v1.0.3 (#14)
Browse files- v1.0.3 (d09e9ea0a1c4e9113327bf844a847fbf9fb22a0c)
- config.json +3 -10
- configuration_internlm.py +26 -8
- generation_config.json +2 -1
- modeling_internlm.py +90 -166
- pytorch_model-00001-of-00005.bin → pytorch_model-00001-of-00006.bin +2 -2
- pytorch_model-00002-of-00005.bin → pytorch_model-00002-of-00006.bin +2 -2
- pytorch_model-00003-of-00005.bin → pytorch_model-00003-of-00006.bin +2 -2
- pytorch_model-00004-of-00005.bin → pytorch_model-00004-of-00006.bin +2 -2
- pytorch_model-00005-of-00006.bin +3 -0
- pytorch_model-00005-of-00005.bin → pytorch_model-00006-of-00006.bin +1 -1
- pytorch_model.bin.index.json +543 -543
config.json
CHANGED
@@ -20,17 +20,10 @@
|
|
20 |
"num_hidden_layers": 60,
|
21 |
"num_key_value_heads": 40,
|
22 |
"pad_token_id": 2,
|
23 |
-
"pretraining_tp": 1,
|
24 |
"rms_norm_eps": 1e-06,
|
25 |
-
"rope_scaling": null,
|
26 |
-
"rope_theta": 10000.0,
|
27 |
"tie_word_embeddings": false,
|
28 |
-
"torch_dtype": "
|
29 |
-
"transformers_version": "4.33.
|
30 |
"use_cache": true,
|
31 |
-
"vocab_size": 103168
|
32 |
-
"rotary": {
|
33 |
-
"base": 10000,
|
34 |
-
"type": "dynamic"
|
35 |
-
}
|
36 |
}
|
|
|
20 |
"num_hidden_layers": 60,
|
21 |
"num_key_value_heads": 40,
|
22 |
"pad_token_id": 2,
|
|
|
23 |
"rms_norm_eps": 1e-06,
|
|
|
|
|
24 |
"tie_word_embeddings": false,
|
25 |
+
"torch_dtype": "float16",
|
26 |
+
"transformers_version": "4.33.2",
|
27 |
"use_cache": true,
|
28 |
+
"vocab_size": 103168
|
|
|
|
|
|
|
|
|
29 |
}
|
configuration_internlm.py
CHANGED
@@ -19,8 +19,9 @@
|
|
19 |
# limitations under the License.
|
20 |
""" InternLM model configuration"""
|
21 |
|
22 |
-
from transformers.configuration_utils import PretrainedConfig
|
23 |
from transformers.utils import logging
|
|
|
|
|
24 |
|
25 |
logger = logging.get_logger(__name__)
|
26 |
|
@@ -29,9 +30,9 @@ INTERNLM_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
|
|
29 |
|
30 |
class InternLMConfig(PretrainedConfig):
|
31 |
r"""
|
32 |
-
This is the configuration class to store the configuration of a [`InternLMModel`]. It is used to instantiate
|
33 |
-
|
34 |
-
|
35 |
|
36 |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
37 |
documentation from [`PretrainedConfig`] for more information.
|
@@ -49,6 +50,19 @@ class InternLMConfig(PretrainedConfig):
|
|
49 |
Number of hidden layers in the Transformer encoder.
|
50 |
num_attention_heads (`int`, *optional*, defaults to 32):
|
51 |
Number of attention heads for each attention layer in the Transformer encoder.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
53 |
The non-linear activation function (function or string) in the decoder.
|
54 |
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
@@ -80,13 +94,14 @@ class InternLMConfig(PretrainedConfig):
|
|
80 |
model_type = "internlm"
|
81 |
_auto_class = "AutoConfig"
|
82 |
|
83 |
-
def __init__(
|
84 |
self,
|
85 |
vocab_size=103168,
|
86 |
hidden_size=4096,
|
87 |
intermediate_size=11008,
|
88 |
num_hidden_layers=32,
|
89 |
num_attention_heads=32,
|
|
|
90 |
hidden_act="silu",
|
91 |
max_position_embeddings=2048,
|
92 |
initializer_range=0.02,
|
@@ -97,7 +112,6 @@ class InternLMConfig(PretrainedConfig):
|
|
97 |
eos_token_id=2,
|
98 |
tie_word_embeddings=False,
|
99 |
bias=True,
|
100 |
-
rotary={"base": 10000, "type": "dynamic"}, # pylint: disable=W0102
|
101 |
**kwargs,
|
102 |
):
|
103 |
self.vocab_size = vocab_size
|
@@ -106,16 +120,20 @@ class InternLMConfig(PretrainedConfig):
|
|
106 |
self.intermediate_size = intermediate_size
|
107 |
self.num_hidden_layers = num_hidden_layers
|
108 |
self.num_attention_heads = num_attention_heads
|
|
|
|
|
|
|
|
|
|
|
109 |
self.hidden_act = hidden_act
|
110 |
self.initializer_range = initializer_range
|
111 |
self.rms_norm_eps = rms_norm_eps
|
112 |
self.use_cache = use_cache
|
113 |
self.bias = bias
|
114 |
-
self.rotary = rotary
|
115 |
super().__init__(
|
116 |
pad_token_id=pad_token_id,
|
117 |
bos_token_id=bos_token_id,
|
118 |
eos_token_id=eos_token_id,
|
119 |
tie_word_embeddings=tie_word_embeddings,
|
120 |
**kwargs,
|
121 |
-
)
|
|
|
19 |
# limitations under the License.
|
20 |
""" InternLM model configuration"""
|
21 |
|
|
|
22 |
from transformers.utils import logging
|
23 |
+
from transformers.configuration_utils import PretrainedConfig
|
24 |
+
|
25 |
|
26 |
logger = logging.get_logger(__name__)
|
27 |
|
|
|
30 |
|
31 |
class InternLMConfig(PretrainedConfig):
|
32 |
r"""
|
33 |
+
This is the configuration class to store the configuration of a [`InternLMModel`]. It is used to instantiate an InternLM
|
34 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
35 |
+
defaults will yield a similar configuration to that of the InternLM-7B.
|
36 |
|
37 |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
38 |
documentation from [`PretrainedConfig`] for more information.
|
|
|
50 |
Number of hidden layers in the Transformer encoder.
|
51 |
num_attention_heads (`int`, *optional*, defaults to 32):
|
52 |
Number of attention heads for each attention layer in the Transformer encoder.
|
53 |
+
num_key_value_heads (`int`, *optional*):
|
54 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
55 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
56 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
57 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
58 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
59 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
60 |
+
`num_attention_heads`.
|
61 |
+
pretraining_tp (`int`, *optional*, defaults to `1`):
|
62 |
+
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
|
63 |
+
document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is
|
64 |
+
necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
|
65 |
+
issue](https://github.com/pytorch/pytorch/issues/76232).
|
66 |
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
67 |
The non-linear activation function (function or string) in the decoder.
|
68 |
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
|
|
94 |
model_type = "internlm"
|
95 |
_auto_class = "AutoConfig"
|
96 |
|
97 |
+
def __init__(
|
98 |
self,
|
99 |
vocab_size=103168,
|
100 |
hidden_size=4096,
|
101 |
intermediate_size=11008,
|
102 |
num_hidden_layers=32,
|
103 |
num_attention_heads=32,
|
104 |
+
num_key_value_heads=None,
|
105 |
hidden_act="silu",
|
106 |
max_position_embeddings=2048,
|
107 |
initializer_range=0.02,
|
|
|
112 |
eos_token_id=2,
|
113 |
tie_word_embeddings=False,
|
114 |
bias=True,
|
|
|
115 |
**kwargs,
|
116 |
):
|
117 |
self.vocab_size = vocab_size
|
|
|
120 |
self.intermediate_size = intermediate_size
|
121 |
self.num_hidden_layers = num_hidden_layers
|
122 |
self.num_attention_heads = num_attention_heads
|
123 |
+
|
124 |
+
if num_key_value_heads is None:
|
125 |
+
num_key_value_heads = num_attention_heads
|
126 |
+
self.num_key_value_heads = num_key_value_heads
|
127 |
+
|
128 |
self.hidden_act = hidden_act
|
129 |
self.initializer_range = initializer_range
|
130 |
self.rms_norm_eps = rms_norm_eps
|
131 |
self.use_cache = use_cache
|
132 |
self.bias = bias
|
|
|
133 |
super().__init__(
|
134 |
pad_token_id=pad_token_id,
|
135 |
bos_token_id=bos_token_id,
|
136 |
eos_token_id=eos_token_id,
|
137 |
tie_word_embeddings=tie_word_embeddings,
|
138 |
**kwargs,
|
139 |
+
)
|
generation_config.json
CHANGED
@@ -2,5 +2,6 @@
|
|
2 |
"_from_model_config": true,
|
3 |
"bos_token_id": 1,
|
4 |
"eos_token_id": 2,
|
5 |
-
"
|
|
|
6 |
}
|
|
|
2 |
"_from_model_config": true,
|
3 |
"bos_token_id": 1,
|
4 |
"eos_token_id": 2,
|
5 |
+
"pad_token_id": 2,
|
6 |
+
"transformers_version": "4.33.2"
|
7 |
}
|
modeling_internlm.py
CHANGED
@@ -19,36 +19,26 @@
|
|
19 |
# limitations under the License.
|
20 |
""" PyTorch InternLM model."""
|
21 |
import math
|
22 |
-
import queue
|
23 |
-
import threading
|
24 |
from typing import List, Optional, Tuple, Union
|
|
|
25 |
|
26 |
import torch
|
27 |
import torch.utils.checkpoint
|
28 |
from torch import nn
|
29 |
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
|
|
30 |
from transformers.activations import ACT2FN
|
31 |
-
from transformers.
|
32 |
-
from transformers.modeling_outputs import (
|
33 |
-
BaseModelOutputWithPast,
|
34 |
-
CausalLMOutputWithPast,
|
35 |
-
SequenceClassifierOutputWithPast,
|
36 |
-
)
|
37 |
from transformers.modeling_utils import PreTrainedModel
|
38 |
-
from transformers.
|
39 |
-
|
40 |
-
add_start_docstrings_to_model_forward,
|
41 |
-
logging,
|
42 |
-
replace_return_docstrings,
|
43 |
-
)
|
44 |
-
|
45 |
from .configuration_internlm import InternLMConfig
|
46 |
|
|
|
47 |
logger = logging.get_logger(__name__)
|
48 |
|
49 |
_CONFIG_FOR_DOC = "InternLMConfig"
|
50 |
|
51 |
-
|
52 |
# Copied from transformers.models.bart.modeling_bart._make_causal_mask
|
53 |
def _make_causal_mask(
|
54 |
input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
|
@@ -81,10 +71,17 @@ def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int]
|
|
81 |
|
82 |
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
|
83 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
class InternLMRMSNorm(nn.Module):
|
86 |
-
"""RMSNorm implemention."""
|
87 |
-
|
88 |
def __init__(self, hidden_size, eps=1e-6):
|
89 |
"""
|
90 |
InternLMRMSNorm is equivalent to T5LayerNorm
|
@@ -105,14 +102,6 @@ class InternLMRMSNorm(nn.Module):
|
|
105 |
|
106 |
|
107 |
class InternLMRotaryEmbedding(torch.nn.Module):
|
108 |
-
"""Implement InternLM's rotary embedding.
|
109 |
-
|
110 |
-
Args:
|
111 |
-
dim (int): Characteristic dimension of each self-attentional head.
|
112 |
-
max_position_embeddings (int, optional): Model's training length. Defaults to 2048.
|
113 |
-
base (int, optional): The rotation position encodes the rotation Angle base number. Defaults to 10000.
|
114 |
-
device (Any, optional): Running device. Defaults to None.
|
115 |
-
"""
|
116 |
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
117 |
super().__init__()
|
118 |
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim))
|
@@ -144,66 +133,6 @@ class InternLMRotaryEmbedding(torch.nn.Module):
|
|
144 |
)
|
145 |
|
146 |
|
147 |
-
class InternLMDynamicNTKScalingRotaryEmbedding(torch.nn.Module):
|
148 |
-
"""Implement InternLM's DyanmicNTK extrapolation method, thereby broadening the model support context to 16K.
|
149 |
-
|
150 |
-
Args:
|
151 |
-
dim (int): Characteristic dimension of each self-attentional head.
|
152 |
-
max_position_embeddings (int, optional): Model's training length. Defaults to 2048.
|
153 |
-
base (int, optional): The rotation position encodes the rotation Angle base number. Defaults to 10000.
|
154 |
-
device (Any, optional): Running device. Defaults to None.
|
155 |
-
scaling_factor (float, optional): NTK method extrapolation coefficient. Defaults to 1.0.
|
156 |
-
"""
|
157 |
-
|
158 |
-
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
159 |
-
super().__init__()
|
160 |
-
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim))
|
161 |
-
self.register_buffer("inv_freq", inv_freq)
|
162 |
-
self.dim = dim
|
163 |
-
self.base = base
|
164 |
-
self.scaling_factor = scaling_factor
|
165 |
-
|
166 |
-
# Build here to make `torch.jit.trace` work.
|
167 |
-
self.max_position_embeddings = max_position_embeddings
|
168 |
-
self.max_seq_len_cached = max_position_embeddings
|
169 |
-
t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
|
170 |
-
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
171 |
-
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
172 |
-
emb = torch.cat((freqs, freqs), dim=-1)
|
173 |
-
self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
|
174 |
-
self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)
|
175 |
-
|
176 |
-
def _update_cached(self, x, seq_len=None):
|
177 |
-
self.max_seq_len_cached = max(seq_len, self.max_position_embeddings)
|
178 |
-
if seq_len > self.max_position_embeddings:
|
179 |
-
base = self.base * (
|
180 |
-
(self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
|
181 |
-
) ** (self.dim / (self.dim - 2))
|
182 |
-
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(x.device) / self.dim))
|
183 |
-
else:
|
184 |
-
inv_freq = self.inv_freq
|
185 |
-
t = torch.arange(self.max_seq_len_cached, device=inv_freq.device, dtype=inv_freq.dtype)
|
186 |
-
freqs = torch.einsum("i,j->ij", t, inv_freq)
|
187 |
-
emb = torch.cat((freqs, freqs), dim=-1)
|
188 |
-
self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
|
189 |
-
self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)
|
190 |
-
|
191 |
-
def forward(self, x, seq_len=None):
|
192 |
-
# x: [bs, num_attention_heads, seq_len, head_size]
|
193 |
-
# This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case.
|
194 |
-
if seq_len <= self.max_position_embeddings:
|
195 |
-
# Reset the tables if the sequence length has changed,
|
196 |
-
if self.max_seq_len_cached > self.max_position_embeddings:
|
197 |
-
self._update_cached(x, seq_len)
|
198 |
-
else:
|
199 |
-
self._update_cached(x, seq_len)
|
200 |
-
|
201 |
-
return (
|
202 |
-
self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
203 |
-
self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
204 |
-
)
|
205 |
-
|
206 |
-
|
207 |
def rotate_half(x):
|
208 |
"""Rotates half the hidden dims of the input."""
|
209 |
x1 = x[..., : x.shape[-1] // 2]
|
@@ -215,18 +144,10 @@ def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
|
|
215 |
# The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
|
216 |
cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
|
217 |
sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
|
218 |
-
cos = cos.unsqueeze(
|
219 |
-
sin = sin.unsqueeze(
|
220 |
-
|
221 |
-
|
222 |
-
else:
|
223 |
-
q_embed = (q * cos) + (rotate_half(q) * sin)
|
224 |
-
|
225 |
-
if k.size(2) == 1:
|
226 |
-
k_embed = (k * cos[:, :, -1, :]) + (rotate_half(k) * sin[:, :, -1, :])
|
227 |
-
else:
|
228 |
-
k_embed = (k * cos) + (rotate_half(k) * sin)
|
229 |
-
|
230 |
return q_embed, k_embed
|
231 |
|
232 |
|
@@ -256,6 +177,8 @@ class InternLMAttention(nn.Module):
|
|
256 |
self.hidden_size = config.hidden_size
|
257 |
self.num_heads = config.num_attention_heads
|
258 |
self.head_dim = self.hidden_size // self.num_heads
|
|
|
|
|
259 |
self.max_position_embeddings = config.max_position_embeddings
|
260 |
|
261 |
if (self.head_dim * self.num_heads) != self.hidden_size:
|
@@ -264,28 +187,10 @@ class InternLMAttention(nn.Module):
|
|
264 |
f" and `num_heads`: {self.num_heads})."
|
265 |
)
|
266 |
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.bias)
|
267 |
-
self.k_proj = nn.Linear(self.hidden_size, self.
|
268 |
-
self.v_proj = nn.Linear(self.hidden_size, self.
|
269 |
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.bias)
|
270 |
-
self.rotary_emb = self.
