|
1063 |
+
cross_attentions=outputs.cross_attentions,
|
1064 |
+
)
|
1065 |
+
|
1066 |
+
def prepare_inputs_for_generation(self,
|
1067 |
+
input_ids,
|
1068 |
+
query_embeds,
|
1069 |
+
past=None,
|
1070 |
+
attention_mask=None,
|
1071 |
+
**model_kwargs):
|
1072 |
+
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
|
1073 |
+
if attention_mask is None:
|
1074 |
+
attention_mask = input_ids.new_ones(input_ids.shape)
|
1075 |
+
query_mask = input_ids.new_ones(query_embeds.shape[:-1])
|
1076 |
+
attention_mask = torch.cat([query_mask, attention_mask], dim=-1)
|
1077 |
+
|
1078 |
+
# cut decoder_input_ids if past is used
|
1079 |
+
if past is not None:
|
1080 |
+
input_ids = input_ids[:, -1:]
|
1081 |
+
|
1082 |
+
return {
|
1083 |
+
"input_ids":
|
1084 |
+
input_ids,
|
1085 |
+
"query_embeds":
|
1086 |
+
query_embeds,
|
1087 |
+
"attention_mask":
|
1088 |
+
attention_mask,
|
1089 |
+
"past_key_values":
|
1090 |
+
past,
|
1091 |
+
"encoder_hidden_states":
|
1092 |
+
model_kwargs.get("encoder_hidden_states", None),
|
1093 |
+
"encoder_attention_mask":
|
1094 |
+
model_kwargs.get("encoder_attention_mask", None),
|
1095 |
+
"is_decoder":
|
1096 |
+
True,
|
1097 |
+
}
|
1098 |
+
|
1099 |
+
def _reorder_cache(self, past, beam_idx):
|
1100 |
+
reordered_past = ()
|
1101 |
+
for layer_past in past:
|
1102 |
+
reordered_past += (tuple(
|
1103 |
+
past_state.index_select(0, beam_idx)
|
1104 |
+
for past_state in layer_past), )
|
1105 |
+
return reordered_past
|
1106 |
+
|
1107 |
+
|
1108 |
+
class BertForMaskedLM(BertPreTrainedModel):
|
1109 |
+
|
1110 |
+
_keys_to_ignore_on_load_unexpected = [r"pooler"]
|
1111 |
+
_keys_to_ignore_on_load_missing = [
|
1112 |
+
r"position_ids", r"predictions.decoder.bias"
|
1113 |
+
]
|
1114 |
+
|
1115 |
+
def __init__(self, config):
|
1116 |
+
super().__init__(config)
|
1117 |
+
|
1118 |
+
self.bert = BertModel(config, add_pooling_layer=False)
|
1119 |
+
self.cls = BertOnlyMLMHead(config)
|
1120 |
+
|
1121 |
+
self.init_weights()
|
1122 |
+
|
1123 |
+
def get_output_embeddings(self):
|
1124 |
+
return self.cls.predictions.decoder
|
1125 |
+
|
1126 |
+
def set_output_embeddings(self, new_embeddings):
|
1127 |
+
self.cls.predictions.decoder = new_embeddings
|
1128 |
+
|
1129 |
+
def forward(
|
1130 |
+
self,
|
1131 |
+
input_ids=None,
|
1132 |
+
attention_mask=None,
|
1133 |
+
position_ids=None,
|
1134 |
+
head_mask=None,
|
1135 |
+
query_embeds=None,
|
1136 |
+
encoder_hidden_states=None,
|
1137 |
+
encoder_attention_mask=None,
|
1138 |
+
labels=None,
|
1139 |
+
output_attentions=None,
|
1140 |
+
output_hidden_states=None,
|
1141 |
+
return_dict=None,
|
1142 |
+
return_logits=False,
|
1143 |
+
is_decoder=False,
|
1144 |
+
):
|
1145 |
+
r"""
|
1146 |
+
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
1147 |
+
Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ...,
|
1148 |
+
config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored
|
1149 |
+
(masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]``
|
1150 |
+
"""
|
1151 |
+
|
1152 |
+
return_dict = (return_dict if return_dict is not None else
|
1153 |
+
self.config.use_return_dict)
|
1154 |
+
|
1155 |
+
outputs = self.bert(
|
1156 |
+
input_ids,
|
1157 |
+
attention_mask=attention_mask,
|
1158 |
+
position_ids=position_ids,
|
1159 |
+
head_mask=head_mask,
|
1160 |
+
query_embeds=query_embeds,
|
1161 |
+
encoder_hidden_states=encoder_hidden_states,
|
1162 |
+
encoder_attention_mask=encoder_attention_mask,
|
1163 |
+
output_attentions=output_attentions,
|
1164 |
+
output_hidden_states=output_hidden_states,
|
1165 |
+
return_dict=return_dict,
|
1166 |
+
is_decoder=is_decoder,
|
1167 |
+
)
|
1168 |
+
|
1169 |
+
if query_embeds is not None:
|
1170 |
+
sequence_output = outputs[0][:, query_embeds.shape[1]:, :]
|
1171 |
+
prediction_scores = self.cls(sequence_output)
|
1172 |
+
|
1173 |
+
if return_logits:
|
1174 |
+
return prediction_scores
|
1175 |
+
|
1176 |
+
masked_lm_loss = None
|
1177 |
+
if labels is not None:
|
1178 |
+
loss_fct = CrossEntropyLoss() # -100 index = padding token
|
1179 |
+
masked_lm_loss = loss_fct(
|
1180 |
+
prediction_scores.view(-1, self.config.vocab_size),
|
1181 |
+
labels.view(-1))
|
1182 |
+
|
1183 |
+
if not return_dict:
|
1184 |
+
output = (prediction_scores, ) + outputs[2:]
|
1185 |
+
return (((masked_lm_loss, ) +
|
1186 |
+
output) if masked_lm_loss is not None else output)
|
1187 |
+
|
1188 |
+
return MaskedLMOutput(
|
1189 |
+
loss=masked_lm_loss,
|
1190 |
+
logits=prediction_scores,
|
1191 |
+
hidden_states=outputs.hidden_states,
|
1192 |
+
attentions=outputs.attentions,
|
1193 |
+
)
|
modeling_utils.py
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import math
|
3 |
+
import os
|
4 |
+
from contextlib import contextmanager
|
5 |
+
|
6 |
+
import timm.models.hub as timm_hub
|
7 |
+
import torch
|
8 |
+
import torch.distributed as dist
|
9 |
+
import torch.nn as nn
|
10 |
+
|
11 |
+
|
12 |
+
def is_dist_avail_and_initialized():
|
13 |
+
if not dist.is_available():
|
14 |
+
return False
|
15 |
+
if not dist.is_initialized():
|
16 |
+
return False
|
17 |
+
return True
|
18 |
+
|
19 |
+
|
20 |
+
def get_rank():
|
21 |
+
if not is_dist_avail_and_initialized():
|
22 |
+
return 0
|
23 |
+
return dist.get_rank()
|
24 |
+
|
25 |
+
|
26 |
+
def is_main_process():
|
27 |
+
return get_rank() == 0
|
28 |
+
|
29 |
+
|
30 |
+
def download_cached_file(url, check_hash=True, progress=False):
|
31 |
+
"""
|
32 |
+
Download a file from a URL and cache it locally. If the file already exists, it is not downloaded again.
