Update configuration_internlm.py
Browse files- configuration_internlm.py +8 -14
configuration_internlm.py
CHANGED
@@ -19,9 +19,8 @@
|
|
19 |
# limitations under the License.
|
20 |
""" InternLM model configuration"""
|
21 |
|
22 |
-
from transformers.utils import logging
|
23 |
from transformers.configuration_utils import PretrainedConfig
|
24 |
-
|
25 |
|
26 |
logger = logging.get_logger(__name__)
|
27 |
|
@@ -30,14 +29,11 @@ INTERNLM_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
|
|
30 |
|
31 |
class InternLMConfig(PretrainedConfig):
|
32 |
r"""
|
33 |
-
This is the configuration class to store the configuration of a [`InternLMModel`]. It is used to instantiate
|
34 |
-
model according to the specified arguments, defining the model architecture. Instantiating a
|
35 |
-
defaults will yield a similar configuration to that of the InternLM-7B.
|
36 |
-
|
37 |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
38 |
documentation from [`PretrainedConfig`] for more information.
|
39 |
-
|
40 |
-
|
41 |
Args:
|
42 |
vocab_size (`int`, *optional*, defaults to 32000):
|
43 |
Vocabulary size of the InternLM model. Defines the number of different tokens that can be represented by the
|
@@ -65,23 +61,19 @@ class InternLMConfig(PretrainedConfig):
|
|
65 |
tie_word_embeddings(`bool`, *optional*, defaults to `False`):
|
66 |
Whether to tie weight embeddings
|
67 |
Example:
|
68 |
-
|
69 |
```python
|
70 |
>>> from transformers import InternLMModel, InternLMConfig
|
71 |
-
|
72 |
>>> # Initializing a InternLM internlm-7b style configuration
|
73 |
>>> configuration = InternLMConfig()
|
74 |
-
|
75 |
>>> # Initializing a model from the internlm-7b style configuration
|
76 |
>>> model = InternLMModel(configuration)
|
77 |
-
|
78 |
>>> # Accessing the model configuration
|
79 |
>>> configuration = model.config
|
80 |
```"""
|
81 |
model_type = "internlm"
|
82 |
_auto_class = "AutoConfig"
|
83 |
|
84 |
-
def __init__(
|
85 |
self,
|
86 |
vocab_size=103168,
|
87 |
hidden_size=4096,
|
@@ -98,6 +90,7 @@ class InternLMConfig(PretrainedConfig):
|
|
98 |
eos_token_id=2,
|
99 |
tie_word_embeddings=False,
|
100 |
bias=True,
|
|
|
101 |
**kwargs,
|
102 |
):
|
103 |
self.vocab_size = vocab_size
|
@@ -111,10 +104,11 @@ class InternLMConfig(PretrainedConfig):
|
|
111 |
self.rms_norm_eps = rms_norm_eps
|
112 |
self.use_cache = use_cache
|
113 |
self.bias = bias
|
|
|
114 |
super().__init__(
|
115 |
pad_token_id=pad_token_id,
|
116 |
bos_token_id=bos_token_id,
|
117 |
eos_token_id=eos_token_id,
|
118 |
tie_word_embeddings=tie_word_embeddings,
|
119 |
**kwargs,
|
120 |
-
)
|
|
|
19 |
# limitations under the License.
|
20 |
""" InternLM model configuration"""
|
21 |
|
|
|
22 |
from transformers.configuration_utils import PretrainedConfig
|
23 |
+
from transformers.utils import logging
|
24 |
|
25 |
logger = logging.get_logger(__name__)
|
26 |
|
|
|
29 |
|
30 |
class InternLMConfig(PretrainedConfig):
|
31 |
r"""
|
32 |
+
This is the configuration class to store the configuration of a [`InternLMModel`]. It is used to instantiate
|
33 |
+
an InternLM model according to the specified arguments, defining the model architecture. Instantiating a
|
34 |
+
configuration with the defaults will yield a similar configuration to that of the InternLM-7B.
|
|
|
35 |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
36 |
documentation from [`PretrainedConfig`] for more information.
|
|
|
|
|
37 |
Args:
|
38 |
vocab_size (`int`, *optional*, defaults to 32000):
|
39 |
Vocabulary size of the InternLM model. Defines the number of different tokens that can be represented by the
|
|
|
61 |
tie_word_embeddings(`bool`, *optional*, defaults to `False`):
|
62 |
Whether to tie weight embeddings
|
63 |
Example:
|
|
|
64 |
```python
|
65 |
>>> from transformers import InternLMModel, InternLMConfig
|
|
|
66 |
>>> # Initializing a InternLM internlm-7b style configuration
|
67 |
>>> configuration = InternLMConfig()
|
|
|
68 |
>>> # Initializing a model from the internlm-7b style configuration
|
69 |
>>> model = InternLMModel(configuration)
|
|
|
70 |
>>> # Accessing the model configuration
|
71 |
>>> configuration = model.config
|
72 |
```"""
|
73 |
model_type = "internlm"
|
74 |
_auto_class = "AutoConfig"
|
75 |
|
76 |
+
def __init__( # pylint: disable=W0102
|
77 |
self,
|
78 |
vocab_size=103168,
|
79 |
hidden_size=4096,
|
|
|
90 |
eos_token_id=2,
|
91 |
tie_word_embeddings=False,
|
92 |
bias=True,
|
93 |
+
rotary={"base": 10000, "type": "dynamic"}, # pylint: disable=W0102
|
94 |
**kwargs,
|
95 |
):
|
96 |
self.vocab_size = vocab_size
|
|
|
104 |
self.rms_norm_eps = rms_norm_eps
|
105 |
self.use_cache = use_cache
|
106 |
self.bias = bias
|
107 |
+
self.rotary = rotary
|
108 |
super().__init__(
|
109 |
pad_token_id=pad_token_id,
|
110 |
bos_token_id=bos_token_id,
|
111 |
eos_token_id=eos_token_id,
|
112 |
tie_word_embeddings=tie_word_embeddings,
|
113 |
**kwargs,
|
114 |
+
)
|