|
271 |
-
|
272 |
-
def _init_rope(self):
|
273 |
-
if self.config.rotary["type"] == "origin":
|
274 |
-
self.rotary_emb = InternLMRotaryEmbedding(
|
275 |
-
self.head_dim,
|
276 |
-
max_position_embeddings=self.max_position_embeddings,
|
277 |
-
base=self.config.rotary["base"],
|
278 |
-
)
|
279 |
-
elif self.config.rotary["type"] == "dynamic":
|
280 |
-
self.rotary_emb = InternLMDynamicNTKScalingRotaryEmbedding(
|
281 |
-
self.head_dim,
|
282 |
-
max_position_embeddings=self.max_position_embeddings,
|
283 |
-
base=self.config.rotary["base"],
|
284 |
-
scaling_factor=self.config.rotary.get("scaling_factor", 1.0),
|
285 |
-
)
|
286 |
-
else:
|
287 |
-
raise ValueError("Currently we only support rotary embedding's type being one of ('origin', 'dynamic').")
|
288 |
-
return self.rotary_emb
|
289 |
|
290 |
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
291 |
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
@@ -302,20 +207,25 @@ class InternLMAttention(nn.Module):
|
|
302 |
bsz, q_len, _ = hidden_states.size()
|
303 |
|
304 |
query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
305 |
-
key_states = self.k_proj(hidden_states).view(bsz, q_len, self.
|
306 |
-
value_states = self.v_proj(hidden_states).view(bsz, q_len, self.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
307 |
|
308 |
if past_key_value is not None:
|
309 |
# reuse k, v, self_attention
|
310 |
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
311 |
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
312 |
|
313 |
-
# print(use_cache)
|
314 |
past_key_value = (key_states, value_states) if use_cache else None
|
315 |
|
316 |
-
|
317 |
-
|
318 |
-
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
319 |
|
320 |
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
321 |
|
@@ -426,9 +336,11 @@ INTERNLM_START_DOCSTRING = r"""
|
|
426 |
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
427 |
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
428 |
etc.)
|
|
|
429 |
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
430 |
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
431 |
and behavior.
|
|
|
432 |
Parameters:
|
433 |
config ([`InternLMConfig`]):
|
434 |
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
@@ -469,34 +381,44 @@ INTERNLM_INPUTS_DOCSTRING = r"""
|
|
469 |
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
470 |
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
471 |
it.
|
|
|
472 |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
473 |
[`PreTrainedTokenizer.__call__`] for details.
|
|
|
474 |
[What are input IDs?](../glossary#input-ids)
|
475 |
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
476 |
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
|
|
477 |
- 1 for tokens that are **not masked**,
|
478 |
- 0 for tokens that are **masked**.
|
|
|
479 |
[What are attention masks?](../glossary#attention-mask)
|
|
|
480 |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
481 |
[`PreTrainedTokenizer.__call__`] for details.
|
|
|
482 |
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
|
483 |
`past_key_values`).
|
|
|
484 |
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
485 |
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
486 |
information on the default strategy.
|
|
|
487 |
- 1 indicates the head is **not masked**,
|
488 |
- 0 indicates the head is **masked**.
|
489 |
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
490 |
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
491 |
config.n_positions - 1]`.
|
|
|
492 |
[What are position IDs?](../glossary#position-ids)
|
493 |
-
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or
|
494 |
-
when `config.use_cache=True`):
|
495 |
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
496 |
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
|
497 |
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
|
|
|
498 |
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
499 |
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
|
|
500 |
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
501 |
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
502 |
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
@@ -525,10 +447,10 @@ INTERNLM_INPUTS_DOCSTRING = r"""
|
|
525 |
class InternLMModel(InternLMPreTrainedModel):
|
526 |
"""
|
527 |
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`InternLMDecoderLayer`]
|
|
|
528 |
Args:
|
529 |
config: InternLMConfig
|
530 |
"""
|
531 |
-
|
532 |
_auto_class = "AutoModel"
|
533 |
|
534 |
def __init__(self, config: InternLMConfig):
|
@@ -754,14 +676,20 @@ class InternLMForCausalLM(InternLMPreTrainedModel):
|
|
754 |
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
755 |
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
756 |
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
|
|
757 |
Returns:
|
|
|
758 |
Example:
|
|
|
759 |
```python
|
760 |
>>> from transformers import AutoTokenizer, InternLMForCausalLM
|
|
|
761 |
>>> model = InternLMForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
|
762 |
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
|
|
|
763 |
>>> prompt = "Hey, are you consciours? Can you talk to me?"
|
764 |
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
|
|
765 |
>>> # Generate
|
766 |
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
767 |
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
@@ -851,56 +779,50 @@ class InternLMForCausalLM(InternLMPreTrainedModel):
|
|
851 |
for layer_past in past_key_values:
|
852 |
reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
|
853 |
return reordered_past
|
854 |
-
|
855 |
def build_inputs(self, tokenizer, query: str, history: List[Tuple[str, str]] = []):
|
856 |
prompt = ""
|
857 |
for record in history:
|
858 |
prompt += f"""<|User|>:{record[0]}<eoh>\n<|Bot|>:{record[1]}<eoa>\n"""
|
859 |
prompt += f"""<|User|>:{query}<eoh>\n<|Bot|>:"""
|
860 |
return tokenizer([prompt], return_tensors="pt")
|
861 |
-
|
862 |
@torch.no_grad()
|
863 |
-
def chat(
|
864 |
-
|
865 |
-
|
866 |
-
|
867 |
-
|
868 |
-
|
869 |
-
|
870 |
-
|
871 |
-
|
872 |
-
|
873 |
-
**kwargs,
|
874 |
-
):
|
875 |
inputs = self.build_inputs(tokenizer, query, history)
|
876 |
inputs = {k: v.to(self.device) for k, v in inputs.items() if torch.is_tensor(v)}
|
877 |
-
outputs = self.generate(
|
878 |
-
|
879 |
-
|
880 |
-
|
881 |
-
|
882 |
-
|
883 |
-
|
884 |
-
|
885 |
-
)
|
886 |
-
outputs = outputs[0].cpu().tolist()[len(inputs["input_ids"][0]) :]
|
887 |
response = tokenizer.decode(outputs, skip_special_tokens=True)
|
888 |
response = response.split("<eoa>")[0]
|
889 |
history = history + [(query, response)]
|
890 |
return response, history
|
891 |
-
|
892 |
@torch.no_grad()
|
893 |
-
def stream_chat(
|
894 |
-
|
895 |
-
|
896 |
-
|
897 |
-
|
898 |
-
|
899 |
-
|
900 |
-
|
901 |
-
|
902 |
-
**kwargs,
|
903 |
-
):
|
904 |
"""
|
905 |
Return a generator in format: (response, history)
|
906 |
Eg.
|
@@ -946,12 +868,12 @@ class InternLMForCausalLM(InternLMPreTrainedModel):
|
|
946 |
tokenizer=tokenizer,
|
947 |
query=query,
|
948 |
streamer=ChatStreamer(tokenizer=tokenizer),
|
949 |
-
history=history,
|
950 |
max_new_tokens=max_new_tokens,
|
951 |
do_sample=do_sample,
|
952 |
temperature=temperature,
|
953 |
top_p=top_p,
|
954 |
-
**kwargs
|
955 |
)
|
956 |
|
957 |
def consumer():
|
@@ -969,8 +891,10 @@ class InternLMForCausalLM(InternLMPreTrainedModel):
|
|
969 |
@add_start_docstrings(
|
970 |
"""
|
971 |
The InternLM Model transformer with a sequence classification head on top (linear layer).
|
|
|
972 |
[`InternLMForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
973 |
(e.g. GPT-2) do.
|
|
|
974 |
Since it does classification on the last token, it requires to know the position of the last token. If a
|
975 |
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
976 |
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
|
|
19 |
# limitations under the License.
|
20 |
""" PyTorch InternLM model."""
|
21 |
import math
|
|
|
|
|
22 |
from typing import List, Optional, Tuple, Union
|
23 |
+
import threading, queue
|
24 |
|
25 |
import torch
|
26 |
import torch.utils.checkpoint
|
27 |
from torch import nn
|
28 |
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
29 |
+
|
30 |
from transformers.activations import ACT2FN
|
31 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
|
|
|
|
|
|
|
|
|
|
|
32 |
from transformers.modeling_utils import PreTrainedModel
|
33 |
+
from transformers.generation.streamers import BaseStreamer
|
34 |
+
from transformers.utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
|
|
|
|
|
|
|
|
|
|
|
35 |
from .configuration_internlm import InternLMConfig
|
36 |
|
37 |
+
|
38 |
logger = logging.get_logger(__name__)
|
39 |
|
40 |
_CONFIG_FOR_DOC = "InternLMConfig"
|
41 |
|
|
|
42 |
# Copied from transformers.models.bart.modeling_bart._make_causal_mask
|
43 |
def _make_causal_mask(
|
44 |
input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
|
|
|
71 |
|
72 |
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
|
73 |
|
74 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
75 |
+
"""
|
76 |
+
(batch, num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
77 |
+
"""
|
78 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
79 |
+
if n_rep == 1:
|
80 |
+
return hidden_states
|
81 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
82 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
83 |
|
84 |
class InternLMRMSNorm(nn.Module):
|
|
|
|
|
85 |
def __init__(self, hidden_size, eps=1e-6):
|
86 |
"""
|
87 |
InternLMRMSNorm is equivalent to T5LayerNorm
|
|
|
102 |
|
103 |
|
104 |
class InternLMRotaryEmbedding(torch.nn.Module):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
106 |
super().__init__()
|
107 |
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim))
|
|
|
133 |
)
|
134 |
|
135 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
def rotate_half(x):
|
137 |
"""Rotates half the hidden dims of the input."""
|
138 |
x1 = x[..., : x.shape[-1] // 2]
|
|
|
144 |
# The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
|
145 |
cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
|
146 |
sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
|
147 |
+
cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
|
148 |
+
sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
|
149 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
150 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
return q_embed, k_embed
|
152 |
|
153 |
|
|
|
177 |
self.hidden_size = config.hidden_size
|
178 |
self.num_heads = config.num_attention_heads
|
179 |
self.head_dim = self.hidden_size // self.num_heads
|
180 |
+
self.num_key_value_heads = config.num_key_value_heads
|
181 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
182 |
self.max_position_embeddings = config.max_position_embeddings
|
183 |
|
184 |
if (self.head_dim * self.num_heads) != self.hidden_size:
|
|
|
187 |
f" and `num_heads`: {self.num_heads})."
|
188 |
)
|
189 |
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.bias)
|
190 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
191 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
192 |
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.bias)
|
193 |
+
self.rotary_emb = InternLMRotaryEmbedding(self.head_dim, max_position_embeddings=self.max_position_embeddings)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
194 |
|
195 |
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
196 |
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
|
|
207 |
bsz, q_len, _ = hidden_states.size()
|
208 |
|
209 |
query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
210 |
+
key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
211 |
+
value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
212 |
+
|
213 |
+
kv_seq_len = key_states.shape[-2]
|
214 |
+
if past_key_value is not None:
|
215 |
+
kv_seq_len += past_key_value[0].shape[-2]
|
216 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
217 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
218 |
+
# [bsz, nh, t, hd]
|
219 |
|
220 |
if past_key_value is not None:
|
221 |
# reuse k, v, self_attention
|
222 |
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
223 |
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
224 |
|
|
|
225 |
past_key_value = (key_states, value_states) if use_cache else None
|
226 |
|
227 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
228 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
|
|
229 |
|
230 |
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
231 |
|
|
|
336 |
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
337 |
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
338 |
etc.)
|
339 |
+
|
340 |
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
341 |
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
342 |
and behavior.
|
343 |
+
|
344 |
Parameters:
|
345 |
config ([`InternLMConfig`]):
|
346 |
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
|
|
381 |
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
382 |
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
383 |
it.
|
384 |
+
|
385 |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
386 |
[`PreTrainedTokenizer.__call__`] for details.
|
387 |
+
|
388 |
[What are input IDs?](../glossary#input-ids)
|
389 |
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
390 |
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
391 |
+
|
392 |
- 1 for tokens that are **not masked**,
|
393 |
- 0 for tokens that are **masked**.
|
394 |
+
|
395 |
[What are attention masks?](../glossary#attention-mask)
|
396 |
+
|
397 |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
398 |
[`PreTrainedTokenizer.__call__`] for details.
|
399 |
+
|
400 |
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
|
401 |
`past_key_values`).
|
402 |
+
|
403 |
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
404 |
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
405 |
information on the default strategy.
|
406 |
+
|
407 |
- 1 indicates the head is **not masked**,
|
408 |
- 0 indicates the head is **masked**.
|
409 |
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
410 |
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
411 |
config.n_positions - 1]`.
|
412 |
+
|
413 |
[What are position IDs?](../glossary#position-ids)
|
414 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
|
|
415 |
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
416 |
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
|
417 |
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
|
418 |
+
|
419 |
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
420 |
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
421 |
+
|
422 |
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
423 |
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
424 |
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
|
|
447 |
class InternLMModel(InternLMPreTrainedModel):
|
448 |
"""
|
449 |
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`InternLMDecoderLayer`]
|
450 |
+
|
451 |
Args:
|
452 |
config: InternLMConfig
|
453 |
"""
|
|
|
454 |
_auto_class = "AutoModel"
|
455 |
|
456 |
def __init__(self, config: InternLMConfig):
|
|
|
676 |
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
677 |
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
678 |
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
679 |
+
|
680 |
Returns:
|
681 |
+
|
682 |
Example:
|
683 |
+
|
684 |
```python
|
685 |
>>> from transformers import AutoTokenizer, InternLMForCausalLM
|
686 |
+
|
687 |
>>> model = InternLMForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
|
688 |
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
|
689 |
+
|
690 |
>>> prompt = "Hey, are you consciours? Can you talk to me?"
|
691 |
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
692 |
+
|
693 |
>>> # Generate
|
694 |
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
695 |
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
|
|
779 |
for layer_past in past_key_values:
|
780 |
reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
|
781 |
return reordered_past
|
782 |
+
|
783 |
def build_inputs(self, tokenizer, query: str, history: List[Tuple[str, str]] = []):
|
784 |
prompt = ""
|
785 |
for record in history:
|
786 |
prompt += f"""<|User|>:{record[0]}<eoh>\n<|Bot|>:{record[1]}<eoa>\n"""
|
787 |
prompt += f"""<|User|>:{query}<eoh>\n<|Bot|>:"""
|
788 |
return tokenizer([prompt], return_tensors="pt")
|
789 |
+
|
790 |
@torch.no_grad()
|
791 |
+
def chat(self,
|
792 |
+
tokenizer,
|
793 |
+
query: str,
|
794 |
+
history: List[Tuple[str, str]] = [],
|
795 |
+
streamer: Optional[BaseStreamer] = None,
|
796 |
+
max_new_tokens: int = 1024,
|
797 |
+
do_sample: bool = True,
|
798 |
+
temperature: float = 0.8,
|
799 |
+
top_p: float = 0.8,
|
800 |
+
**kwargs):
|
|
|
|
|
801 |
inputs = self.build_inputs(tokenizer, query, history)
|
802 |
inputs = {k: v.to(self.device) for k, v in inputs.items() if torch.is_tensor(v)}
|
803 |
+
outputs = self.generate(**inputs,
|
804 |
+
streamer=streamer,
|
805 |
+
max_new_tokens=max_new_tokens,
|
806 |
+
do_sample=do_sample,
|
807 |
+
temperature=temperature,
|
808 |
+
top_p=top_p,
|
809 |
+
**kwargs)
|
810 |
+
outputs = outputs[0].cpu().tolist()[len(inputs["input_ids"][0]):]
|
|
|
|
|
811 |
response = tokenizer.decode(outputs, skip_special_tokens=True)
|
812 |
response = response.split("<eoa>")[0]
|
813 |
history = history + [(query, response)]
|
814 |
return response, history
|
815 |
+
|
816 |
@torch.no_grad()
|
817 |
+
def stream_chat(self,
|
818 |
+
tokenizer,
|
819 |
+
query: str,
|
820 |
+
history: List[Tuple[str, str]] = [],
|
821 |
+
max_new_tokens: int = 1024,
|
822 |
+
do_sample: bool = True,
|
823 |
+
temperature: float = 0.8,
|
824 |
+
top_p: float = 0.8,
|
825 |
+
**kwargs):
|
|
|
|
|
826 |
"""
|
827 |
Return a generator in format: (response, history)
|
828 |
Eg.
|
|
|
868 |
tokenizer=tokenizer,
|
869 |
query=query,
|
870 |
streamer=ChatStreamer(tokenizer=tokenizer),
|
871 |
+
history=history,
|
872 |
max_new_tokens=max_new_tokens,
|
873 |
do_sample=do_sample,
|
874 |
temperature=temperature,
|
875 |
top_p=top_p,
|
876 |
+
**kwargs
|
877 |
)
|
878 |
|
879 |
def consumer():
|
|
|
891 |
@add_start_docstrings(
|
892 |
"""
|
893 |
The InternLM Model transformer with a sequence classification head on top (linear layer).