|
33 |
+
If distributed, only the main process downloads the file, and the other processes wait for the file to be downloaded.
|
34 |
+
"""
|
35 |
+
def get_cached_file_path():
|
36 |
+
# a hack to sync the file path across processes
|
37 |
+
parts = torch.hub.urlparse(url)
|
38 |
+
filename = os.path.basename(parts.path)
|
39 |
+
cached_file = os.path.join(timm_hub.get_cache_dir(), filename)
|
40 |
+
|
41 |
+
return cached_file
|
42 |
+
|
43 |
+
if is_main_process():
|
44 |
+
timm_hub.download_cached_file(url, check_hash, progress)
|
45 |
+
|
46 |
+
if is_dist_avail_and_initialized():
|
47 |
+
dist.barrier()
|
48 |
+
|
49 |
+
return get_cached_file_path()
|
50 |
+
|
51 |
+
|
52 |
+
@contextmanager
|
53 |
+
def all_logging_disabled(highest_level=logging.CRITICAL):
|
54 |
+
"""
|
55 |
+
A context manager that will prevent any logging messages
|
56 |
+
triggered during the body from being processed.
|
57 |
+
:param highest_level: the maximum logging level in use.
|
58 |
+
This would only need to be changed if a custom level greater than CRITICAL
|
59 |
+
is defined.
|
60 |
+
"""
|
61 |
+
# two kind-of hacks here:
|
62 |
+
# * can't get the highest logging level in effect => delegate to the user
|
63 |
+
# * can't get the current module-level override => use an undocumented
|
64 |
+
# (but non-private!) interface
|
65 |
+
|
66 |
+
previous_level = logging.root.manager.disable
|
67 |
+
|
68 |
+
logging.disable(highest_level)
|
69 |
+
|
70 |
+
try:
|
71 |
+
yield
|
72 |
+
finally:
|
73 |
+
logging.disable(previous_level)
|
74 |
+
|
75 |
+
|
76 |
+
class LoRALinear(nn.Linear):
|
77 |
+
def __init__(self,
|
78 |
+
in_features: int,
|
79 |
+
out_features: int,
|
80 |
+
bias: bool = True,
|
81 |
+
device=None,
|
82 |
+
dtype=None,
|
83 |
+
lora_r=8,
|
84 |
+
lora_alpha=16,
|
85 |
+
lora_dropout=0.05,
|
86 |
+
**kwargs) -> None:
|
87 |
+
super().__init__(in_features, out_features, bias, device, dtype)
|
88 |
+
self.lora_r = lora_r
|
89 |
+
self.lora_alpha = lora_alpha
|
90 |
+
if lora_dropout > 0.:
|
91 |
+
self.lora_dropout = nn.Dropout(p=lora_dropout)
|
92 |
+
else:
|
93 |
+
self.lora_dropout = lambda x: x
|
94 |
+
self.lora_scaling = self.lora_alpha / self.lora_r
|
95 |
+
|
96 |
+
self.lora_A = nn.Linear(in_features,
|
97 |
+
self.lora_r,
|
98 |
+
bias=False,
|
99 |
+
device=device,
|
100 |
+
dtype=dtype)
|
101 |
+
self.lora_B = nn.Linear(self.lora_r,
|
102 |
+
out_features,
|
103 |
+
bias=False,
|
104 |
+
device=device,
|
105 |
+
dtype=dtype)
|
106 |
+
|
107 |
+
self.reset_parameters()
|
108 |
+
|
109 |
+
def reset_parameters(self):
|
110 |
+
if hasattr(self, 'lora_A'):
|
111 |
+
# initialize A the same way as the default for nn.Linear and B to zero
|
112 |
+
nn.init.kaiming_uniform_(self.lora_A.weight, a=math.sqrt(5))
|
113 |
+
nn.init.zeros_(self.lora_B.weight)
|
114 |
+
#print ("lora weight init {} {}".format(torch.mean(self.lora_A.weight), torch.mean(self.lora_B.weight)))
|
115 |
+
|
116 |
+
def forward(self, x):
|
117 |
+
orig_type = x.dtype
|
118 |
+
res = super().forward(x)
|
119 |
+
x = x.float()
|
120 |
+
res += self.lora_B(self.lora_A(
|
121 |
+
self.lora_dropout(x))) * self.lora_scaling
|
122 |
+
return res.to(orig_type)
|
modeling_vit.py
ADDED
@@ -0,0 +1,535 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from functools import partial
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
import torch.nn.functional as F
|
7 |
+
import torch.utils.checkpoint as checkpoint
|
8 |
+
from timm.models.layers import drop_path, to_2tuple, trunc_normal_
|
9 |
+
|
10 |
+
from .modeling_utils import download_cached_file
|
11 |
+
|
12 |
+
|
13 |
+
def _cfg(url='', **kwargs):
|
14 |
+
return {
|
15 |
+
'url': url,
|
16 |
+
'num_classes': 1000,
|
17 |
+
'input_size': (3, 224, 224),
|
18 |
+
'pool_size': None,
|
19 |
+
'crop_pct': .9,
|
20 |
+
'interpolation': 'bicubic',
|
21 |
+
'mean': (0.5, 0.5, 0.5),
|
22 |
+
'std': (0.5, 0.5, 0.5),
|
23 |
+
**kwargs
|
24 |
+
}
|
25 |
+
|
26 |
+
|
27 |
+
class DropPath(nn.Module):
|
28 |
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
29 |
+
"""
|
30 |
+
def __init__(self, drop_prob=None):
|
31 |
+
super(DropPath, self).__init__()
|
32 |
+
self.drop_prob = drop_prob
|
33 |
+
|
34 |
+
def forward(self, x):
|
35 |
+
return drop_path(x, self.drop_prob, self.training)
|
36 |
+
|
37 |
+
def extra_repr(self) -> str:
|
38 |
+
return 'p={}'.format(self.drop_prob)
|
39 |
+
|
40 |
+
|
41 |
+
class Mlp(nn.Module):
|
42 |
+
def __init__(self,
|
43 |
+
in_features,
|
44 |
+
hidden_features=None,
|
45 |
+
out_features=None,
|
46 |
+
act_layer=nn.GELU,
|
47 |
+
drop=0.):
|
48 |
+
super().__init__()
|
49 |
+
out_features = out_features or in_features
|
50 |
+