|
894 |
+
|
895 |
[`InternLMForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
896 |
(e.g. GPT-2) do.
|
897 |
+
|
898 |
Since it does classification on the last token, it requires to know the position of the last token. If a
|
899 |
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
900 |
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
pytorch_model-00001-of-00005.bin → pytorch_model-00001-of-00006.bin
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9c989b1624a481672a7018455d7ff95398ded2a07698ccf2687877db91baf254
|
3 |
+
size 7893395149
|
pytorch_model-00002-of-00005.bin → pytorch_model-00002-of-00006.bin
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:11c9b3fc955587d5ea525c787d7677602e0f3d70131259b3c12079e034e68132
|
3 |
+
size 7964241876
|
pytorch_model-00003-of-00005.bin → pytorch_model-00003-of-00006.bin
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:366595a002cc2ce217aec0c4885e7c5f840df751155f9e2510e6472e171c02d2
|
3 |
+
size 7896062197
|
pytorch_model-00004-of-00005.bin → pytorch_model-00004-of-00006.bin
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:508cfed19500ecf7678f1680a47a1073b73f8ad5597612c094c8b2e7df8d3931
|
3 |
+
size 7964241876
|
pytorch_model-00005-of-00006.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4182de7c0df21447a5b7ed8cbb68162e85be061f23ddab73b8be157049fb9e31
|
3 |
+
size 7403239886
|
pytorch_model-00005-of-00005.bin → pytorch_model-00006-of-00006.bin
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 1056441258
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:89b0631c7069213a49dd8a3cb9012e52d82ac9328bd96e2bba8383d825720039
|
3 |
size 1056441258
|
pytorch_model.bin.index.json
CHANGED
@@ -3,548 +3,548 @@
|
|
3 |
"total_size": 40177428480
|
4 |
},
|
5 |
"weight_map": {
|
6 |
-
"lm_head.weight": "pytorch_model-
|
7 |
-
"model.embed_tokens.weight": "pytorch_model-00001-of-
|
8 |
-
"model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-
|
9 |
-
"model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-
|
10 |
-
"model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-
|
11 |
-
"model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-
|
12 |
-
"model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-
|
13 |
-
"model.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-
|
14 |
-
"model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-
|
15 |
-
"model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-
|
16 |
-
"model.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-
|
17 |
-
"model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-
|
18 |
-
"model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-
|
19 |
-
"model.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-
|
20 |
-
"model.layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-
|
21 |
-
"model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-
|
22 |
-
"model.layers.1.self_attn.k_proj.weight": "pytorch_model-00001-of-
|
23 |
-
"model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-
|
24 |
-
"model.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-
|
25 |
-
"model.layers.1.self_attn.v_proj.weight": "pytorch_model-00001-of-
|
26 |
-
"model.layers.10.input_layernorm.weight": "pytorch_model-
|
27 |
-
"model.layers.10.mlp.down_proj.weight": "pytorch_model-00001-of-
|
28 |
-
"model.layers.10.mlp.gate_proj.weight": "pytorch_model-00001-of-
|
29 |
-
"model.layers.10.mlp.up_proj.weight": "pytorch_model-
|
30 |
-
"model.layers.10.post_attention_layernorm.weight": "pytorch_model-
|
31 |
-
"model.layers.10.self_attn.k_proj.weight": "pytorch_model-00001-of-
|
32 |
-
"model.layers.10.self_attn.o_proj.weight": "pytorch_model-00001-of-
|
33 |
-
"model.layers.10.self_attn.q_proj.weight": "pytorch_model-00001-of-
|
34 |
-
"model.layers.10.self_attn.v_proj.weight": "pytorch_model-00001-of-
|
35 |
-
"model.layers.11.input_layernorm.weight": "pytorch_model-
|
36 |
-
"model.layers.11.mlp.down_proj.weight": "pytorch_model-
|
37 |
-
"model.layers.11.mlp.gate_proj.weight": "pytorch_model-
|
38 |
-
"model.layers.11.mlp.up_proj.weight": "pytorch_model-
|
39 |
-
"model.layers.11.post_attention_layernorm.weight": "pytorch_model-
|
40 |
-
"model.layers.11.self_attn.k_proj.weight": "pytorch_model-
|
41 |
-
"model.layers.11.self_attn.o_proj.weight": "pytorch_model-
|
42 |
-
"model.layers.11.self_attn.q_proj.weight": "pytorch_model-
|
43 |
-
"model.layers.11.self_attn.v_proj.weight": "pytorch_model-
|
44 |
-
"model.layers.12.input_layernorm.weight": "pytorch_model-
|
45 |
-
"model.layers.12.mlp.down_proj.weight": "pytorch_model-
|
46 |
-
"model.layers.12.mlp.gate_proj.weight": "pytorch_model-
|
47 |
-
"model.layers.12.mlp.up_proj.weight": "pytorch_model-
|
48 |
-
"model.layers.12.post_attention_layernorm.weight": "pytorch_model-
|
49 |
-
"model.layers.12.self_attn.k_proj.weight": "pytorch_model-
|
50 |
-
"model.layers.12.self_attn.o_proj.weight": "pytorch_model-
|
51 |
-
"model.layers.12.self_attn.q_proj.weight": "pytorch_model-
|
52 |
-
"model.layers.12.self_attn.v_proj.weight": "pytorch_model-
|
53 |
-
"model.layers.13.input_layernorm.weight": "pytorch_model-
|
54 |
-
"model.layers.13.mlp.down_proj.weight": "pytorch_model-
|
55 |
-
"model.layers.13.mlp.gate_proj.weight": "pytorch_model-
|
56 |
-
"model.layers.13.mlp.up_proj.weight": "pytorch_model-
|
57 |
-
"model.layers.13.post_attention_layernorm.weight": "pytorch_model-
|
58 |
-
"model.layers.13.self_attn.k_proj.weight": "pytorch_model-
|
59 |
-
"model.layers.13.self_attn.o_proj.weight": "pytorch_model-
|
60 |
-
"model.layers.13.self_attn.q_proj.weight": "pytorch_model-
|
61 |
-
"model.layers.13.self_attn.v_proj.weight": "pytorch_model-
|
62 |
-
"model.layers.14.input_layernorm.weight": "pytorch_model-00002-of-
|
63 |
-
"model.layers.14.mlp.down_proj.weight": "pytorch_model-00002-of-
|
64 |
-
"model.layers.14.mlp.gate_proj.weight": "pytorch_model-00002-of-
|
65 |
-
"model.layers.14.mlp.up_proj.weight": "pytorch_model-00002-of-
|
66 |
-
"model.layers.14.post_attention_layernorm.weight": "pytorch_model-00002-of-
|
67 |
-
"model.layers.14.self_attn.k_proj.weight": "pytorch_model-00002-of-
|
68 |
-
"model.layers.14.self_attn.o_proj.weight": "pytorch_model-00002-of-
|
69 |
-
"model.layers.14.self_attn.q_proj.weight": "pytorch_model-
|
70 |
-
"model.layers.14.self_attn.v_proj.weight": "pytorch_model-00002-of-
|
71 |
-
"model.layers.15.input_layernorm.weight": "pytorch_model-00002-of-
|
72 |
-
"model.layers.15.mlp.down_proj.weight": "pytorch_model-00002-of-
|
73 |
-
"model.layers.15.mlp.gate_proj.weight": "pytorch_model-00002-of-
|
74 |
-
"model.layers.15.mlp.up_proj.weight": "pytorch_model-00002-of-
|
75 |
-
"model.layers.15.post_attention_layernorm.weight": "pytorch_model-00002-of-
|
76 |
-
"model.layers.15.self_attn.k_proj.weight": "pytorch_model-00002-of-
|
77 |
-
"model.layers.15.self_attn.o_proj.weight": "pytorch_model-00002-of-
|
78 |
-
"model.layers.15.self_attn.q_proj.weight": "pytorch_model-00002-of-
|
79 |
-
"model.layers.15.self_attn.v_proj.weight": "pytorch_model-00002-of-
|
80 |
-
"model.layers.16.input_layernorm.weight": "pytorch_model-00002-of-
|
81 |
-
"model.layers.16.mlp.down_proj.weight": "pytorch_model-00002-of-
|
82 |
-
"model.layers.16.mlp.gate_proj.weight": "pytorch_model-00002-of-
|
83 |
-
"model.layers.16.mlp.up_proj.weight": "pytorch_model-00002-of-
|
84 |
-
"model.layers.16.post_attention_layernorm.weight": "pytorch_model-00002-of-
|
85 |
-
"model.layers.16.self_attn.k_proj.weight": "pytorch_model-00002-of-
|
86 |
-
"model.layers.16.self_attn.o_proj.weight": "pytorch_model-00002-of-
|
87 |
-
"model.layers.16.self_attn.q_proj.weight": "pytorch_model-00002-of-
|
88 |
-
"model.layers.16.self_attn.v_proj.weight": "pytorch_model-00002-of-
|
89 |
-
"model.layers.17.input_layernorm.weight": "pytorch_model-00002-of-
|
90 |
-
"model.layers.17.mlp.down_proj.weight": "pytorch_model-00002-of-
|
91 |
-
"model.layers.17.mlp.gate_proj.weight": "pytorch_model-00002-of-
|
92 |
-
"model.layers.17.mlp.up_proj.weight": "pytorch_model-00002-of-
|
93 |
-
"model.layers.17.post_attention_layernorm.weight": "pytorch_model-00002-of-
|
94 |
-
"model.layers.17.self_attn.k_proj.weight": "pytorch_model-00002-of-
|
95 |
-
"model.layers.17.self_attn.o_proj.weight": "pytorch_model-00002-of-
|
96 |
-
"model.layers.17.self_attn.q_proj.weight": "pytorch_model-00002-of-
|
97 |
-
"model.layers.17.self_attn.v_proj.weight": "pytorch_model-00002-of-
|
98 |
-
"model.layers.18.input_layernorm.weight": "pytorch_model-00002-of-
|
99 |
-
"model.layers.18.mlp.down_proj.weight": "pytorch_model-00002-of-
|
100 |
-
"model.layers.18.mlp.gate_proj.weight": "pytorch_model-00002-of-
|
101 |
-
"model.layers.18.mlp.up_proj.weight": "pytorch_model-00002-of-
|
102 |
-
"model.layers.18.post_attention_layernorm.weight": "pytorch_model-00002-of-
|
103 |
-
"model.layers.18.self_attn.k_proj.weight": "pytorch_model-00002-of-
|
104 |
-
"model.layers.18.self_attn.o_proj.weight": "pytorch_model-00002-of-
|
105 |
-
"model.layers.18.self_attn.q_proj.weight": "pytorch_model-00002-of-
|
106 |
-
"model.layers.18.self_attn.v_proj.weight": "pytorch_model-00002-of-
|
107 |
-
"model.layers.19.input_layernorm.weight": "pytorch_model-00002-of-
|
108 |
-
"model.layers.19.mlp.down_proj.weight": "pytorch_model-00002-of-
|
109 |
-
"model.layers.19.mlp.gate_proj.weight": "pytorch_model-00002-of-
|
110 |
-
"model.layers.19.mlp.up_proj.weight": "pytorch_model-00002-of-
|
111 |
-
"model.layers.19.post_attention_layernorm.weight": "pytorch_model-00002-of-
|
112 |
-
"model.layers.19.self_attn.k_proj.weight": "pytorch_model-00002-of-
|
113 |
-
"model.layers.19.self_attn.o_proj.weight": "pytorch_model-00002-of-
|
114 |
-
"model.layers.19.self_attn.q_proj.weight": "pytorch_model-00002-of-
|
115 |
-
"model.layers.19.self_attn.v_proj.weight": "pytorch_model-00002-of-
|
116 |
-
"model.layers.2.input_layernorm.weight": "pytorch_model-00001-of-
|
117 |
-
"model.layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-
|
118 |
-
"model.layers.2.mlp.gate_proj.weight": "pytorch_model-00001-of-
|
119 |
-
"model.layers.2.mlp.up_proj.weight": "pytorch_model-00001-of-
|
120 |
-
"model.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-
|
121 |
-
"model.layers.2.self_attn.k_proj.weight": "pytorch_model-00001-of-
|
122 |
-
"model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-
|
123 |
-
"model.layers.2.self_attn.q_proj.weight": "pytorch_model-00001-of-
|
124 |
-
"model.layers.2.self_attn.v_proj.weight": "pytorch_model-00001-of-
|
125 |
-
"model.layers.20.input_layernorm.weight": "pytorch_model-00002-of-
|
126 |
-
"model.layers.20.mlp.down_proj.weight": "pytorch_model-00002-of-
|
127 |
-
"model.layers.20.mlp.gate_proj.weight": "pytorch_model-00002-of-
|
128 |
-
"model.layers.20.mlp.up_proj.weight": "pytorch_model-00002-of-
|
129 |
-
"model.layers.20.post_attention_layernorm.weight": "pytorch_model-00002-of-
|
130 |
-
"model.layers.20.self_attn.k_proj.weight": "pytorch_model-00002-of-
|
131 |
-
"model.layers.20.self_attn.o_proj.weight": "pytorch_model-00002-of-
|
132 |
-
"model.layers.20.self_attn.q_proj.weight": "pytorch_model-00002-of-
|
133 |
-
"model.layers.20.self_attn.v_proj.weight": "pytorch_model-00002-of-
|
134 |
-
"model.layers.21.input_layernorm.weight": "pytorch_model-00002-of-
|
135 |
-
"model.layers.21.mlp.down_proj.weight": "pytorch_model-00002-of-
|
136 |
-
"model.layers.21.mlp.gate_proj.weight": "pytorch_model-00002-of-
|
137 |
-
"model.layers.21.mlp.up_proj.weight": "pytorch_model-00002-of-
|
138 |
-
"model.layers.21.post_attention_layernorm.weight": "pytorch_model-00002-of-
|
139 |
-
"model.layers.21.self_attn.k_proj.weight": "pytorch_model-00002-of-
|
140 |
-
"model.layers.21.self_attn.o_proj.weight": "pytorch_model-00002-of-
|
141 |
-
"model.layers.21.self_attn.q_proj.weight": "pytorch_model-00002-of-
|
142 |
-
"model.layers.21.self_attn.v_proj.weight": "pytorch_model-00002-of-
|
143 |
-
"model.layers.22.input_layernorm.weight": "pytorch_model-00002-of-
|
144 |
-
"model.layers.22.mlp.down_proj.weight": "pytorch_model-00002-of-
|
145 |
-
"model.layers.22.mlp.gate_proj.weight": "pytorch_model-00002-of-
|
146 |
-
"model.layers.22.mlp.up_proj.weight": "pytorch_model-00002-of-
|
147 |
-
"model.layers.22.post_attention_layernorm.weight": "pytorch_model-00002-of-
|
148 |
-
"model.layers.22.self_attn.k_proj.weight": "pytorch_model-00002-of-
|
149 |
-
"model.layers.22.self_attn.o_proj.weight": "pytorch_model-00002-of-
|
150 |
-
"model.layers.22.self_attn.q_proj.weight": "pytorch_model-00002-of-
|
151 |
-
"model.layers.22.self_attn.v_proj.weight": "pytorch_model-00002-of-
|
152 |
-
"model.layers.23.input_layernorm.weight": "pytorch_model-
|
153 |
-
"model.layers.23.mlp.down_proj.weight": "pytorch_model-
|
154 |
-
"model.layers.23.mlp.gate_proj.weight": "pytorch_model-
|
155 |
-
"model.layers.23.mlp.up_proj.weight": "pytorch_model-
|
156 |
-
"model.layers.23.post_attention_layernorm.weight": "pytorch_model-
|
157 |
-
"model.layers.23.self_attn.k_proj.weight": "pytorch_model-00002-of-
|
158 |
-
"model.layers.23.self_attn.o_proj.weight": "pytorch_model-00002-of-
|
159 |
-
"model.layers.23.self_attn.q_proj.weight": "pytorch_model-00002-of-
|
160 |
-
"model.layers.23.self_attn.v_proj.weight": "pytorch_model-00002-of-
|
161 |
-
"model.layers.24.input_layernorm.weight": "pytorch_model-
|
162 |
-
"model.layers.24.mlp.down_proj.weight": "pytorch_model-
|
163 |
-
"model.layers.24.mlp.gate_proj.weight": "pytorch_model-
|
164 |
-
"model.layers.24.mlp.up_proj.weight": "pytorch_model-
|
165 |
-
"model.layers.24.post_attention_layernorm.weight": "pytorch_model-
|
166 |
-
"model.layers.24.self_attn.k_proj.weight": "pytorch_model-
|
167 |
-
"model.layers.24.self_attn.o_proj.weight": "pytorch_model-
|
168 |
-
"model.layers.24.self_attn.q_proj.weight": "pytorch_model-
|
169 |
-
"model.layers.24.self_attn.v_proj.weight": "pytorch_model-
|
170 |
-
"model.layers.25.input_layernorm.weight": "pytorch_model-
|
171 |
-
"model.layers.25.mlp.down_proj.weight": "pytorch_model-
|
172 |
-
"model.layers.25.mlp.gate_proj.weight": "pytorch_model-
|
173 |
-
"model.layers.25.mlp.up_proj.weight": "pytorch_model-
|
174 |
-
"model.layers.25.post_attention_layernorm.weight": "pytorch_model-
|
175 |
-
"model.layers.25.self_attn.k_proj.weight": "pytorch_model-
|
176 |
-
"model.layers.25.self_attn.o_proj.weight": "pytorch_model-
|
177 |
-
"model.layers.25.self_attn.q_proj.weight": "pytorch_model-
|
178 |
-
"model.layers.25.self_attn.v_proj.weight": "pytorch_model-
|
179 |
-
"model.layers.26.input_layernorm.weight": "pytorch_model-
|
180 |
-
"model.layers.26.mlp.down_proj.weight": "pytorch_model-
|
181 |
-
"model.layers.26.mlp.gate_proj.weight": "pytorch_model-
|
182 |
-
"model.layers.26.mlp.up_proj.weight": "pytorch_model-
|
183 |
-
"model.layers.26.post_attention_layernorm.weight": "pytorch_model-
|
184 |
-
"model.layers.26.self_attn.k_proj.weight": "pytorch_model-
|
185 |
-
"model.layers.26.self_attn.o_proj.weight": "pytorch_model-
|
186 |
-
"model.layers.26.self_attn.q_proj.weight": "pytorch_model-
|
187 |
-
"model.layers.26.self_attn.v_proj.weight": "pytorch_model-
|
188 |
-
"model.layers.27.input_layernorm.weight": "pytorch_model-
|
189 |
-
"model.layers.27.mlp.down_proj.weight": "pytorch_model-
|
190 |
-
"model.layers.27.mlp.gate_proj.weight": "pytorch_model-
|
191 |
-
"model.layers.27.mlp.up_proj.weight": "pytorch_model-
|
192 |
-
"model.layers.27.post_attention_layernorm.weight": "pytorch_model-
|
193 |
-
"model.layers.27.self_attn.k_proj.weight": "pytorch_model-
|
194 |
-
"model.layers.27.self_attn.o_proj.weight": "pytorch_model-
|
195 |
-
"model.layers.27.self_attn.q_proj.weight": "pytorch_model-
|
196 |
-
"model.layers.27.self_attn.v_proj.weight": "pytorch_model-
|
197 |
-
"model.layers.28.input_layernorm.weight": "pytorch_model-
|
198 |
-
"model.layers.28.mlp.down_proj.weight": "pytorch_model-
|
199 |
-
"model.layers.28.mlp.gate_proj.weight": "pytorch_model-
|
200 |
-
"model.layers.28.mlp.up_proj.weight": "pytorch_model-
|
201 |
-
"model.layers.28.post_attention_layernorm.weight": "pytorch_model-
|
202 |
-
"model.layers.28.self_attn.k_proj.weight": "pytorch_model-
|
203 |
-
"model.layers.28.self_attn.o_proj.weight": "pytorch_model-
|
204 |
-
"model.layers.28.self_attn.q_proj.weight": "pytorch_model-
|
205 |
-
"model.layers.28.self_attn.v_proj.weight": "pytorch_model-
|
206 |
-
"model.layers.29.input_layernorm.weight": "pytorch_model-00003-of-
|
207 |
-
"model.layers.29.mlp.down_proj.weight": "pytorch_model-00003-of-
|
208 |
-
"model.layers.29.mlp.gate_proj.weight": "pytorch_model-
|
209 |
-
"model.layers.29.mlp.up_proj.weight": "pytorch_model-
|
210 |
-
"model.layers.29.post_attention_layernorm.weight": "pytorch_model-00003-of-
|
211 |
-
"model.layers.29.self_attn.k_proj.weight": "pytorch_model-
|
212 |
-
"model.layers.29.self_attn.o_proj.weight": "pytorch_model-
|
213 |
-
"model.layers.29.self_attn.q_proj.weight": "pytorch_model-
|
214 |
-
"model.layers.29.self_attn.v_proj.weight": "pytorch_model-
|
215 |
-
"model.layers.3.input_layernorm.weight": "pytorch_model-00001-of-
|
216 |
-
"model.layers.3.mlp.down_proj.weight": "pytorch_model-00001-of-
|
217 |
-
"model.layers.3.mlp.gate_proj.weight": "pytorch_model-00001-of-
|
218 |
-
"model.layers.3.mlp.up_proj.weight": "pytorch_model-00001-of-
|
219 |
-
"model.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-
|
220 |
-
"model.layers.3.self_attn.k_proj.weight": "pytorch_model-00001-of-
|
221 |
-
"model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-
|
222 |
-
"model.layers.3.self_attn.q_proj.weight": "pytorch_model-00001-of-
|
223 |
-
"model.layers.3.self_attn.v_proj.weight": "pytorch_model-00001-of-
|
224 |
-
"model.layers.30.input_layernorm.weight": "pytorch_model-00003-of-
|
225 |
-
"model.layers.30.mlp.down_proj.weight": "pytorch_model-00003-of-
|
226 |
-
"model.layers.30.mlp.gate_proj.weight": "pytorch_model-00003-of-
|
227 |
-
"model.layers.30.mlp.up_proj.weight": "pytorch_model-00003-of-
|
228 |
-
"model.layers.30.post_attention_layernorm.weight": "pytorch_model-00003-of-
|
229 |
-
"model.layers.30.self_attn.k_proj.weight": "pytorch_model-00003-of-
|
230 |
-
"model.layers.30.self_attn.o_proj.weight": "pytorch_model-00003-of-
|
231 |
-
"model.layers.30.self_attn.q_proj.weight": "pytorch_model-00003-of-
|
232 |
-
"model.layers.30.self_attn.v_proj.weight": "pytorch_model-00003-of-
|
233 |
-
"model.layers.31.input_layernorm.weight": "pytorch_model-00003-of-
|
234 |
-
"model.layers.31.mlp.down_proj.weight": "pytorch_model-00003-of-
|
235 |
-
"model.layers.31.mlp.gate_proj.weight": "pytorch_model-00003-of-
|
236 |
-
"model.layers.31.mlp.up_proj.weight": "pytorch_model-00003-of-
|
237 |
-
"model.layers.31.post_attention_layernorm.weight": "pytorch_model-00003-of-
|
238 |
-
"model.layers.31.self_attn.k_proj.weight": "pytorch_model-00003-of-
|
239 |
-
"model.layers.31.self_attn.o_proj.weight": "pytorch_model-00003-of-
|
240 |
-
"model.layers.31.self_attn.q_proj.weight": "pytorch_model-00003-of-
|
241 |
-
"model.layers.31.self_attn.v_proj.weight": "pytorch_model-00003-of-
|
242 |
-
"model.layers.32.input_layernorm.weight": "pytorch_model-00003-of-
|
243 |
-
"model.layers.32.mlp.down_proj.weight": "pytorch_model-00003-of-
|
244 |
-
"model.layers.32.mlp.gate_proj.weight": "pytorch_model-00003-of-
|
245 |
-
"model.layers.32.mlp.up_proj.weight": "pytorch_model-00003-of-
|
246 |
-
"model.layers.32.post_attention_layernorm.weight": "pytorch_model-00003-of-
|
247 |
-
"model.layers.32.self_attn.k_proj.weight": "pytorch_model-00003-of-
|
248 |
-
"model.layers.32.self_attn.o_proj.weight": "pytorch_model-00003-of-
|
249 |
-
"model.layers.32.self_attn.q_proj.weight": "pytorch_model-00003-of-
|
250 |
-
"model.layers.32.self_attn.v_proj.weight": "pytorch_model-00003-of-
|
251 |
-
"model.layers.33.input_layernorm.weight": "pytorch_model-00003-of-
|
252 |
-
"model.layers.33.mlp.down_proj.weight": "pytorch_model-00003-of-
|
253 |
-
"model.layers.33.mlp.gate_proj.weight": "pytorch_model-00003-of-
|
254 |
-
"model.layers.33.mlp.up_proj.weight": "pytorch_model-00003-of-
|
255 |
-
"model.layers.33.post_attention_layernorm.weight": "pytorch_model-00003-of-
|
256 |
-
"model.layers.33.self_attn.k_proj.weight": "pytorch_model-00003-of-
|
257 |
-
"model.layers.33.self_attn.o_proj.weight": "pytorch_model-00003-of-
|
258 |
-
"model.layers.33.self_attn.q_proj.weight": "pytorch_model-00003-of-
|
259 |
-
"model.layers.33.self_attn.v_proj.weight": "pytorch_model-00003-of-
|
260 |
-
"model.layers.34.input_layernorm.weight": "pytorch_model-00003-of-
|
261 |
-
"model.layers.34.mlp.down_proj.weight": "pytorch_model-00003-of-
|
262 |
-
"model.layers.34.mlp.gate_proj.weight": "pytorch_model-00003-of-
|
263 |
-
"model.layers.34.mlp.up_proj.weight": "pytorch_model-00003-of-
|
264 |
-
"model.layers.34.post_attention_layernorm.weight": "pytorch_model-00003-of-
|
265 |
-
"model.layers.34.self_attn.k_proj.weight": "pytorch_model-00003-of-
|
266 |
-
"model.layers.34.self_attn.o_proj.weight": "pytorch_model-00003-of-
|
267 |
-
"model.layers.34.self_attn.q_proj.weight": "pytorch_model-00003-of-
|
268 |
-
"model.layers.34.self_attn.v_proj.weight": "pytorch_model-00003-of-
|
269 |
-
"model.layers.35.input_layernorm.weight": "pytorch_model-
|
270 |
-
"model.layers.35.mlp.down_proj.weight": "pytorch_model-00003-of-
|
271 |
-
"model.layers.35.mlp.gate_proj.weight": "pytorch_model-00003-of-
|
272 |
-
"model.layers.35.mlp.up_proj.weight": "pytorch_model-
|
273 |
-
"model.layers.35.post_attention_layernorm.weight": "pytorch_model-
|
274 |
-
"model.layers.35.self_attn.k_proj.weight": "pytorch_model-00003-of-
|
275 |
-
"model.layers.35.self_attn.o_proj.weight": "pytorch_model-00003-of-
|
276 |
-
"model.layers.35.self_attn.q_proj.weight": "pytorch_model-00003-of-
|
277 |
-
"model.layers.35.self_attn.v_proj.weight": "pytorch_model-00003-of-
|
278 |
-
"model.layers.36.input_layernorm.weight": "pytorch_model-
|
279 |
-
"model.layers.36.mlp.down_proj.weight": "pytorch_model-
|
280 |
-
"model.layers.36.mlp.gate_proj.weight": "pytorch_model-
|
281 |
-
"model.layers.36.mlp.up_proj.weight": "pytorch_model-
|
282 |
-
"model.layers.36.post_attention_layernorm.weight": "pytorch_model-
|
283 |
-
"model.layers.36.self_attn.k_proj.weight": "pytorch_model-
|
284 |
-
"model.layers.36.self_attn.o_proj.weight": "pytorch_model-
|
285 |
-
"model.layers.36.self_attn.q_proj.weight": "pytorch_model-
|
286 |
-
"model.layers.36.self_attn.v_proj.weight": "pytorch_model-
|
287 |
-
"model.layers.37.input_layernorm.weight": "pytorch_model-
|
288 |
-
"model.layers.37.mlp.down_proj.weight": "pytorch_model-
|
289 |
-
"model.layers.37.mlp.gate_proj.weight": "pytorch_model-
|
290 |
-
"model.layers.37.mlp.up_proj.weight": "pytorch_model-
|
291 |
-
"model.layers.37.post_attention_layernorm.weight": "pytorch_model-
|
292 |
-
"model.layers.37.self_attn.k_proj.weight": "pytorch_model-
|
293 |
-
"model.layers.37.self_attn.o_proj.weight": "pytorch_model-
|
294 |
-
"model.layers.37.self_attn.q_proj.weight": "pytorch_model-
|
295 |
-
"model.layers.37.self_attn.v_proj.weight": "pytorch_model-
|
296 |
-
"model.layers.38.input_layernorm.weight": "pytorch_model-
|
297 |
-
"model.layers.38.mlp.down_proj.weight": "pytorch_model-
|
298 |
-
"model.layers.38.mlp.gate_proj.weight": "pytorch_model-
|
299 |
-
"model.layers.38.mlp.up_proj.weight": "pytorch_model-
|
300 |
-
"model.layers.38.post_attention_layernorm.weight": "pytorch_model-
|
301 |
-
"model.layers.38.self_attn.k_proj.weight": "pytorch_model-
|
302 |
-
"model.layers.38.self_attn.o_proj.weight": "pytorch_model-
|
303 |
-
"model.layers.38.self_attn.q_proj.weight": "pytorch_model-
|
304 |
-
"model.layers.38.self_attn.v_proj.weight": "pytorch_model-
|
305 |
-
"model.layers.39.input_layernorm.weight": "pytorch_model-
|
306 |
-
"model.layers.39.mlp.down_proj.weight": "pytorch_model-
|
307 |
-
"model.layers.39.mlp.gate_proj.weight": "pytorch_model-
|
308 |
-
"model.layers.39.mlp.up_proj.weight": "pytorch_model-
|
309 |
-
"model.layers.39.post_attention_layernorm.weight": "pytorch_model-
|
310 |
-
"model.layers.39.self_attn.k_proj.weight": "pytorch_model-
|
311 |
-
"model.layers.39.self_attn.o_proj.weight": "pytorch_model-
|
312 |
-
"model.layers.39.self_attn.q_proj.weight": "pytorch_model-
|
313 |
-
"model.layers.39.self_attn.v_proj.weight": "pytorch_model-
|
314 |
-
"model.layers.4.input_layernorm.weight": "pytorch_model-00001-of-
|
315 |
-
"model.layers.4.mlp.down_proj.weight": "pytorch_model-00001-of-
|
316 |
-
"model.layers.4.mlp.gate_proj.weight": "pytorch_model-00001-of-
|
317 |
-
"model.layers.4.mlp.up_proj.weight": "pytorch_model-00001-of-
|
318 |
-
"model.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-
|
319 |
-
"model.layers.4.self_attn.k_proj.weight": "pytorch_model-00001-of-
|
320 |
-
"model.layers.4.self_attn.o_proj.weight": "pytorch_model-00001-of-
|
321 |
-
"model.layers.4.self_attn.q_proj.weight": "pytorch_model-00001-of-
|
322 |
-
"model.layers.4.self_attn.v_proj.weight": "pytorch_model-00001-of-
|
323 |
-
"model.layers.40.input_layernorm.weight": "pytorch_model-
|
324 |
-
"model.layers.40.mlp.down_proj.weight": "pytorch_model-
|
325 |
-
"model.layers.40.mlp.gate_proj.weight": "pytorch_model-
|
326 |
-
"model.layers.40.mlp.up_proj.weight": "pytorch_model-
|
327 |
-
"model.layers.40.post_attention_layernorm.weight": "pytorch_model-
|
328 |
-
"model.layers.40.self_attn.k_proj.weight": "pytorch_model-
|
329 |
-
"model.layers.40.self_attn.o_proj.weight": "pytorch_model-
|
330 |
-
"model.layers.40.self_attn.q_proj.weight": "pytorch_model-
|
331 |
-
"model.layers.40.self_attn.v_proj.weight": "pytorch_model-
|
332 |
-
"model.layers.41.input_layernorm.weight": "pytorch_model-
|
333 |
-
"model.layers.41.mlp.down_proj.weight": "pytorch_model-
|
334 |
-
"model.layers.41.mlp.gate_proj.weight": "pytorch_model-
|
335 |
-
"model.layers.41.mlp.up_proj.weight": "pytorch_model-
|
336 |
-
"model.layers.41.post_attention_layernorm.weight": "pytorch_model-
|
337 |
-
"model.layers.41.self_attn.k_proj.weight": "pytorch_model-
|
338 |
-
"model.layers.41.self_attn.o_proj.weight": "pytorch_model-
|
339 |
-
"model.layers.41.self_attn.q_proj.weight": "pytorch_model-
|
340 |
-
"model.layers.41.self_attn.v_proj.weight": "pytorch_model-
|
341 |
-