hidden_features = hidden_features or in_features
|
51 |
+
self.fc1 = nn.Linear(in_features, hidden_features)
|
52 |
+
self.act = act_layer()
|
53 |
+
self.fc2 = nn.Linear(hidden_features, out_features)
|
54 |
+
self.drop = nn.Dropout(drop)
|
55 |
+
|
56 |
+
def forward(self, x):
|
57 |
+
x = self.fc1(x)
|
58 |
+
x = self.act(x)
|
59 |
+
# x = self.drop(x)
|
60 |
+
# commit this for the orignal BERT implement
|
61 |
+
x = self.fc2(x)
|
62 |
+
x = self.drop(x)
|
63 |
+
return x
|
64 |
+
|
65 |
+
|
66 |
+
class Attention(nn.Module):
|
67 |
+
def __init__(self,
|
68 |
+
dim,
|
69 |
+
num_heads=8,
|
70 |
+
qkv_bias=False,
|
71 |
+
qk_scale=None,
|
72 |
+
attn_drop=0.,
|
73 |
+
proj_drop=0.,
|
74 |
+
window_size=None,
|
75 |
+
attn_head_dim=None):
|
76 |
+
super().__init__()
|
77 |
+
self.num_heads = num_heads
|
78 |
+
head_dim = dim // num_heads
|
79 |
+
if attn_head_dim is not None:
|
80 |
+
head_dim = attn_head_dim
|
81 |
+
all_head_dim = head_dim * self.num_heads
|
82 |
+
self.scale = qk_scale or head_dim**-0.5
|
83 |
+
|
84 |
+
self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False)
|
85 |
+
if qkv_bias:
|
86 |
+
self.q_bias = nn.Parameter(torch.zeros(all_head_dim))
|
87 |
+
self.v_bias = nn.Parameter(torch.zeros(all_head_dim))
|
88 |
+
else:
|
89 |
+
self.q_bias = None
|
90 |
+
self.v_bias = None
|
91 |
+
|
92 |
+
if window_size:
|
93 |
+
self.window_size = window_size
|
94 |
+
self.num_relative_distance = (2 * window_size[0] -
|
95 |
+
1) * (2 * window_size[1] - 1) + 3
|
96 |
+
self.relative_position_bias_table = nn.Parameter(
|
97 |
+
torch.zeros(self.num_relative_distance,
|
98 |
+
num_heads)) # 2*Wh-1 * 2*Ww-1, nH
|
99 |
+
# cls to token & token 2 cls & cls to cls
|
100 |
+
|
101 |
+
# get pair-wise relative position index for each token inside the window
|
102 |
+
coords_h = torch.arange(window_size[0])
|
103 |
+
coords_w = torch.arange(window_size[1])
|
104 |
+
coords = torch.stack(torch.meshgrid([coords_h,
|
105 |
+
coords_w])) # 2, Wh, Ww
|
106 |
+
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
|
107 |
+
relative_coords = coords_flatten[:, :,
|
108 |
+
None] - coords_flatten[:,
|
109 |
+
None, :] # 2, Wh*Ww, Wh*Ww
|
110 |
+
relative_coords = relative_coords.permute(
|
111 |
+
1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
|
112 |
+
relative_coords[:, :,
|
113 |
+
0] += window_size[0] - 1 # shift to start from 0
|
114 |
+
relative_coords[:, :, 1] += window_size[1] - 1
|
115 |
+
relative_coords[:, :, 0] *= 2 * window_size[1] - 1
|
116 |
+
relative_position_index = \
|
117 |
+
torch.zeros(size=(window_size[0] * window_size[1] + 1, ) * 2, dtype=relative_coords.dtype)
|
118 |
+
relative_position_index[1:, 1:] = relative_coords.sum(
|
119 |
+
-1) # Wh*Ww, Wh*Ww
|
120 |
+
relative_position_index[0, 0:] = self.num_relative_distance - 3
|
121 |
+
relative_position_index[0:, 0] = self.num_relative_distance - 2
|
122 |
+
relative_position_index[0, 0] = self.num_relative_distance - 1
|
123 |
+
|
124 |
+
self.register_buffer("relative_position_index",
|
125 |
+
relative_position_index)
|
126 |
+
else:
|
127 |
+
self.window_size = None
|
128 |
+
self.relative_position_bias_table = None
|
129 |
+
self.relative_position_index = None
|
130 |
+
|
131 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
132 |
+
self.proj = nn.Linear(all_head_dim, dim)
|
133 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
134 |
+
|
135 |
+
def forward(self, x, rel_pos_bias=None):
|
136 |
+
B, N, C = x.shape
|
137 |
+
qkv_bias = None
|
138 |
+
if self.q_bias is not None:
|
139 |
+
qkv_bias = torch.cat(
|
140 |
+
(self.q_bias, torch.zeros_like(self.v_bias,
|
141 |
+
requires_grad=False),
|
142 |
+
self.v_bias))
|
143 |
+
# qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
144 |
+
qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
|
145 |
+
qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
146 |
+
q, k, v = qkv[0], qkv[1], qkv[
|
147 |
+
2] # make torchscript happy (cannot use tensor as tuple)
|
148 |
+
|
149 |
+
q = q * self.scale
|
150 |
+
attn = (q @ k.transpose(-2, -1))
|
151 |
+
|
152 |
+
if self.relative_position_bias_table is not None:
|
153 |
+
relative_position_bias = \
|
154 |
+
self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
|
155 |
+
self.window_size[0] * self.window_size[1] + 1,
|
156 |
+
self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH
|
157 |
+
relative_position_bias = relative_position_bias.permute(
|
158 |
+
2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
|
159 |
+
attn = attn + relative_position_bias.unsqueeze(0)
|
160 |
+
|
161 |
+
if rel_pos_bias is not None:
|
162 |
+
attn = attn + rel_pos_bias
|
163 |
+
|
164 |
+
attn = attn.softmax(dim=-1)