"model.layers.42.input_layernorm.weight": "pytorch_model-
|
342 |
-
"model.layers.42.mlp.down_proj.weight": "pytorch_model-
|
343 |
-
"model.layers.42.mlp.gate_proj.weight": "pytorch_model-
|
344 |
-
"model.layers.42.mlp.up_proj.weight": "pytorch_model-
|
345 |
-
"model.layers.42.post_attention_layernorm.weight": "pytorch_model-
|
346 |
-
"model.layers.42.self_attn.k_proj.weight": "pytorch_model-
|
347 |
-
"model.layers.42.self_attn.o_proj.weight": "pytorch_model-
|
348 |
-
"model.layers.42.self_attn.q_proj.weight": "pytorch_model-
|
349 |
-
"model.layers.42.self_attn.v_proj.weight": "pytorch_model-
|
350 |
-
"model.layers.43.input_layernorm.weight": "pytorch_model-
|
351 |
-
"model.layers.43.mlp.down_proj.weight": "pytorch_model-
|
352 |
-
"model.layers.43.mlp.gate_proj.weight": "pytorch_model-
|
353 |
-
"model.layers.43.mlp.up_proj.weight": "pytorch_model-
|
354 |
-
"model.layers.43.post_attention_layernorm.weight": "pytorch_model-
|
355 |
-
"model.layers.43.self_attn.k_proj.weight": "pytorch_model-
|
356 |
-
"model.layers.43.self_attn.o_proj.weight": "pytorch_model-
|
357 |
-
"model.layers.43.self_attn.q_proj.weight": "pytorch_model-
|
358 |
-
"model.layers.43.self_attn.v_proj.weight": "pytorch_model-
|
359 |
-
"model.layers.44.input_layernorm.weight": "pytorch_model-
|
360 |
-
"model.layers.44.mlp.down_proj.weight": "pytorch_model-
|
361 |
-
"model.layers.44.mlp.gate_proj.weight": "pytorch_model-
|
362 |
-
"model.layers.44.mlp.up_proj.weight": "pytorch_model-
|
363 |
-
"model.layers.44.post_attention_layernorm.weight": "pytorch_model-
|
364 |
-
"model.layers.44.self_attn.k_proj.weight": "pytorch_model-
|
365 |
-
"model.layers.44.self_attn.o_proj.weight": "pytorch_model-
|
366 |
-
"model.layers.44.self_attn.q_proj.weight": "pytorch_model-
|
367 |
-
"model.layers.44.self_attn.v_proj.weight": "pytorch_model-
|
368 |
-
"model.layers.45.input_layernorm.weight": "pytorch_model-00004-of-
|
369 |
-
"model.layers.45.mlp.down_proj.weight": "pytorch_model-00004-of-
|
370 |
-
"model.layers.45.mlp.gate_proj.weight": "pytorch_model-00004-of-
|
371 |
-
"model.layers.45.mlp.up_proj.weight": "pytorch_model-00004-of-
|
372 |
-
"model.layers.45.post_attention_layernorm.weight": "pytorch_model-00004-of-
|
373 |
-
"model.layers.45.self_attn.k_proj.weight": "pytorch_model-
|
374 |
-
"model.layers.45.self_attn.o_proj.weight": "pytorch_model-
|
375 |
-
"model.layers.45.self_attn.q_proj.weight": "pytorch_model-
|
376 |
-
"model.layers.45.self_attn.v_proj.weight": "pytorch_model-
|
377 |
-
"model.layers.46.input_layernorm.weight": "pytorch_model-00004-of-
|
378 |
-
"model.layers.46.mlp.down_proj.weight": "pytorch_model-00004-of-
|
379 |
-
"model.layers.46.mlp.gate_proj.weight": "pytorch_model-00004-of-
|
380 |
-
"model.layers.46.mlp.up_proj.weight": "pytorch_model-00004-of-
|
381 |
-
"model.layers.46.post_attention_layernorm.weight": "pytorch_model-00004-of-
|
382 |
-
"model.layers.46.self_attn.k_proj.weight": "pytorch_model-00004-of-
|
383 |
-
"model.layers.46.self_attn.o_proj.weight": "pytorch_model-00004-of-
|
384 |
-
"model.layers.46.self_attn.q_proj.weight": "pytorch_model-00004-of-
|
385 |
-
"model.layers.46.self_attn.v_proj.weight": "pytorch_model-00004-of-
|
386 |
-
"model.layers.47.input_layernorm.weight": "pytorch_model-00004-of-
|
387 |
-
"model.layers.47.mlp.down_proj.weight": "pytorch_model-00004-of-
|
388 |
-
"model.layers.47.mlp.gate_proj.weight": "pytorch_model-00004-of-
|
389 |
-
"model.layers.47.mlp.up_proj.weight": "pytorch_model-00004-of-
|
390 |
-
"model.layers.47.post_attention_layernorm.weight": "pytorch_model-00004-of-
|
391 |
-
"model.layers.47.self_attn.k_proj.weight": "pytorch_model-00004-of-
|
392 |
-
"model.layers.47.self_attn.o_proj.weight": "pytorch_model-00004-of-
|
393 |
-
"model.layers.47.self_attn.q_proj.weight": "pytorch_model-00004-of-
|
394 |
-
"model.layers.47.self_attn.v_proj.weight": "pytorch_model-00004-of-
|
395 |
-
"model.layers.48.input_layernorm.weight": "pytorch_model-
|
396 |
-
"model.layers.48.mlp.down_proj.weight": "pytorch_model-
|
397 |
-
"model.layers.48.mlp.gate_proj.weight": "pytorch_model-
|
398 |
-
"model.layers.48.mlp.up_proj.weight": "pytorch_model-
|
399 |
-
"model.layers.48.post_attention_layernorm.weight": "pytorch_model-
|
400 |
-
"model.layers.48.self_attn.k_proj.weight": "pytorch_model-00004-of-
|
401 |
-
"model.layers.48.self_attn.o_proj.weight": "pytorch_model-00004-of-
|
402 |
-
"model.layers.48.self_attn.q_proj.weight": "pytorch_model-00004-of-
|
403 |
-
"model.layers.48.self_attn.v_proj.weight": "pytorch_model-00004-of-
|
404 |
-
"model.layers.49.input_layernorm.weight": "pytorch_model-
|
405 |
-
"model.layers.49.mlp.down_proj.weight": "pytorch_model-
|
406 |
-
"model.layers.49.mlp.gate_proj.weight": "pytorch_model-
|
407 |
-
"model.layers.49.mlp.up_proj.weight": "pytorch_model-
|
408 |
-
"model.layers.49.post_attention_layernorm.weight": "pytorch_model-
|
409 |
-
"model.layers.49.self_attn.k_proj.weight": "pytorch_model-
|
410 |
-
"model.layers.49.self_attn.o_proj.weight": "pytorch_model-
|
411 |
-
"model.layers.49.self_attn.q_proj.weight": "pytorch_model-
|
412 |
-
"model.layers.49.self_attn.v_proj.weight": "pytorch_model-
|
413 |
-
"model.layers.5.input_layernorm.weight": "pytorch_model-00001-of-
|
414 |
-
"model.layers.5.mlp.down_proj.weight": "pytorch_model-00001-of-
|
415 |
-
"model.layers.5.mlp.gate_proj.weight": "pytorch_model-00001-of-
|
416 |
-
"model.layers.5.mlp.up_proj.weight": "pytorch_model-00001-of-
|
417 |
-
"model.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-
|
418 |
-
"model.layers.5.self_attn.k_proj.weight": "pytorch_model-00001-of-
|
419 |
-
"model.layers.5.self_attn.o_proj.weight": "pytorch_model-00001-of-
|
420 |
-
"model.layers.5.self_attn.q_proj.weight": "pytorch_model-00001-of-
|
421 |
-
"model.layers.5.self_attn.v_proj.weight": "pytorch_model-00001-of-
|
422 |
-
"model.layers.50.input_layernorm.weight": "pytorch_model-
|
423 |
-
"model.layers.50.mlp.down_proj.weight": "pytorch_model-
|
424 |
-
"model.layers.50.mlp.gate_proj.weight": "pytorch_model-
|
425 |
-
"model.layers.50.mlp.up_proj.weight": "pytorch_model-
|
426 |
-
"model.layers.50.post_attention_layernorm.weight": "pytorch_model-
|
427 |
-
"model.layers.50.self_attn.k_proj.weight": "pytorch_model-
|
428 |
-
"model.layers.50.self_attn.o_proj.weight": "pytorch_model-
|
429 |
-
"model.layers.50.self_attn.q_proj.weight": "pytorch_model-
|
430 |
-
"model.layers.50.self_attn.v_proj.weight": "pytorch_model-
|
431 |
-
"model.layers.51.input_layernorm.weight": "pytorch_model-
|
432 |
-
"model.layers.51.mlp.down_proj.weight": "pytorch_model-
|
433 |
-
"model.layers.51.mlp.gate_proj.weight": "pytorch_model-
|
434 |
-
"model.layers.51.mlp.up_proj.weight": "pytorch_model-
|
435 |
-
"model.layers.51.post_attention_layernorm.weight": "pytorch_model-
|
436 |
-
"model.layers.51.self_attn.k_proj.weight": "pytorch_model-
|
437 |
-
"model.layers.51.self_attn.o_proj.weight": "pytorch_model-
|
438 |
-
"model.layers.51.self_attn.q_proj.weight": "pytorch_model-
|
439 |
-
"model.layers.51.self_attn.v_proj.weight": "pytorch_model-
|
440 |
-
"model.layers.52.input_layernorm.weight": "pytorch_model-
|
441 |
-
"model.layers.52.mlp.down_proj.weight": "pytorch_model-
|
442 |
-
"model.layers.52.mlp.gate_proj.weight": "pytorch_model-
|
443 |
-
"model.layers.52.mlp.up_proj.weight": "pytorch_model-
|
444 |
-
"model.layers.52.post_attention_layernorm.weight": "pytorch_model-
|
445 |
-
"model.layers.52.self_attn.k_proj.weight": "pytorch_model-
|
446 |
-
"model.layers.52.self_attn.o_proj.weight": "pytorch_model-
|
447 |
-
"model.layers.52.self_attn.q_proj.weight": "pytorch_model-
|
448 |
-
"model.layers.52.self_attn.v_proj.weight": "pytorch_model-
|
449 |
-
"model.layers.53.input_layernorm.weight": "pytorch_model-
|
450 |
-
"model.layers.53.mlp.down_proj.weight": "pytorch_model-
|
451 |
-
"model.layers.53.mlp.gate_proj.weight": "pytorch_model-
|
452 |
-
"model.layers.53.mlp.up_proj.weight": "pytorch_model-
|
453 |
-
"model.layers.53.post_attention_layernorm.weight": "pytorch_model-
|
454 |
-
"model.layers.53.self_attn.k_proj.weight": "pytorch_model-
|
455 |
-
"model.layers.53.self_attn.o_proj.weight": "pytorch_model-
|
456 |
-
"model.layers.53.self_attn.q_proj.weight": "pytorch_model-
|
457 |
-
"model.layers.53.self_attn.v_proj.weight": "pytorch_model-
|
458 |
-
"model.layers.54.input_layernorm.weight": "pytorch_model-
|
459 |
-
"model.layers.54.mlp.down_proj.weight": "pytorch_model-
|
460 |
-
"model.layers.54.mlp.gate_proj.weight": "pytorch_model-
|
461 |
-
"model.layers.54.mlp.up_proj.weight": "pytorch_model-
|
462 |
-
"model.layers.54.post_attention_layernorm.weight": "pytorch_model-
|
463 |
-
"model.layers.54.self_attn.k_proj.weight": "pytorch_model-
|
464 |
-
"model.layers.54.self_attn.o_proj.weight": "pytorch_model-
|
465 |
-
"model.layers.54.self_attn.q_proj.weight": "pytorch_model-
|
466 |
-
"model.layers.54.self_attn.v_proj.weight": "pytorch_model-
|
467 |
-
"model.layers.55.input_layernorm.weight": "pytorch_model-
|
468 |
-
"model.layers.55.mlp.down_proj.weight": "pytorch_model-
|
469 |
-
"model.layers.55.mlp.gate_proj.weight": "pytorch_model-
|
470 |
-
"model.layers.55.mlp.up_proj.weight": "pytorch_model-
|
471 |
-
"model.layers.55.post_attention_layernorm.weight": "pytorch_model-
|
472 |
-
"model.layers.55.self_attn.k_proj.weight": "pytorch_model-
|
473 |
-
"model.layers.55.self_attn.o_proj.weight": "pytorch_model-
|
474 |
-
"model.layers.55.self_attn.q_proj.weight": "pytorch_model-
|
475 |
-
"model.layers.55.self_attn.v_proj.weight": "pytorch_model-
|
476 |
-
"model.layers.56.input_layernorm.weight": "pytorch_model-
|
477 |
-
"model.layers.56.mlp.down_proj.weight": "pytorch_model-
|
478 |
-
"model.layers.56.mlp.gate_proj.weight": "pytorch_model-
|
479 |
-
"model.layers.56.mlp.up_proj.weight": "pytorch_model-
|
480 |
-
"model.layers.56.post_attention_layernorm.weight": "pytorch_model-
|
481 |
-
"model.layers.56.self_attn.k_proj.weight": "pytorch_model-
|
482 |
-
"model.layers.56.self_attn.o_proj.weight": "pytorch_model-
|
483 |
-
"model.layers.56.self_attn.q_proj.weight": "pytorch_model-
|
484 |
-
"model.layers.56.self_attn.v_proj.weight": "pytorch_model-
|
485 |
-
"model.layers.57.input_layernorm.weight": "pytorch_model-
|
486 |
-
"model.layers.57.mlp.down_proj.weight": "pytorch_model-
|
487 |
-
"model.layers.57.mlp.gate_proj.weight": "pytorch_model-
|
488 |
-
"model.layers.57.mlp.up_proj.weight": "pytorch_model-
|
489 |
-
"model.layers.57.post_attention_layernorm.weight": "pytorch_model-
|
490 |
-
"model.layers.57.self_attn.k_proj.weight": "pytorch_model-
|
491 |
-
"model.layers.57.self_attn.o_proj.weight": "pytorch_model-
|
492 |
-
"model.layers.57.self_attn.q_proj.weight": "pytorch_model-
|
493 |
-
"model.layers.57.self_attn.v_proj.weight": "pytorch_model-
|
494 |
-
"model.layers.58.input_layernorm.weight": "pytorch_model-
|
495 |
-
"model.layers.58.mlp.down_proj.weight": "pytorch_model-
|
496 |
-
"model.layers.58.mlp.gate_proj.weight": "pytorch_model-
|
497 |
-
"model.layers.58.mlp.up_proj.weight": "pytorch_model-
|
498 |
-
"model.layers.58.post_attention_layernorm.weight": "pytorch_model-
|
499 |
-
"model.layers.58.self_attn.k_proj.weight": "pytorch_model-
|
500 |
-
"model.layers.58.self_attn.o_proj.weight": "pytorch_model-
|
501 |
-
"model.layers.58.self_attn.q_proj.weight": "pytorch_model-
|
502 |
-
"model.layers.58.self_attn.v_proj.weight": "pytorch_model-
|
503 |
-
"model.layers.59.input_layernorm.weight": "pytorch_model-
|
504 |
-
"model.layers.59.mlp.down_proj.weight": "pytorch_model-
|
505 |
-
"model.layers.59.mlp.gate_proj.weight": "pytorch_model-
|
506 |
-
"model.layers.59.mlp.up_proj.weight": "pytorch_model-
|
507 |
-
"model.layers.59.post_attention_layernorm.weight": "pytorch_model-
|
508 |
-
"model.layers.59.self_attn.k_proj.weight": "pytorch_model-
|
509 |
-
"model.layers.59.self_attn.o_proj.weight": "pytorch_model-
|
510 |
-
"model.layers.59.self_attn.q_proj.weight": "pytorch_model-
|
511 |
-
"model.layers.59.self_attn.v_proj.weight": "pytorch_model-
|
512 |
-
"model.layers.6.input_layernorm.weight": "pytorch_model-00001-of-
|
513 |
-
"model.layers.6.mlp.down_proj.weight": "pytorch_model-00001-of-
|
514 |
-
"model.layers.6.mlp.gate_proj.weight": "pytorch_model-00001-of-
|
515 |
-
"model.layers.6.mlp.up_proj.weight": "pytorch_model-00001-of-
|
516 |
-
"model.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-
|
517 |
-
"model.layers.6.self_attn.k_proj.weight": "pytorch_model-00001-of-
|
518 |
-
"model.layers.6.self_attn.o_proj.weight": "pytorch_model-00001-of-
|
519 |
-
"model.layers.6.self_attn.q_proj.weight": "pytorch_model-00001-of-
|
520 |
-
"model.layers.6.self_attn.v_proj.weight": "pytorch_model-00001-of-
|
521 |
-
"model.layers.7.input_layernorm.weight": "pytorch_model-00001-of-
|
522 |
-
"model.layers.7.mlp.down_proj.weight": "pytorch_model-00001-of-
|
523 |
-
"model.layers.7.mlp.gate_proj.weight": "pytorch_model-00001-of-
|
524 |
-
"model.layers.7.mlp.up_proj.weight": "pytorch_model-00001-of-
|
525 |
-
"model.layers.7.post_attention_layernorm.weight": "pytorch_model-00001-of-
|
526 |
-
"model.layers.7.self_attn.k_proj.weight": "pytorch_model-00001-of-
|
527 |
-
"model.layers.7.self_attn.o_proj.weight": "pytorch_model-00001-of-
|
528 |
-
"model.layers.7.self_attn.q_proj.weight": "pytorch_model-00001-of-
|
529 |
-
"model.layers.7.self_attn.v_proj.weight": "pytorch_model-00001-of-
|
530 |
-
"model.layers.8.input_layernorm.weight": "pytorch_model-00001-of-
|
531 |
-
"model.layers.8.mlp.down_proj.weight": "pytorch_model-00001-of-
|
532 |
-
"model.layers.8.mlp.gate_proj.weight": "pytorch_model-00001-of-
|
533 |
-
"model.layers.8.mlp.up_proj.weight": "pytorch_model-00001-of-
|
534 |
-
"model.layers.8.post_attention_layernorm.weight": "pytorch_model-00001-of-
|
535 |
-
"model.layers.8.self_attn.k_proj.weight": "pytorch_model-00001-of-
|
536 |
-
"model.layers.8.self_attn.o_proj.weight": "pytorch_model-00001-of-
|
537 |
-
"model.layers.8.self_attn.q_proj.weight": "pytorch_model-00001-of-
|
538 |
-
"model.layers.8.self_attn.v_proj.weight": "pytorch_model-00001-of-
|
539 |
-
"model.layers.9.input_layernorm.weight": "pytorch_model-00001-of-
|
540 |
-
"model.layers.9.mlp.down_proj.weight": "pytorch_model-00001-of-
|
541 |
-
"model.layers.9.mlp.gate_proj.weight": "pytorch_model-00001-of-
|
542 |
-
"model.layers.9.mlp.up_proj.weight": "pytorch_model-00001-of-
|
543 |
-
"model.layers.9.post_attention_layernorm.weight": "pytorch_model-00001-of-
|
544 |
-
"model.layers.9.self_attn.k_proj.weight": "pytorch_model-00001-of-
|
545 |
-
"model.layers.9.self_attn.o_proj.weight": "pytorch_model-00001-of-
|
546 |
-
"model.layers.9.self_attn.q_proj.weight": "pytorch_model-00001-of-
|
547 |
-
"model.layers.9.self_attn.v_proj.weight": "pytorch_model-00001-of-
|
548 |
-
"model.norm.weight": "pytorch_model-
|
549 |
}
|
550 |
}
|
|
|
3 |
"total_size": 40177428480
|
4 |
},
|
5 |
"weight_map": {
|
6 |
+
"lm_head.weight": "pytorch_model-00006-of-00006.bin",
|
7 |
+
"model.embed_tokens.weight": "pytorch_model-00001-of-00006.bin",
|
8 |
+
"model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00006.bin",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00006.bin",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00006.bin",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00006.bin",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00006.bin",
|
13 |
+
"model.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-00006.bin",
|
14 |
+
"model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00006.bin",
|
15 |
+
"model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00006.bin",
|
16 |
+
"model.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-00006.bin",
|
17 |
+
"model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00006.bin",
|
18 |
+
"model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00006.bin",
|
19 |
+
"model.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-00006.bin",
|
20 |
+
"model.layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-00006.bin",
|
21 |
+
"model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00006.bin",
|
22 |
+
"model.layers.1.self_attn.k_proj.weight": "pytorch_model-00001-of-00006.bin",
|
23 |
+
"model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00006.bin",
|
24 |
+
"model.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-00006.bin",
|
25 |
+
"model.layers.1.self_attn.v_proj.weight": "pytorch_model-00001-of-00006.bin",
|
26 |
+
"model.layers.10.input_layernorm.weight": "pytorch_model-00002-of-00006.bin",
|
27 |
+
"model.layers.10.mlp.down_proj.weight": "pytorch_model-00001-of-00006.bin",
|
28 |
+
"model.layers.10.mlp.gate_proj.weight": "pytorch_model-00001-of-00006.bin",
|
29 |
+
"model.layers.10.mlp.up_proj.weight": "pytorch_model-00002-of-00006.bin",
|
30 |
+
"model.layers.10.post_attention_layernorm.weight": "pytorch_model-00002-of-00006.bin",
|
31 |
+
"model.layers.10.self_attn.k_proj.weight": "pytorch_model-00001-of-00006.bin",
|
32 |
+
"model.layers.10.self_attn.o_proj.weight": "pytorch_model-00001-of-00006.bin",
|
33 |
+
"model.layers.10.self_attn.q_proj.weight": "pytorch_model-00001-of-00006.bin",
|
34 |
+
"model.layers.10.self_attn.v_proj.weight": "pytorch_model-00001-of-00006.bin",
|
35 |
+
"model.layers.11.input_layernorm.weight": "pytorch_model-00002-of-00006.bin",
|
36 |
+
"model.layers.11.mlp.down_proj.weight": "pytorch_model-00002-of-00006.bin",
|
37 |
+
"model.layers.11.mlp.gate_proj.weight": "pytorch_model-00002-of-00006.bin",
|
38 |
+
"model.layers.11.mlp.up_proj.weight": "pytorch_model-00002-of-00006.bin",
|
39 |
+
"model.layers.11.post_attention_layernorm.weight": "pytorch_model-00002-of-00006.bin",
|
40 |
+
"model.layers.11.self_attn.k_proj.weight": "pytorch_model-00002-of-00006.bin",
|
41 |
+
"model.layers.11.self_attn.o_proj.weight": "pytorch_model-00002-of-00006.bin",
|
42 |
+
"model.layers.11.self_attn.q_proj.weight": "pytorch_model-00002-of-00006.bin",
|
43 |
+
"model.layers.11.self_attn.v_proj.weight": "pytorch_model-00002-of-00006.bin",
|
44 |
+
"model.layers.12.input_layernorm.weight": "pytorch_model-00002-of-00006.bin",
|
45 |
+
"model.layers.12.mlp.down_proj.weight": "pytorch_model-00002-of-00006.bin",
|
46 |
+
"model.layers.12.mlp.gate_proj.weight": "pytorch_model-00002-of-00006.bin",
|
47 |
+
"model.layers.12.mlp.up_proj.weight": "pytorch_model-00002-of-00006.bin",
|
48 |
+
"model.layers.12.post_attention_layernorm.weight": "pytorch_model-00002-of-00006.bin",
|
49 |
+
"model.layers.12.self_attn.k_proj.weight": "pytorch_model-00002-of-00006.bin",
|
50 |
+
"model.layers.12.self_attn.o_proj.weight": "pytorch_model-00002-of-00006.bin",
|
51 |
+
"model.layers.12.self_attn.q_proj.weight": "pytorch_model-00002-of-00006.bin",
|
52 |
+
"model.layers.12.self_attn.v_proj.weight": "pytorch_model-00002-of-00006.bin",
|
53 |
+
"model.layers.13.input_layernorm.weight": "pytorch_model-00002-of-00006.bin",
|
54 |
+
"model.layers.13.mlp.down_proj.weight": "pytorch_model-00002-of-00006.bin",
|
55 |
+
"model.layers.13.mlp.gate_proj.weight": "pytorch_model-00002-of-00006.bin",
|
56 |
+
"model.layers.13.mlp.up_proj.weight": "pytorch_model-00002-of-00006.bin",
|
57 |
+
"model.layers.13.post_attention_layernorm.weight": "pytorch_model-00002-of-00006.bin",
|
58 |
+
"model.layers.13.self_attn.k_proj.weight": "pytorch_model-00002-of-00006.bin",
|
59 |
+
"model.layers.13.self_attn.o_proj.weight": "pytorch_model-00002-of-00006.bin",
|
60 |
+
"model.layers.13.self_attn.q_proj.weight": "pytorch_model-00002-of-00006.bin",
|
61 |
+
"model.layers.13.self_attn.v_proj.weight": "pytorch_model-00002-of-00006.bin",
|
62 |
+
"model.layers.14.input_layernorm.weight": "pytorch_model-00002-of-00006.bin",
|
63 |
+
"model.layers.14.mlp.down_proj.weight": "pytorch_model-00002-of-00006.bin",
|
64 |
+
"model.layers.14.mlp.gate_proj.weight": "pytorch_model-00002-of-00006.bin",
|
65 |
+
"model.layers.14.mlp.up_proj.weight": "pytorch_model-00002-of-00006.bin",
|
66 |
+
"model.layers.14.post_attention_layernorm.weight": "pytorch_model-00002-of-00006.bin",
|
67 |
+
"model.layers.14.self_attn.k_proj.weight": "pytorch_model-00002-of-00006.bin",
|
68 |
+
"model.layers.14.self_attn.o_proj.weight": "pytorch_model-00002-of-00006.bin",
|
69 |
+
"model.layers.14.self_attn.q_proj.weight": "pytorch_model-00002-of-00006.bin",
|
70 |
+
"model.layers.14.self_attn.v_proj.weight": "pytorch_model-00002-of-00006.bin",
|
71 |
+
"model.layers.15.input_layernorm.weight": "pytorch_model-00002-of-00006.bin",
|
72 |
+
"model.layers.15.mlp.down_proj.weight": "pytorch_model-00002-of-00006.bin",
|
73 |
+
"model.layers.15.mlp.gate_proj.weight": "pytorch_model-00002-of-00006.bin",
|
74 |
+
"model.layers.15.mlp.up_proj.weight": "pytorch_model-00002-of-00006.bin",
|
75 |
+
"model.layers.15.post_attention_layernorm.weight": "pytorch_model-00002-of-00006.bin",
|
76 |
+
"model.layers.15.self_attn.k_proj.weight": "pytorch_model-00002-of-00006.bin",
|
77 |
+
"model.layers.15.self_attn.o_proj.weight": "pytorch_model-00002-of-00006.bin",
|
78 |
+
"model.layers.15.self_attn.q_proj.weight": "pytorch_model-00002-of-00006.bin",
|
79 |
+
"model.layers.15.self_attn.v_proj.weight": "pytorch_model-00002-of-00006.bin",
|
80 |
+
"model.layers.16.input_layernorm.weight": "pytorch_model-00002-of-00006.bin",
|
81 |
+
"model.layers.16.mlp.down_proj.weight": "pytorch_model-00002-of-00006.bin",
|
82 |
+
"model.layers.16.mlp.gate_proj.weight": "pytorch_model-00002-of-00006.bin",
|
83 |
+
"model.layers.16.mlp.up_proj.weight": "pytorch_model-00002-of-00006.bin",
|
84 |
+
"model.layers.16.post_attention_layernorm.weight": "pytorch_model-00002-of-00006.bin",
|
85 |
+
"model.layers.16.self_attn.k_proj.weight": "pytorch_model-00002-of-00006.bin",
|
86 |
+
"model.layers.16.self_attn.o_proj.weight": "pytorch_model-00002-of-00006.bin",
|
87 |
+
"model.layers.16.self_attn.q_proj.weight": "pytorch_model-00002-of-00006.bin",
|
88 |
+
"model.layers.16.self_attn.v_proj.weight": "pytorch_model-00002-of-00006.bin",
|
89 |
+
"model.layers.17.input_layernorm.weight": "pytorch_model-00002-of-00006.bin",
|
90 |
+
"model.layers.17.mlp.down_proj.weight": "pytorch_model-00002-of-00006.bin",
|
91 |
+
"model.layers.17.mlp.gate_proj.weight": "pytorch_model-00002-of-00006.bin",
|
92 |
+
"model.layers.17.mlp.up_proj.weight": "pytorch_model-00002-of-00006.bin",
|
93 |
+
"model.layers.17.post_attention_layernorm.weight": "pytorch_model-00002-of-00006.bin",
|
94 |
+
"model.layers.17.self_attn.k_proj.weight": "pytorch_model-00002-of-00006.bin",
|
95 |
+
"model.layers.17.self_attn.o_proj.weight": "pytorch_model-00002-of-00006.bin",
|
96 |
+
"model.layers.17.self_attn.q_proj.weight": "pytorch_model-00002-of-00006.bin",
|
97 |
+
"model.layers.17.self_attn.v_proj.weight": "pytorch_model-00002-of-00006.bin",
|
98 |
+
"model.layers.18.input_layernorm.weight": "pytorch_model-00002-of-00006.bin",
|
99 |
+
"model.layers.18.mlp.down_proj.weight": "pytorch_model-00002-of-00006.bin",
|
100 |
+
"model.layers.18.mlp.gate_proj.weight": "pytorch_model-00002-of-00006.bin",
|
101 |
+
"model.layers.18.mlp.up_proj.weight": "pytorch_model-00002-of-00006.bin",
|
102 |
+
"model.layers.18.post_attention_layernorm.weight": "pytorch_model-00002-of-00006.bin",
|
103 |
+
"model.layers.18.self_attn.k_proj.weight": "pytorch_model-00002-of-00006.bin",
|
104 |
+
"model.layers.18.self_attn.o_proj.weight": "pytorch_model-00002-of-00006.bin",
|
105 |
+
"model.layers.18.self_attn.q_proj.weight": "pytorch_model-00002-of-00006.bin",
|
106 |
+
"model.layers.18.self_attn.v_proj.weight": "pytorch_model-00002-of-00006.bin",
|
107 |
+
"model.layers.19.input_layernorm.weight": "pytorch_model-00002-of-00006.bin",
|
108 |
+
"model.layers.19.mlp.down_proj.weight": "pytorch_model-00002-of-00006.bin",
|
109 |
+
"model.layers.19.mlp.gate_proj.weight": "pytorch_model-00002-of-00006.bin",
|
110 |
+
"model.layers.19.mlp.up_proj.weight": "pytorch_model-00002-of-00006.bin",
|
111 |
+
"model.layers.19.post_attention_layernorm.weight": "pytorch_model-00002-of-00006.bin",
|
112 |
+
"model.layers.19.self_attn.k_proj.weight": "pytorch_model-00002-of-00006.bin",
|
113 |
+
"model.layers.19.self_attn.o_proj.weight": "pytorch_model-00002-of-00006.bin",
|
114 |
+
"model.layers.19.self_attn.q_proj.weight": "pytorch_model-00002-of-00006.bin",
|
115 |
+
"model.layers.19.self_attn.v_proj.weight": "pytorch_model-00002-of-00006.bin",
|
116 |
+
"model.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00006.bin",
|
117 |
+
"model.layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-00006.bin",
|
118 |
+
"model.layers.2.mlp.gate_proj.weight": "pytorch_model-00001-of-00006.bin",
|
119 |
+
"model.layers.2.mlp.up_proj.weight": "pytorch_model-00001-of-00006.bin",
|
120 |
+
"model.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00006.bin",
|
121 |
+
"model.layers.2.self_attn.k_proj.weight": "pytorch_model-00001-of-00006.bin",
|
122 |
+
"model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00006.bin",
|
123 |
+
"model.layers.2.self_attn.q_proj.weight": "pytorch_model-00001-of-00006.bin",
|
124 |
+
"model.layers.2.self_attn.v_proj.weight": "pytorch_model-00001-of-00006.bin",
|
125 |
+
"model.layers.20.input_layernorm.weight": "pytorch_model-00002-of-00006.bin",
|
126 |
+
"model.layers.20.mlp.down_proj.weight": "pytorch_model-00002-of-00006.bin",
|
127 |
+
"model.layers.20.mlp.gate_proj.weight": "pytorch_model-00002-of-00006.bin",
|
128 |
+
"model.layers.20.mlp.up_proj.weight": "pytorch_model-00002-of-00006.bin",
|
129 |
+
"model.layers.20.post_attention_layernorm.weight": "pytorch_model-00002-of-00006.bin",
|
130 |
+
"model.layers.20.self_attn.k_proj.weight": "pytorch_model-00002-of-00006.bin",
|
131 |
+
"model.layers.20.self_attn.o_proj.weight": "pytorch_model-00002-of-00006.bin",
|
132 |
+
"model.layers.20.self_attn.q_proj.weight": "pytorch_model-00002-of-00006.bin",
|
133 |
+
"model.layers.20.self_attn.v_proj.weight": "pytorch_model-00002-of-00006.bin",
|
134 |
+
"model.layers.21.input_layernorm.weight": "pytorch_model-00002-of-00006.bin",
|
135 |
+
"model.layers.21.mlp.down_proj.weight": "pytorch_model-00002-of-00006.bin",
|
136 |
+
"model.layers.21.mlp.gate_proj.weight": "pytorch_model-00002-of-00006.bin",
|
137 |
+