|
165 |
+
attn = self.attn_drop(attn)
|
166 |
+
|
167 |
+
x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
|
168 |
+
x = self.proj(x)
|
169 |
+
x = self.proj_drop(x)
|
170 |
+
return x
|
171 |
+
|
172 |
+
|
173 |
+
class Block(nn.Module):
|
174 |
+
def __init__(self,
|
175 |
+
dim,
|
176 |
+
num_heads,
|
177 |
+
mlp_ratio=4.,
|
178 |
+
qkv_bias=False,
|
179 |
+
qk_scale=None,
|
180 |
+
drop=0.,
|
181 |
+
attn_drop=0.,
|
182 |
+
drop_path=0.,
|
183 |
+
init_values=None,
|
184 |
+
act_layer=nn.GELU,
|
185 |
+
norm_layer=nn.LayerNorm,
|
186 |
+
window_size=None,
|
187 |
+
attn_head_dim=None):
|
188 |
+
super().__init__()
|
189 |
+
self.norm1 = norm_layer(dim)
|
190 |
+
self.attn = Attention(dim,
|
191 |
+
num_heads=num_heads,
|
192 |
+
qkv_bias=qkv_bias,
|
193 |
+
qk_scale=qk_scale,
|
194 |
+
attn_drop=attn_drop,
|
195 |
+
proj_drop=drop,
|
196 |
+
window_size=window_size,
|
197 |
+
attn_head_dim=attn_head_dim)
|
198 |
+
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
|
199 |
+
self.drop_path = DropPath(
|
200 |
+
drop_path) if drop_path > 0. else nn.Identity()
|
201 |
+
self.norm2 = norm_layer(dim)
|
202 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
203 |
+
self.mlp = Mlp(in_features=dim,
|
204 |
+
hidden_features=mlp_hidden_dim,
|
205 |
+
act_layer=act_layer,
|
206 |
+
drop=drop)
|
207 |
+
|
208 |
+
if init_values is not None and init_values > 0:
|
209 |
+
self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)),
|
210 |
+
requires_grad=True)
|
211 |
+
self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)),
|
212 |
+
requires_grad=True)
|
213 |
+
else:
|
214 |
+
self.gamma_1, self.gamma_2 = None, None
|
215 |
+
|
216 |
+
def forward(self, x, rel_pos_bias=None):
|
217 |
+
if self.gamma_1 is None:
|
218 |
+
x = x + self.drop_path(
|
219 |
+
self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias))
|
220 |
+
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
221 |
+
else:
|
222 |
+
x = x + self.drop_path(self.gamma_1 * self.attn(
|
223 |
+
self.norm1(x), rel_pos_bias=rel_pos_bias))
|
224 |
+
x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))
|
225 |
+
return x
|
226 |
+
|
227 |
+
|
228 |
+
class PatchEmbed(nn.Module):
|
229 |
+
""" Image to Patch Embedding
|
230 |
+
"""
|
231 |
+
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):
|
232 |
+
super().__init__()
|
233 |
+
img_size = to_2tuple(img_size)
|
234 |
+
patch_size = to_2tuple(patch_size)
|
235 |
+
num_patches = (img_size[1] // patch_size[1]) * (img_size[0] //
|
236 |
+
patch_size[0])
|
237 |
+
self.patch_shape = (img_size[0] // patch_size[0],
|
238 |
+
img_size[1] // patch_size[1])
|
239 |
+
self.img_size = img_size
|
240 |
+
self.patch_size = patch_size
|
241 |
+
self.num_patches = num_patches
|
242 |
+
|
243 |
+
self.proj = nn.Conv2d(in_chans,
|
244 |
+
embed_dim,
|
245 |
+
kernel_size=patch_size,
|
246 |
+
stride=patch_size)
|
247 |
+
|
248 |
+
def forward(self, x, **kwargs):
|
249 |
+
B, C, H, W = x.shape
|
250 |
+
# FIXME look at relaxing size constraints
|
251 |
+
assert H == self.img_size[0] and W == self.img_size[1], \
|
252 |
+
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
|
253 |
+
x = self.proj(x).flatten(2).transpose(1, 2)
|
254 |
+
return x
|
255 |
+
|
256 |
+
|
257 |
+
class RelativePositionBias(nn.Module):
|
258 |
+
def __init__(self, window_size, num_heads):
|
259 |
+
super().__init__()
|
260 |
+
self.window_size = window_size
|
261 |
+
self.num_relative_distance = (2 * window_size[0] -
|
262 |
+
1) * (2 * window_size[1] - 1) + 3
|
263 |
+
self.relative_position_bias_table = nn.Parameter(
|
264 |
+
torch.zeros(self.num_relative_distance,
|
265 |
+
num_heads)) # 2*Wh-1 * 2*Ww-1, nH
|
266 |
+
# cls to token & token 2 cls & cls to cls
|
267 |
+
|
268 |
+
# get pair-wise relative position index for each token inside the window
|
269 |
+
coords_h = torch.arange(window_size[0])
|
270 |
+
coords_w = torch.arange(window_size[1])
|
271 |
+
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
|
272 |
+
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
|
273 |
+
relative_coords = coords_flatten[:, :,
|
274 |
+
None] - coords_flatten[:,
|
275 |
+
None, :] # 2, Wh*Ww, Wh*Ww
|
276 |
+
relative_coords = relative_coords.permute(
|
277 |
+
1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
|
278 |
+
relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0
|
279 |
+
relative_coords[:, :, 1] += window_size[1] - 1
|
280 |
+
relative_coords[:, :, 0] *= 2 * window_size[1] - 1
|
281 |
+
relative_position_index = \
|
282 |
+
torch.zeros(size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype)
|
283 |
+
relative_position_index[1:,
|
284 |
+
1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
|
285 |
+
relative_position_index[0, 0:] = self.num_relative_distance - 3
|
286 |
+
relative_position_index[0:, 0] = self.num_relative_distance - 2
|
287 |
+
relative_position_index[0, 0] = self.num_relative_distance - 1
|
288 |
+
|
289 |
+
self.register_buffer("relative_position_index",
|
290 |
+
relative_position_index)
|
291 |
+
|
292 |
+
# trunc_normal_(self.relative_position_bias_table, std=.02)
|
293 |
+
|
294 |
+
def forward(self):
|
295 |
+
relative_position_bias = \
|
296 |
+
self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
|
297 |
+
self.window_size[0] * self.window_size[1] + 1,
|
298 |
+
self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH
|
299 |
+
return relative_position_bias.permute(
|
300 |
+
2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
|
301 |
+
|
302 |
+
|
303 |
+
class VisionTransformer(nn.Module):
|
304 |
+
""" Vision Transformer with support for patch or hybrid CNN input stage
|
305 |
+
"""
|
306 |
+
def __init__(self,
|
307 |
+
img_size=224,
|
308 |
+
patch_size=16,
|
309 |
+
in_chans=3,
|
310 |
+
num_classes=1000,
|
311 |
+
embed_dim=768,
|
312 |
+
depth=12,
|
313 |
+
num_heads=12,
|
314 |
+
mlp_ratio=4.,
|
315 |
+
qkv_bias=False,
|
316 |
+
qk_scale=None,
|
317 |
+
drop_rate=0.,
|
318 |
+
attn_drop_rate=0.,
|
319 |
+
drop_path_rate=0.,
|
320 |
+
norm_layer=nn.LayerNorm,
|
321 |
+
init_values=None,
|
322 |
+
use_abs_pos_emb=True,
|
323 |
+
use_rel_pos_bias=False,
|
324 |
+
use_shared_rel_pos_bias=False,
|
325 |
+
use_mean_pooling=True,
|
326 |
+
init_scale=0.001,
|
327 |
+
use_checkpoint=False):
|
328 |
+
super().__init__()
|
329 |
+
self.image_size = img_size
|
330 |
+
self.num_classes = num_classes
|
331 |
+
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
|
332 |
+
|
333 |
+
self.patch_embed = PatchEmbed(img_size=img_size,
|
334 |
+
patch_size=patch_size,
|
335 |
+
in_chans=in_chans,
|
336 |
+
embed_dim=embed_dim)
|
337 |
+
num_patches = self.patch_embed.num_patches
|
338 |
+
|
339 |
+
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
|
340 |
+
if use_abs_pos_emb:
|
341 |
+
self.pos_embed = nn.Parameter(
|
342 |
+
torch.zeros(1, num_patches + 1, embed_dim))
|
343 |
+
else:
|
344 |
+
self.pos_embed = None
|
345 |
+
self.pos_drop = nn.Dropout(p=drop_rate)
|
346 |
+
|
347 |
+
if use_shared_rel_pos_bias:
|
348 |
+
self.rel_pos_bias = RelativePositionBias(
|
349 |
+
window_size=self.patch_embed.patch_shape, num_heads=num_heads)
|
350 |
+
else:
|
351 |
+
self.rel_pos_bias = None
|
352 |
+
self.use_checkpoint = use_checkpoint
|
353 |
+
|
354 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)
|
355 |
+
] # stochastic depth decay rule
|
356 |
+
self.use_rel_pos_bias = use_rel_pos_bias
|
357 |
+
self.blocks = nn.ModuleList([
|
358 |
+
Block(dim=embed_dim,
|
359 |
+
num_heads=num_heads,
|
360 |
+
mlp_ratio=mlp_ratio,
|
361 |
+
qkv_bias=qkv_bias,
|
362 |
+
qk_scale=qk_scale,
|
363 |
+
drop=drop_rate,
|
364 |
+
attn_drop=attn_drop_rate,
|
365 |
+
drop_path=dpr[i],
|
366 |
+
norm_layer=norm_layer,
|
367 |
+
init_values=init_values,
|
368 |
+
window_size=self.patch_embed.patch_shape
|
369 |
+
if use_rel_pos_bias else None) for i in range(depth)
|
370 |
+
])
|
371 |
+
|
372 |
+
if self.pos_embed is not None:
|
373 |
+
trunc_normal_(self.pos_embed, std=.02)
|
374 |
+
trunc_normal_(self.cls_token, std=.02)
|
375 |
+
self.apply(self._init_weights)
|
376 |
+
self.fix_init_weight()
|
377 |
+
|
378 |
+
def fix_init_weight(self):
|
379 |
+
def rescale(param, layer_id):
|
380 |
+
param.div_(math.sqrt(2.0 * layer_id))
|
381 |
+
|
382 |
+
for layer_id, layer in enumerate(self.blocks):
|
383 |
+
rescale(layer.attn.proj.weight.data, layer_id + 1)
|
384 |
+
rescale(layer.mlp.fc2.weight.data, layer_id + 1)
|
385 |
+
|
386 |
+
def _init_weights(self, m):
|
387 |
+
if isinstance(m, nn.Linear):
|
388 |
+
trunc_normal_(m.weight, std=.02)
|
389 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
390 |
+
nn.init.constant_(m.bias, 0)
|
391 |
+
elif isinstance(m, nn.LayerNorm):
|
392 |
+
nn.init.constant_(m.bias, 0)
|
393 |
+
nn.init.constant_(m.weight, 1.0)
|
394 |
+
|
395 |
+
def get_classifier(self):
|
396 |
+
return self.head
|
397 |
+
|
398 |
+
def reset_classifier(self, num_classes, global_pool=''):
|
399 |
+
self.num_classes = num_classes
|
400 |
+
self.head = nn.Linear(
|
401 |
+
self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
|
402 |
+
|
403 |
+
def forward_features(self, x):
|
404 |
+
x = self.patch_embed(x)
|
405 |
+
batch_size, seq_len, _ = x.size()
|
406 |
+
|
407 |
+
cls_tokens = self.cls_token.expand(
|
408 |
+
batch_size, -1, -1) # stole cls_tokens impl from Phil Wang, thanks
|
409 |
+
x = torch.cat((cls_tokens, x), dim=1)