"model.layers.21.mlp.up_proj.weight": "pytorch_model-00002-of-00006.bin",
|
138 |
+
"model.layers.21.post_attention_layernorm.weight": "pytorch_model-00002-of-00006.bin",
|
139 |
+
"model.layers.21.self_attn.k_proj.weight": "pytorch_model-00002-of-00006.bin",
|
140 |
+
"model.layers.21.self_attn.o_proj.weight": "pytorch_model-00002-of-00006.bin",
|
141 |
+
"model.layers.21.self_attn.q_proj.weight": "pytorch_model-00002-of-00006.bin",
|
142 |
+
"model.layers.21.self_attn.v_proj.weight": "pytorch_model-00002-of-00006.bin",
|
143 |
+
"model.layers.22.input_layernorm.weight": "pytorch_model-00002-of-00006.bin",
|
144 |
+
"model.layers.22.mlp.down_proj.weight": "pytorch_model-00002-of-00006.bin",
|
145 |
+
"model.layers.22.mlp.gate_proj.weight": "pytorch_model-00002-of-00006.bin",
|
146 |
+
"model.layers.22.mlp.up_proj.weight": "pytorch_model-00002-of-00006.bin",
|
147 |
+
"model.layers.22.post_attention_layernorm.weight": "pytorch_model-00002-of-00006.bin",
|
148 |
+
"model.layers.22.self_attn.k_proj.weight": "pytorch_model-00002-of-00006.bin",
|
149 |
+
"model.layers.22.self_attn.o_proj.weight": "pytorch_model-00002-of-00006.bin",
|
150 |
+
"model.layers.22.self_attn.q_proj.weight": "pytorch_model-00002-of-00006.bin",
|
151 |
+
"model.layers.22.self_attn.v_proj.weight": "pytorch_model-00002-of-00006.bin",
|
152 |
+
"model.layers.23.input_layernorm.weight": "pytorch_model-00003-of-00006.bin",
|
153 |
+
"model.layers.23.mlp.down_proj.weight": "pytorch_model-00003-of-00006.bin",
|
154 |
+
"model.layers.23.mlp.gate_proj.weight": "pytorch_model-00003-of-00006.bin",
|
155 |
+
"model.layers.23.mlp.up_proj.weight": "pytorch_model-00003-of-00006.bin",
|
156 |
+
"model.layers.23.post_attention_layernorm.weight": "pytorch_model-00003-of-00006.bin",
|
157 |
+
"model.layers.23.self_attn.k_proj.weight": "pytorch_model-00002-of-00006.bin",
|
158 |
+
"model.layers.23.self_attn.o_proj.weight": "pytorch_model-00002-of-00006.bin",
|
159 |
+
"model.layers.23.self_attn.q_proj.weight": "pytorch_model-00002-of-00006.bin",
|
160 |
+
"model.layers.23.self_attn.v_proj.weight": "pytorch_model-00002-of-00006.bin",
|
161 |
+
"model.layers.24.input_layernorm.weight": "pytorch_model-00003-of-00006.bin",
|
162 |
+
"model.layers.24.mlp.down_proj.weight": "pytorch_model-00003-of-00006.bin",
|
163 |
+
"model.layers.24.mlp.gate_proj.weight": "pytorch_model-00003-of-00006.bin",
|
164 |
+
"model.layers.24.mlp.up_proj.weight": "pytorch_model-00003-of-00006.bin",
|
165 |
+
"model.layers.24.post_attention_layernorm.weight": "pytorch_model-00003-of-00006.bin",
|
166 |
+
"model.layers.24.self_attn.k_proj.weight": "pytorch_model-00003-of-00006.bin",
|
167 |
+
"model.layers.24.self_attn.o_proj.weight": "pytorch_model-00003-of-00006.bin",
|
168 |
+
"model.layers.24.self_attn.q_proj.weight": "pytorch_model-00003-of-00006.bin",
|
169 |
+
"model.layers.24.self_attn.v_proj.weight": "pytorch_model-00003-of-00006.bin",
|
170 |
+
"model.layers.25.input_layernorm.weight": "pytorch_model-00003-of-00006.bin",
|
171 |
+
"model.layers.25.mlp.down_proj.weight": "pytorch_model-00003-of-00006.bin",
|
172 |
+
"model.layers.25.mlp.gate_proj.weight": "pytorch_model-00003-of-00006.bin",
|
173 |
+
"model.layers.25.mlp.up_proj.weight": "pytorch_model-00003-of-00006.bin",
|
174 |
+
"model.layers.25.post_attention_layernorm.weight": "pytorch_model-00003-of-00006.bin",
|
175 |
+
"model.layers.25.self_attn.k_proj.weight": "pytorch_model-00003-of-00006.bin",
|
176 |
+
"model.layers.25.self_attn.o_proj.weight": "pytorch_model-00003-of-00006.bin",
|
177 |
+
"model.layers.25.self_attn.q_proj.weight": "pytorch_model-00003-of-00006.bin",
|
178 |
+
"model.layers.25.self_attn.v_proj.weight": "pytorch_model-00003-of-00006.bin",
|
179 |
+
"model.layers.26.input_layernorm.weight": "pytorch_model-00003-of-00006.bin",
|
180 |
+
"model.layers.26.mlp.down_proj.weight": "pytorch_model-00003-of-00006.bin",
|
181 |
+
"model.layers.26.mlp.gate_proj.weight": "pytorch_model-00003-of-00006.bin",
|
182 |
+
"model.layers.26.mlp.up_proj.weight": "pytorch_model-00003-of-00006.bin",
|
183 |
+
"model.layers.26.post_attention_layernorm.weight": "pytorch_model-00003-of-00006.bin",
|
184 |
+
"model.layers.26.self_attn.k_proj.weight": "pytorch_model-00003-of-00006.bin",
|
185 |
+
"model.layers.26.self_attn.o_proj.weight": "pytorch_model-00003-of-00006.bin",
|
186 |
+
"model.layers.26.self_attn.q_proj.weight": "pytorch_model-00003-of-00006.bin",
|
187 |
+
"model.layers.26.self_attn.v_proj.weight": "pytorch_model-00003-of-00006.bin",
|
188 |
+
"model.layers.27.input_layernorm.weight": "pytorch_model-00003-of-00006.bin",
|
189 |
+
"model.layers.27.mlp.down_proj.weight": "pytorch_model-00003-of-00006.bin",
|
190 |
+
"model.layers.27.mlp.gate_proj.weight": "pytorch_model-00003-of-00006.bin",
|
191 |
+
"model.layers.27.mlp.up_proj.weight": "pytorch_model-00003-of-00006.bin",
|
192 |
+
"model.layers.27.post_attention_layernorm.weight": "pytorch_model-00003-of-00006.bin",
|
193 |
+
"model.layers.27.self_attn.k_proj.weight": "pytorch_model-00003-of-00006.bin",
|
194 |
+
"model.layers.27.self_attn.o_proj.weight": "pytorch_model-00003-of-00006.bin",
|
195 |
+
"model.layers.27.self_attn.q_proj.weight": "pytorch_model-00003-of-00006.bin",
|
196 |
+
"model.layers.27.self_attn.v_proj.weight": "pytorch_model-00003-of-00006.bin",
|
197 |
+
"model.layers.28.input_layernorm.weight": "pytorch_model-00003-of-00006.bin",
|
198 |
+
"model.layers.28.mlp.down_proj.weight": "pytorch_model-00003-of-00006.bin",
|
199 |
+
"model.layers.28.mlp.gate_proj.weight": "pytorch_model-00003-of-00006.bin",
|
200 |
+
"model.layers.28.mlp.up_proj.weight": "pytorch_model-00003-of-00006.bin",
|
201 |
+
"model.layers.28.post_attention_layernorm.weight": "pytorch_model-00003-of-00006.bin",
|
202 |
+
"model.layers.28.self_attn.k_proj.weight": "pytorch_model-00003-of-00006.bin",
|
203 |
+
"model.layers.28.self_attn.o_proj.weight": "pytorch_model-00003-of-00006.bin",
|
204 |
+
"model.layers.28.self_attn.q_proj.weight": "pytorch_model-00003-of-00006.bin",
|
205 |
+
"model.layers.28.self_attn.v_proj.weight": "pytorch_model-00003-of-00006.bin",
|
206 |
+
"model.layers.29.input_layernorm.weight": "pytorch_model-00003-of-00006.bin",
|
207 |
+
"model.layers.29.mlp.down_proj.weight": "pytorch_model-00003-of-00006.bin",
|
208 |
+
"model.layers.29.mlp.gate_proj.weight": "pytorch_model-00003-of-00006.bin",
|
209 |
+
"model.layers.29.mlp.up_proj.weight": "pytorch_model-00003-of-00006.bin",
|
210 |
+
"model.layers.29.post_attention_layernorm.weight": "pytorch_model-00003-of-00006.bin",
|
211 |
+
"model.layers.29.self_attn.k_proj.weight": "pytorch_model-00003-of-00006.bin",
|
212 |
+
"model.layers.29.self_attn.o_proj.weight": "pytorch_model-00003-of-00006.bin",
|
213 |
+
"model.layers.29.self_attn.q_proj.weight": "pytorch_model-00003-of-00006.bin",
|
214 |
+
"model.layers.29.self_attn.v_proj.weight": "pytorch_model-00003-of-00006.bin",
|
215 |
+
"model.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00006.bin",
|
216 |
+
"model.layers.3.mlp.down_proj.weight": "pytorch_model-00001-of-00006.bin",
|
217 |
+
"model.layers.3.mlp.gate_proj.weight": "pytorch_model-00001-of-00006.bin",
|
218 |
+
"model.layers.3.mlp.up_proj.weight": "pytorch_model-00001-of-00006.bin",
|
219 |
+
"model.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00006.bin",
|
220 |
+
"model.layers.3.self_attn.k_proj.weight": "pytorch_model-00001-of-00006.bin",
|
221 |
+
"model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00006.bin",
|
222 |
+
"model.layers.3.self_attn.q_proj.weight": "pytorch_model-00001-of-00006.bin",
|
223 |
+
"model.layers.3.self_attn.v_proj.weight": "pytorch_model-00001-of-00006.bin",
|
224 |
+
"model.layers.30.input_layernorm.weight": "pytorch_model-00003-of-00006.bin",
|
225 |
+
"model.layers.30.mlp.down_proj.weight": "pytorch_model-00003-of-00006.bin",
|
226 |
+
"model.layers.30.mlp.gate_proj.weight": "pytorch_model-00003-of-00006.bin",
|
227 |
+
"model.layers.30.mlp.up_proj.weight": "pytorch_model-00003-of-00006.bin",
|
228 |
+
"model.layers.30.post_attention_layernorm.weight": "pytorch_model-00003-of-00006.bin",
|
229 |
+
"model.layers.30.self_attn.k_proj.weight": "pytorch_model-00003-of-00006.bin",
|
230 |
+
"model.layers.30.self_attn.o_proj.weight": "pytorch_model-00003-of-00006.bin",
|
231 |
+
"model.layers.30.self_attn.q_proj.weight": "pytorch_model-00003-of-00006.bin",
|
232 |
+
"model.layers.30.self_attn.v_proj.weight": "pytorch_model-00003-of-00006.bin",
|
233 |
+
"model.layers.31.input_layernorm.weight": "pytorch_model-00003-of-00006.bin",
|
234 |
+
"model.layers.31.mlp.down_proj.weight": "pytorch_model-00003-of-00006.bin",
|
235 |
+
"model.layers.31.mlp.gate_proj.weight": "pytorch_model-00003-of-00006.bin",
|
236 |
+
"model.layers.31.mlp.up_proj.weight": "pytorch_model-00003-of-00006.bin",
|
237 |
+
"model.layers.31.post_attention_layernorm.weight": "pytorch_model-00003-of-00006.bin",
|
238 |
+
"model.layers.31.self_attn.k_proj.weight": "pytorch_model-00003-of-00006.bin",
|
239 |
+
"model.layers.31.self_attn.o_proj.weight": "pytorch_model-00003-of-00006.bin",
|
240 |
+
"model.layers.31.self_attn.q_proj.weight": "pytorch_model-00003-of-00006.bin",
|
241 |
+
"model.layers.31.self_attn.v_proj.weight": "pytorch_model-00003-of-00006.bin",
|
242 |
+
"model.layers.32.input_layernorm.weight": "pytorch_model-00003-of-00006.bin",
|
243 |
+
"model.layers.32.mlp.down_proj.weight": "pytorch_model-00003-of-00006.bin",
|
244 |
+
"model.layers.32.mlp.gate_proj.weight": "pytorch_model-00003-of-00006.bin",
|
245 |
+
"model.layers.32.mlp.up_proj.weight": "pytorch_model-00003-of-00006.bin",
|
246 |
+
"model.layers.32.post_attention_layernorm.weight": "pytorch_model-00003-of-00006.bin",
|
247 |
+
"model.layers.32.self_attn.k_proj.weight": "pytorch_model-00003-of-00006.bin",
|
248 |
+
"model.layers.32.self_attn.o_proj.weight": "pytorch_model-00003-of-00006.bin",
|
249 |
+
"model.layers.32.self_attn.q_proj.weight": "pytorch_model-00003-of-00006.bin",
|
250 |
+
"model.layers.32.self_attn.v_proj.weight": "pytorch_model-00003-of-00006.bin",
|
251 |
+
"model.layers.33.input_layernorm.weight": "pytorch_model-00003-of-00006.bin",
|
252 |
+
"model.layers.33.mlp.down_proj.weight": "pytorch_model-00003-of-00006.bin",
|
253 |
+
"model.layers.33.mlp.gate_proj.weight": "pytorch_model-00003-of-00006.bin",
|
254 |
+
"model.layers.33.mlp.up_proj.weight": "pytorch_model-00003-of-00006.bin",
|
255 |
+
"model.layers.33.post_attention_layernorm.weight": "pytorch_model-00003-of-00006.bin",
|
256 |
+
"model.layers.33.self_attn.k_proj.weight": "pytorch_model-00003-of-00006.bin",
|
257 |
+
"model.layers.33.self_attn.o_proj.weight": "pytorch_model-00003-of-00006.bin",
|
258 |
+
"model.layers.33.self_attn.q_proj.weight": "pytorch_model-00003-of-00006.bin",
|
259 |
+
"model.layers.33.self_attn.v_proj.weight": "pytorch_model-00003-of-00006.bin",
|
260 |
+
"model.layers.34.input_layernorm.weight": "pytorch_model-00003-of-00006.bin",
|
261 |
+
"model.layers.34.mlp.down_proj.weight": "pytorch_model-00003-of-00006.bin",
|
262 |
+
"model.layers.34.mlp.gate_proj.weight": "pytorch_model-00003-of-00006.bin",
|
263 |
+
"model.layers.34.mlp.up_proj.weight": "pytorch_model-00003-of-00006.bin",
|
264 |
+
"model.layers.34.post_attention_layernorm.weight": "pytorch_model-00003-of-00006.bin",
|
265 |
+
"model.layers.34.self_attn.k_proj.weight": "pytorch_model-00003-of-00006.bin",
|
266 |
+
"model.layers.34.self_attn.o_proj.weight": "pytorch_model-00003-of-00006.bin",
|
267 |
+
"model.layers.34.self_attn.q_proj.weight": "pytorch_model-00003-of-00006.bin",
|
268 |
+
"model.layers.34.self_attn.v_proj.weight": "pytorch_model-00003-of-00006.bin",
|
269 |
+
"model.layers.35.input_layernorm.weight": "pytorch_model-00004-of-00006.bin",
|
270 |
+
"model.layers.35.mlp.down_proj.weight": "pytorch_model-00003-of-00006.bin",
|
271 |
+
"model.layers.35.mlp.gate_proj.weight": "pytorch_model-00003-of-00006.bin",
|
272 |
+
"model.layers.35.mlp.up_proj.weight": "pytorch_model-00004-of-00006.bin",
|
273 |
+
"model.layers.35.post_attention_layernorm.weight": "pytorch_model-00004-of-00006.bin",
|
274 |
+
"model.layers.35.self_attn.k_proj.weight": "pytorch_model-00003-of-00006.bin",
|
275 |
+
"model.layers.35.self_attn.o_proj.weight": "pytorch_model-00003-of-00006.bin",
|
276 |
+
"model.layers.35.self_attn.q_proj.weight": "pytorch_model-00003-of-00006.bin",
|
277 |
+
"model.layers.35.self_attn.v_proj.weight": "pytorch_model-00003-of-00006.bin",
|
278 |
+
"model.layers.36.input_layernorm.weight": "pytorch_model-00004-of-00006.bin",
|
279 |
+
"model.layers.36.mlp.down_proj.weight": "pytorch_model-00004-of-00006.bin",
|
280 |
+
"model.layers.36.mlp.gate_proj.weight": "pytorch_model-00004-of-00006.bin",
|
281 |
+
"model.layers.36.mlp.up_proj.weight": "pytorch_model-00004-of-00006.bin",
|
282 |
+
"model.layers.36.post_attention_layernorm.weight": "pytorch_model-00004-of-00006.bin",
|
283 |
+
"model.layers.36.self_attn.k_proj.weight": "pytorch_model-00004-of-00006.bin",
|
284 |
+
"model.layers.36.self_attn.o_proj.weight": "pytorch_model-00004-of-00006.bin",
|
285 |
+