|
410 |
+
if self.pos_embed is not None:
|
411 |
+
x = x + self.pos_embed
|
412 |
+
x = self.pos_drop(x)
|
413 |
+
|
414 |
+
rel_pos_bias = self.rel_pos_bias(
|
415 |
+
) if self.rel_pos_bias is not None else None
|
416 |
+
for blk in self.blocks:
|
417 |
+
if self.use_checkpoint:
|
418 |
+
x = checkpoint.checkpoint(blk, x, rel_pos_bias)
|
419 |
+
else:
|
420 |
+
x = blk(x, rel_pos_bias)
|
421 |
+
return x
|
422 |
+
|
423 |
+
def forward(self, x):
|
424 |
+
x = self.forward_features(x)
|
425 |
+
# x = self.head(x)
|
426 |
+
return x
|
427 |
+
|
428 |
+
def get_intermediate_layers(self, x):
|
429 |
+
x = self.patch_embed(x)
|
430 |
+
batch_size, seq_len, _ = x.size()
|
431 |
+
|
432 |
+
cls_tokens = self.cls_token.expand(
|
433 |
+
batch_size, -1, -1) # stole cls_tokens impl from Phil Wang, thanks
|
434 |
+
x = torch.cat((cls_tokens, x), dim=1)
|
435 |
+
if self.pos_embed is not None:
|
436 |
+
x = x + self.pos_embed
|
437 |
+
x = self.pos_drop(x)
|
438 |
+
|
439 |
+
features = []
|
440 |
+
rel_pos_bias = self.rel_pos_bias(
|
441 |
+
) if self.rel_pos_bias is not None else None
|
442 |
+
for blk in self.blocks:
|
443 |
+
x = blk(x, rel_pos_bias)
|
444 |
+
features.append(x)
|
445 |
+
|
446 |
+
return features
|
447 |
+
|
448 |
+
|
449 |
+
def interpolate_pos_embed(model, checkpoint_model):
|
450 |
+
if 'pos_embed' in checkpoint_model:
|
451 |
+
pos_embed_checkpoint = checkpoint_model['pos_embed'].float()
|
452 |
+
embedding_size = pos_embed_checkpoint.shape[-1]
|
453 |
+
num_patches = model.patch_embed.num_patches
|
454 |
+
num_extra_tokens = model.pos_embed.shape[-2] - num_patches
|
455 |
+
# height (== width) for the checkpoint position embedding
|
456 |
+
orig_size = int(
|
457 |
+
(pos_embed_checkpoint.shape[-2] - num_extra_tokens)**0.5)
|
458 |
+
# height (== width) for the new position embedding
|
459 |
+
new_size = int(num_patches**0.5)
|
460 |
+
# class_token and dist_token are kept unchanged
|
461 |
+
if orig_size != new_size:
|
462 |
+
print("Position interpolate from %dx%d to %dx%d" %
|
463 |
+
(orig_size, orig_size, new_size, new_size))
|
464 |
+
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
|
465 |
+
# only the position tokens are interpolated
|
466 |
+
pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
|
467 |
+
pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size,
|
468 |
+
embedding_size).permute(
|
469 |
+
0, 3, 1, 2)
|
470 |
+
pos_tokens = torch.nn.functional.interpolate(pos_tokens,
|
471 |
+
size=(new_size,
|
472 |
+
new_size),
|
473 |
+
mode='bicubic',
|
474 |
+
align_corners=False)
|
475 |
+
pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
|
476 |
+
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
|
477 |
+
checkpoint_model['pos_embed'] = new_pos_embed
|
478 |
+
|
479 |
+
|
480 |
+
def convert_weights_to_fp16(model: nn.Module):
|
481 |
+
"""Convert applicable model parameters to fp16"""
|
482 |
+
def _convert_weights_to_fp16(l):
|
483 |
+
if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)):
|
484 |
+
l.weight.data = l.weight.data.half()
|
485 |
+
if l.bias is not None:
|
486 |
+
l.bias.data = l.bias.data.half()
|
487 |
+
|
488 |
+
model.apply(_convert_weights_to_fp16)
|
489 |
+
|
490 |
+
|
491 |
+
def convert_weights_to_fp32(model: nn.Module):
|
492 |
+
"""Convert applicable model parameters to fp16"""
|
493 |
+
def _convert_weights_to_fp32(l):
|
494 |
+
if hasattr(l, 'weight') and l.weight is not None:
|
495 |
+
if l.weight.dtype == torch.float16:
|
496 |
+
l.weight = l.weight.to(torch.float32)
|
497 |
+
if hasattr(l, 'bias') and l.bias is not None:
|
498 |
+
if l.bias.dtype == torch.float16:
|
499 |
+
l.bias = l.bias.to(torch.float32)
|
500 |
+
|
501 |
+
model.apply(_convert_weights_to_fp32)
|
502 |
+
|
503 |
+
|
504 |
+
def create_eva_vit_g(img_size=224,
|
505 |
+
drop_path_rate=0.4,
|
506 |
+
use_checkpoint=False,
|
507 |
+
precision="fp16"):
|
508 |
+
model = VisionTransformer(
|
509 |
+
img_size=img_size,
|
510 |
+
patch_size=14,
|
511 |
+
use_mean_pooling=False,
|
512 |
+
embed_dim=1408,
|
513 |
+
depth=39,
|
514 |
+
num_heads=1408 // 88,
|
515 |
+
mlp_ratio=4.3637,
|
516 |
+
qkv_bias=True,
|
517 |
+
drop_path_rate=drop_path_rate,
|
518 |
+
norm_layer=partial(nn.LayerNorm, eps=1e-6),
|
519 |
+
use_checkpoint=use_checkpoint,
|
520 |
+
)
|
521 |
+
url = "https://storage.googleapis.com/sfr-vision-language-research/LAVIS/models/BLIP2/eva_vit_g.pth"
|
522 |
+
cached_file = download_cached_file(url, check_hash=False, progress=True)
|
523 |
+
state_dict = torch.load(cached_file, map_location="cpu")
|
524 |
+
interpolate_pos_embed(model, state_dict)
|
525 |
+
|
526 |
+
incompatible_keys = model.load_state_dict(state_dict, strict=False)
|
527 |
+
|
528 |
+
if precision == "fp16":
|
529 |
+
convert_weights_to_fp16(model)
|
530 |
+
|
531 |
+
if precision == "fp32":
|
532 |
+
print('convert ViT weights to fp32')
|
533 |
+
convert_weights_to_fp32(model)
|
534 |
+
|
535 |
+
return model
|
pytorch_model-00001-of-00004.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:af0c2488322c736fc26124823ede6f41d474e36c0e427e31619e8125006eda2f
|
3 |
+
size 4943811896
|
pytorch_model-00002-of-00004.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:25164ec251335904c3a93d6f6e86108e18b2e3e5ae7e0b0097465312b4a45892
|
3 |
+
size 4977697573
|
pytorch_model-00003-of-00004.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c301b57f7cc16ca0e4f596722fd556087608d890b1228d9f9af632d3c1a51fd7
|
3 |
+
size 4977697701
|
pytorch_model-00004-of-00004.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:70f88474474beb56a61f80af62182175b6ff338e1ce85bb899ec657bb91c87c1
|
3 |
+
size 3678547170
|
pytorch_model.bin.index.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
special_tokens_map.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<s>",
|
3 |
+
"eos_token": "</s>",
|
4 |
+
"pad_token": "</s>",
|
5 |
+
"unk_token": "<unk>"
|
6 |
+
}
|
tokenization_InternLM_XComposer.py
ADDED
@@ -0,0 +1,240 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
5 |
+
# and OPT implementations in this library. It has been modified from its
|
6 |
+
# original forms to accommodate minor architectural differences compared
|
7 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
|
21 |
+
"""Tokenization classes for IntermLM."""
|
22 |
+
import os
|
23 |
+
from shutil import copyfile
|
24 |
+
from typing import Any, Dict, List, Optional, Tuple
|
25 |
+
|
26 |
+
import sentencepiece as spm
|
27 |
+
from transformers.tokenization_utils import PreTrainedTokenizer
|
28 |
+
from transformers.utils import logging
|
29 |
+
|
30 |
+
logger = logging.get_logger(__name__)
|
31 |
+
|
32 |
+
VOCAB_FILES_NAMES = {"vocab_file": "./tokenizer.model"}
|
33 |
+
|
34 |
+
PRETRAINED_VOCAB_FILES_MAP = {}
|
35 |
+
|
36 |
+
|
37 |
+
class InternLMXComposerTokenizer(PreTrainedTokenizer):
|
38 |
+
"""
|
39 |
+
Construct a InternLM tokenizer. Based on byte-level Byte-Pair-Encoding.
|
40 |
+
|
41 |
+
Args:
|
42 |
+
vocab_file (`str`):
|
43 |
+
Path to the vocabulary file.
|
44 |
+
"""
|
45 |
+
|
46 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
47 |
+
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
48 |
+
model_input_names = ["input_ids", "attention_mask"]
|
49 |
+
_auto_class = "AutoTokenizer"
|
50 |
+
|
51 |
+
def __init__(
|
52 |
+
self,
|
53 |
+
vocab_file,
|
54 |
+
unk_token="<unk>",
|
55 |
+
bos_token="<s>",
|
56 |
+
eos_token="</s>",
|
57 |
+
pad_token="</s>",
|
58 |
+
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
59 |
+
add_bos_token=True,
|
60 |
+
add_eos_token=False,
|
61 |
+
decode_with_prefix_space=False,
|
62 |
+
clean_up_tokenization_spaces=False,
|
63 |
+
**kwargs,
|
64 |
+
):
|
65 |
+
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
66 |
+
super().__init__(
|
67 |
+
bos_token=bos_token,
|
68 |
+
eos_token=eos_token,
|
69 |
+
unk_token=unk_token,
|
70 |
+
pad_token=pad_token,
|
71 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
72 |
+
**kwargs,
|
73 |
+
)
|
74 |
+
self.vocab_file = vocab_file
|
75 |
+
self.add_bos_token = add_bos_token
|
76 |
+
self.add_eos_token = add_eos_token
|
77 |
+
self.decode_with_prefix_space = decode_with_prefix_space
|
78 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
79 |
+
self.sp_model.Load(vocab_file)
|
80 |
+
self._no_prefix_space_tokens = None
|
81 |
+
|
82 |
+
""" Initialisation"""
|
83 |
+
|
84 |
+
@property
|
85 |
+
def no_prefix_space_tokens(self):
|
86 |
+
if self._no_prefix_space_tokens is None:
|
87 |
+
vocab = self.convert_ids_to_tokens(list(range(self.vocab_size)))
|
88 |
+
self._no_prefix_space_tokens = {i for i, tok in enumerate(vocab) if not tok.startswith("▁")}
|
89 |
+
return self._no_prefix_space_tokens
|
90 |
+
|
91 |
+
@property
|
92 |
+
def vocab_size(self):
|
93 |
+
"""Returns vocab size"""
|
94 |
+
return self.sp_model.get_piece_size()
|
95 |
+
|
96 |
+
@property
|
97 |
+
def bos_token_id(self) -> Optional[int]:
|
98 |
+
return self.sp_model.bos_id()
|
99 |
+
|
100 |
+
@property
|
101 |
+
def eos_token_id(self) -> Optional[int]:
|
102 |
+
return self.sp_model.eos_id()
|
103 |
+
|
104 |
+
def get_vocab(self):
|
105 |
+
"""Returns vocab as a dict"""
|
106 |
+
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
107 |
+
vocab.update(self.added_tokens_encoder)
|
108 |
+
return vocab
|
109 |
+
|
110 |
+
def _tokenize(self, text):
|
111 |
+
"""Returns a tokenized string."""
|
112 |
+
return self.sp_model.encode(text, out_type=str)
|
113 |
+
|
114 |
+
def _convert_token_to_id(self, token):
|
115 |
+
"""Converts a token (str) in an id using the vocab."""
|
116 |
+
return self.sp_model.piece_to_id(token)
|
117 |
+
|
118 |
+
def _convert_id_to_token(self, index):
|
119 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
120 |
+
token = self.sp_model.IdToPiece(index)
|
121 |
+
return token
|
122 |
+
|
123 |
+
def _maybe_add_prefix_space(self, tokens, decoded):
|
124 |
+
if tokens and tokens[0] not in self.no_prefix_space_tokens:
|
125 |
+
return " " + decoded
|
126 |
+
else:
|
127 |
+
return decoded
|
128 |
+
|
129 |
+
def convert_tokens_to_string(self, tokens):
|
130 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
131 |
+
current_sub_tokens = []
|
132 |
+
out_string = ""
|
133 |
+
prev_is_special = False
|
134 |
+
for token in tokens:
|
135 |
+
# make sure that special tokens are not decoded using sentencepiece model
|
136 |
+
if token in self.all_special_tokens:
|
137 |
+
if not prev_is_special:
|
138 |
+
out_string += " "
|
139 |
+
out_string += self.sp_model.decode(current_sub_tokens) + token
|
140 |
+
prev_is_special = True
|
141 |
+
current_sub_tokens = []
|
142 |
+
else:
|
143 |
+
current_sub_tokens.append(token)
|
144 |
+
prev_is_special = False
|
145 |
+
out_string += self.sp_model.decode(current_sub_tokens)
|
146 |
+
out_string = self.clean_up_tokenization(out_string)
|
147 |
+
out_string = self._maybe_add_prefix_space(tokens=tokens, decoded=out_string)
|
148 |
+
return out_string[1:]
|
149 |
+
|
150 |
+
def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
151 |
+
"""
|
152 |
+
Save the vocabulary and special tokens file to a directory.
|
153 |
+
|
154 |
+
Args:
|
155 |
+
save_directory (`str`):
|
156 |
+
The directory in which to save the vocabulary.
|
157 |
+
|
158 |
+
Returns:
|
159 |
+
`Tuple(str)`: Paths to the files saved.
|
160 |
+
"""
|
161 |
+
if not os.path.isdir(save_directory):
|
162 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
163 |
+
return
|
164 |
+
out_vocab_file = os.path.join(
|
165 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
166 |
+
)
|
167 |
+
|
168 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
|
169 |
+
copyfile(self.vocab_file, out_vocab_file)
|
170 |
+
elif not os.path.isfile(self.vocab_file):
|
171 |
+
with open(out_vocab_file, "wb") as fi:
|
172 |
+
content_spiece_model = self.sp_model.serialized_model_proto()
|
173 |
+
fi.write(content_spiece_model)
|
174 |
+
|
175 |
+
return (out_vocab_file,)
|
176 |
+
|
177 |
+
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
178 |
+
if self.add_bos_token:
|
179 |
+
bos_token_ids = [self.bos_token_id]
|
180 |
+
else:
|
181 |
+
bos_token_ids = []
|
182 |
+
|
183 |
+
output = bos_token_ids + token_ids_0
|
184 |
+
|
185 |
+
if token_ids_1 is not None:
|
186 |
+
output = output + token_ids_1
|
187 |
+
|
188 |
+
if self.add_eos_token:
|
189 |
+
output = output + [self.eos_token_id]
|
190 |
+
|
191 |
+
return output
|
192 |
+
|
193 |
+
def get_special_tokens_mask(
|
194 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
195 |
+
) -> List[int]:
|
196 |
+
"""
|
197 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
198 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
199 |
+
|
200 |
+
Args:
|
201 |
+
token_ids_0 (`List[int]`):
|
202 |
+
List of IDs.
|
203 |
+
token_ids_1 (`List[int]`, *optional*):
|
204 |
+
Optional second list of IDs for sequence pairs.
|
205 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
206 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
207 |
+
|
208 |
+
Returns:
|
209 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
210 |
+
"""
|
211 |
+
if already_has_special_tokens:
|
212 |
+
return super().get_special_tokens_mask(
|
213 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
214 |
+
)
|
215 |
+
|
216 |
+
if token_ids_1 is None:
|
217 |
+
return [1] + ([0] * len(token_ids_0)) + [1]
|
218 |
+
return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
|
219 |
+
|
220 |
+
def create_token_type_ids_from_sequences(
|
221 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
222 |
+
) -> List[int]:
|
223 |
+
"""
|
224 |
+
Create a mask from the two sequences passed to be used in a sequence-pair classification task. T5 does not make
|
225 |
+
use of token type ids, therefore a list of zeros is returned.
|
226 |
+
|
227 |
+
Args:
|
228 |
+
token_ids_0 (`List[int]`):
|
229 |
+
List of IDs.
|
230 |
+
token_ids_1 (`List[int]`, *optional*):
|
231 |
+
Optional second list of IDs for sequence pairs.
|
232 |
+
|
233 |
+
Returns:
|
234 |
+
`List[int]`: List of zeros.
|
235 |
+
"""
|
236 |
+
eos = [self.eos_token_id]
|
237 |
+
|
238 |
+
if token_ids_1 is None:
|
239 |
+
return len(token_ids_0 + eos) * [0]
|
240 |
+
return len(token_ids_0 + eos + token_ids_1 + eos) * [0]
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:21ff673031fd4187f19721a86af4caa6a4deb1f3c2db284f763de3e53bd8f741
|
3 |
+
size 1658715
|
tokenizer_config.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"auto_map": {
|
3 |
+
"AutoTokenizer": [
|
4 |
+
"tokenization_InternLM_XComposer.InternLMXComposerTokenizer",
|
5 |
+
null
|
6 |
+
]
|
7 |
+
},
|
8 |
+
"bos_token": "<s>",
|
9 |
+
"clean_up_tokenization_spaces": false,
|
10 |
+
"eos_token": "</s>",
|
11 |
+
"model_max_length": 1000000000000000019884624838656,
|
12 |
+
"pad_token": "</s>",
|
13 |
+
"tokenizer_class": "InternLMXComposerTokenizer",
|
14 |
+
"unk_token": "<unk>"
|
15 |
+
}
|