"model.layers.36.self_attn.q_proj.weight": "pytorch_model-00004-of-00006.bin",
|
286 |
+
"model.layers.36.self_attn.v_proj.weight": "pytorch_model-00004-of-00006.bin",
|
287 |
+
"model.layers.37.input_layernorm.weight": "pytorch_model-00004-of-00006.bin",
|
288 |
+
"model.layers.37.mlp.down_proj.weight": "pytorch_model-00004-of-00006.bin",
|
289 |
+
"model.layers.37.mlp.gate_proj.weight": "pytorch_model-00004-of-00006.bin",
|
290 |
+
"model.layers.37.mlp.up_proj.weight": "pytorch_model-00004-of-00006.bin",
|
291 |
+
"model.layers.37.post_attention_layernorm.weight": "pytorch_model-00004-of-00006.bin",
|
292 |
+
"model.layers.37.self_attn.k_proj.weight": "pytorch_model-00004-of-00006.bin",
|
293 |
+
"model.layers.37.self_attn.o_proj.weight": "pytorch_model-00004-of-00006.bin",
|
294 |
+
"model.layers.37.self_attn.q_proj.weight": "pytorch_model-00004-of-00006.bin",
|
295 |
+
"model.layers.37.self_attn.v_proj.weight": "pytorch_model-00004-of-00006.bin",
|
296 |
+
"model.layers.38.input_layernorm.weight": "pytorch_model-00004-of-00006.bin",
|
297 |
+
"model.layers.38.mlp.down_proj.weight": "pytorch_model-00004-of-00006.bin",
|
298 |
+
"model.layers.38.mlp.gate_proj.weight": "pytorch_model-00004-of-00006.bin",
|
299 |
+
"model.layers.38.mlp.up_proj.weight": "pytorch_model-00004-of-00006.bin",
|
300 |
+
"model.layers.38.post_attention_layernorm.weight": "pytorch_model-00004-of-00006.bin",
|
301 |
+
"model.layers.38.self_attn.k_proj.weight": "pytorch_model-00004-of-00006.bin",
|
302 |
+
"model.layers.38.self_attn.o_proj.weight": "pytorch_model-00004-of-00006.bin",
|
303 |
+
"model.layers.38.self_attn.q_proj.weight": "pytorch_model-00004-of-00006.bin",
|
304 |
+
"model.layers.38.self_attn.v_proj.weight": "pytorch_model-00004-of-00006.bin",
|
305 |
+
"model.layers.39.input_layernorm.weight": "pytorch_model-00004-of-00006.bin",
|
306 |
+
"model.layers.39.mlp.down_proj.weight": "pytorch_model-00004-of-00006.bin",
|
307 |
+
"model.layers.39.mlp.gate_proj.weight": "pytorch_model-00004-of-00006.bin",
|
308 |
+
"model.layers.39.mlp.up_proj.weight": "pytorch_model-00004-of-00006.bin",
|
309 |
+
"model.layers.39.post_attention_layernorm.weight": "pytorch_model-00004-of-00006.bin",
|
310 |
+
"model.layers.39.self_attn.k_proj.weight": "pytorch_model-00004-of-00006.bin",
|
311 |
+
"model.layers.39.self_attn.o_proj.weight": "pytorch_model-00004-of-00006.bin",
|
312 |
+
"model.layers.39.self_attn.q_proj.weight": "pytorch_model-00004-of-00006.bin",
|
313 |
+
"model.layers.39.self_attn.v_proj.weight": "pytorch_model-00004-of-00006.bin",
|
314 |
+
"model.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00006.bin",
|
315 |
+
"model.layers.4.mlp.down_proj.weight": "pytorch_model-00001-of-00006.bin",
|
316 |
+
"model.layers.4.mlp.gate_proj.weight": "pytorch_model-00001-of-00006.bin",
|
317 |
+
"model.layers.4.mlp.up_proj.weight": "pytorch_model-00001-of-00006.bin",
|
318 |
+
"model.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00006.bin",
|
319 |
+
"model.layers.4.self_attn.k_proj.weight": "pytorch_model-00001-of-00006.bin",
|
320 |
+
"model.layers.4.self_attn.o_proj.weight": "pytorch_model-00001-of-00006.bin",
|
321 |
+
"model.layers.4.self_attn.q_proj.weight": "pytorch_model-00001-of-00006.bin",
|
322 |
+
"model.layers.4.self_attn.v_proj.weight": "pytorch_model-00001-of-00006.bin",
|
323 |
+
"model.layers.40.input_layernorm.weight": "pytorch_model-00004-of-00006.bin",
|
324 |
+
"model.layers.40.mlp.down_proj.weight": "pytorch_model-00004-of-00006.bin",
|
325 |
+
"model.layers.40.mlp.gate_proj.weight": "pytorch_model-00004-of-00006.bin",
|
326 |
+
"model.layers.40.mlp.up_proj.weight": "pytorch_model-00004-of-00006.bin",
|
327 |
+
"model.layers.40.post_attention_layernorm.weight": "pytorch_model-00004-of-00006.bin",
|
328 |
+
"model.layers.40.self_attn.k_proj.weight": "pytorch_model-00004-of-00006.bin",
|
329 |
+
"model.layers.40.self_attn.o_proj.weight": "pytorch_model-00004-of-00006.bin",
|
330 |
+
"model.layers.40.self_attn.q_proj.weight": "pytorch_model-00004-of-00006.bin",
|
331 |
+
"model.layers.40.self_attn.v_proj.weight": "pytorch_model-00004-of-00006.bin",
|
332 |
+
"model.layers.41.input_layernorm.weight": "pytorch_model-00004-of-00006.bin",
|
333 |
+
"model.layers.41.mlp.down_proj.weight": "pytorch_model-00004-of-00006.bin",
|
334 |
+
"model.layers.41.mlp.gate_proj.weight": "pytorch_model-00004-of-00006.bin",
|
335 |
+
"model.layers.41.mlp.up_proj.weight": "pytorch_model-00004-of-00006.bin",
|
336 |
+
"model.layers.41.post_attention_layernorm.weight": "pytorch_model-00004-of-00006.bin",
|
337 |
+
"model.layers.41.self_attn.k_proj.weight": "pytorch_model-00004-of-00006.bin",
|
338 |
+
"model.layers.41.self_attn.o_proj.weight": "pytorch_model-00004-of-00006.bin",
|
339 |
+
"model.layers.41.self_attn.q_proj.weight": "pytorch_model-00004-of-00006.bin",
|
340 |
+
"model.layers.41.self_attn.v_proj.weight": "pytorch_model-00004-of-00006.bin",
|
341 |
+
"model.layers.42.input_layernorm.weight": "pytorch_model-00004-of-00006.bin",
|
342 |
+
"model.layers.42.mlp.down_proj.weight": "pytorch_model-00004-of-00006.bin",
|
343 |
+
"model.layers.42.mlp.gate_proj.weight": "pytorch_model-00004-of-00006.bin",
|
344 |
+
"model.layers.42.mlp.up_proj.weight": "pytorch_model-00004-of-00006.bin",
|
345 |
+
"model.layers.42.post_attention_layernorm.weight": "pytorch_model-00004-of-00006.bin",
|
346 |
+
"model.layers.42.self_attn.k_proj.weight": "pytorch_model-00004-of-00006.bin",
|
347 |
+
"model.layers.42.self_attn.o_proj.weight": "pytorch_model-00004-of-00006.bin",
|
348 |
+
"model.layers.42.self_attn.q_proj.weight": "pytorch_model-00004-of-00006.bin",
|
349 |
+
"model.layers.42.self_attn.v_proj.weight": "pytorch_model-00004-of-00006.bin",
|
350 |
+
"model.layers.43.input_layernorm.weight": "pytorch_model-00004-of-00006.bin",
|
351 |
+
"model.layers.43.mlp.down_proj.weight": "pytorch_model-00004-of-00006.bin",
|
352 |
+
"model.layers.43.mlp.gate_proj.weight": "pytorch_model-00004-of-00006.bin",
|
353 |
+
"model.layers.43.mlp.up_proj.weight": "pytorch_model-00004-of-00006.bin",
|
354 |
+
"model.layers.43.post_attention_layernorm.weight": "pytorch_model-00004-of-00006.bin",
|
355 |
+
"model.layers.43.self_attn.k_proj.weight": "pytorch_model-00004-of-00006.bin",
|
356 |
+
"model.layers.43.self_attn.o_proj.weight": "pytorch_model-00004-of-00006.bin",
|
357 |
+
"model.layers.43.self_attn.q_proj.weight": "pytorch_model-00004-of-00006.bin",
|
358 |
+
"model.layers.43.self_attn.v_proj.weight": "pytorch_model-00004-of-00006.bin",
|
359 |
+
"model.layers.44.input_layernorm.weight": "pytorch_model-00004-of-00006.bin",
|
360 |
+
"model.layers.44.mlp.down_proj.weight": "pytorch_model-00004-of-00006.bin",
|
361 |
+
"model.layers.44.mlp.gate_proj.weight": "pytorch_model-00004-of-00006.bin",
|
362 |
+
"model.layers.44.mlp.up_proj.weight": "pytorch_model-00004-of-00006.bin",
|
363 |
+
"model.layers.44.post_attention_layernorm.weight": "pytorch_model-00004-of-00006.bin",
|
364 |
+
"model.layers.44.self_attn.k_proj.weight": "pytorch_model-00004-of-00006.bin",
|
365 |
+
"model.layers.44.self_attn.o_proj.weight": "pytorch_model-00004-of-00006.bin",
|
366 |
+
"model.layers.44.self_attn.q_proj.weight": "pytorch_model-00004-of-00006.bin",
|
367 |
+
"model.layers.44.self_attn.v_proj.weight": "pytorch_model-00004-of-00006.bin",
|
368 |
+
"model.layers.45.input_layernorm.weight": "pytorch_model-00004-of-00006.bin",
|
369 |
+
"model.layers.45.mlp.down_proj.weight": "pytorch_model-00004-of-00006.bin",
|
370 |
+
"model.layers.45.mlp.gate_proj.weight": "pytorch_model-00004-of-00006.bin",
|
371 |
+
"model.layers.45.mlp.up_proj.weight": "pytorch_model-00004-of-00006.bin",
|
372 |
+
"model.layers.45.post_attention_layernorm.weight": "pytorch_model-00004-of-00006.bin",
|
373 |
+
"model.layers.45.self_attn.k_proj.weight": "pytorch_model-00004-of-00006.bin",
|
374 |
+
"model.layers.45.self_attn.o_proj.weight": "pytorch_model-00004-of-00006.bin",
|
375 |
+
"model.layers.45.self_attn.q_proj.weight": "pytorch_model-00004-of-00006.bin",
|
376 |
+
"model.layers.45.self_attn.v_proj.weight": "pytorch_model-00004-of-00006.bin",
|
377 |
+
"model.layers.46.input_layernorm.weight": "pytorch_model-00004-of-00006.bin",
|
378 |
+
"model.layers.46.mlp.down_proj.weight": "pytorch_model-00004-of-00006.bin",
|
379 |
+
"model.layers.46.mlp.gate_proj.weight": "pytorch_model-00004-of-00006.bin",
|
380 |
+
"model.layers.46.mlp.up_proj.weight": "pytorch_model-00004-of-00006.bin",
|
381 |
+
"model.layers.46.post_attention_layernorm.weight": "pytorch_model-00004-of-00006.bin",
|
382 |
+
"model.layers.46.self_attn.k_proj.weight": "pytorch_model-00004-of-00006.bin",
|
383 |
+
"model.layers.46.self_attn.o_proj.weight": "pytorch_model-00004-of-00006.bin",
|
384 |
+
"model.layers.46.self_attn.q_proj.weight": "pytorch_model-00004-of-00006.bin",
|
385 |
+
"model.layers.46.self_attn.v_proj.weight": "pytorch_model-00004-of-00006.bin",
|
386 |
+
"model.layers.47.input_layernorm.weight": "pytorch_model-00004-of-00006.bin",
|
387 |
+
"model.layers.47.mlp.down_proj.weight": "pytorch_model-00004-of-00006.bin",
|
388 |
+
"model.layers.47.mlp.gate_proj.weight": "pytorch_model-00004-of-00006.bin",
|
389 |
+
"model.layers.47.mlp.up_proj.weight": "pytorch_model-00004-of-00006.bin",
|
390 |
+
"model.layers.47.post_attention_layernorm.weight": "pytorch_model-00004-of-00006.bin",
|
391 |
+
"model.layers.47.self_attn.k_proj.weight": "pytorch_model-00004-of-00006.bin",
|
392 |
+
"model.layers.47.self_attn.o_proj.weight": "pytorch_model-00004-of-00006.bin",
|
393 |
+
"model.layers.47.self_attn.q_proj.weight": "pytorch_model-00004-of-00006.bin",
|
394 |
+
"model.layers.47.self_attn.v_proj.weight": "pytorch_model-00004-of-00006.bin",
|
395 |
+
"model.layers.48.input_layernorm.weight": "pytorch_model-00005-of-00006.bin",
|
396 |
+
"model.layers.48.mlp.down_proj.weight": "pytorch_model-00005-of-00006.bin",
|
397 |
+
"model.layers.48.mlp.gate_proj.weight": "pytorch_model-00005-of-00006.bin",
|
398 |
+
"model.layers.48.mlp.up_proj.weight": "pytorch_model-00005-of-00006.bin",
|
399 |
+
"model.layers.48.post_attention_layernorm.weight": "pytorch_model-00005-of-00006.bin",
|
400 |
+
"model.layers.48.self_attn.k_proj.weight": "pytorch_model-00004-of-00006.bin",
|
401 |
+
"model.layers.48.self_attn.o_proj.weight": "pytorch_model-00004-of-00006.bin",
|
402 |
+
"model.layers.48.self_attn.q_proj.weight": "pytorch_model-00004-of-00006.bin",
|
403 |
+
"model.layers.48.self_attn.v_proj.weight": "pytorch_model-00004-of-00006.bin",
|
404 |
+
"model.layers.49.input_layernorm.weight": "pytorch_model-00005-of-00006.bin",
|
405 |
+
"model.layers.49.mlp.down_proj.weight": "pytorch_model-00005-of-00006.bin",
|
406 |
+
"model.layers.49.mlp.gate_proj.weight": "pytorch_model-00005-of-00006.bin",
|
407 |
+
"model.layers.49.mlp.up_proj.weight": "pytorch_model-00005-of-00006.bin",
|
408 |
+
"model.layers.49.post_attention_layernorm.weight": "pytorch_model-00005-of-00006.bin",
|
409 |
+
"model.layers.49.self_attn.k_proj.weight": "pytorch_model-00005-of-00006.bin",
|
410 |
+
"model.layers.49.self_attn.o_proj.weight": "pytorch_model-00005-of-00006.bin",
|
411 |
+
"model.layers.49.self_attn.q_proj.weight": "pytorch_model-00005-of-00006.bin",
|
412 |
+
"model.layers.49.self_attn.v_proj.weight": "pytorch_model-00005-of-00006.bin",
|
413 |
+
"model.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00006.bin",
|
414 |
+
"model.layers.5.mlp.down_proj.weight": "pytorch_model-00001-of-00006.bin",
|
415 |
+
"model.layers.5.mlp.gate_proj.weight": "pytorch_model-00001-of-00006.bin",
|
416 |
+
"model.layers.5.mlp.up_proj.weight": "pytorch_model-00001-of-00006.bin",
|
417 |
+
"model.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00006.bin",
|
418 |
+
"model.layers.5.self_attn.k_proj.weight": "pytorch_model-00001-of-00006.bin",
|
419 |
+
"model.layers.5.self_attn.o_proj.weight": "pytorch_model-00001-of-00006.bin",
|
420 |
+
"model.layers.5.self_attn.q_proj.weight": "pytorch_model-00001-of-00006.bin",
|
421 |
+
"model.layers.5.self_attn.v_proj.weight": "pytorch_model-00001-of-00006.bin",
|
422 |
+
"model.layers.50.input_layernorm.weight": "pytorch_model-00005-of-00006.bin",
|
423 |
+
"model.layers.50.mlp.down_proj.weight": "pytorch_model-00005-of-00006.bin",
|
424 |
+
"model.layers.50.mlp.gate_proj.weight": "pytorch_model-00005-of-00006.bin",
|
425 |
+
"model.layers.50.mlp.up_proj.weight": "pytorch_model-00005-of-00006.bin",
|
426 |
+
"model.layers.50.post_attention_layernorm.weight": "pytorch_model-00005-of-00006.bin",
|
427 |
+
"model.layers.50.self_attn.k_proj.weight": "pytorch_model-00005-of-00006.bin",
|
428 |
+
"model.layers.50.self_attn.o_proj.weight": "pytorch_model-00005-of-00006.bin",
|
429 |
+
"model.layers.50.self_attn.q_proj.weight": "pytorch_model-00005-of-00006.bin",
|
430 |
+
"model.layers.50.self_attn.v_proj.weight": "pytorch_model-00005-of-00006.bin",
|
431 |
+
"model.layers.51.input_layernorm.weight": "pytorch_model-00005-of-00006.bin",
|
432 |
+
"model.layers.51.mlp.down_proj.weight": "pytorch_model-00005-of-00006.bin",
|
433 |
+
"model.layers.51.mlp.gate_proj.weight": "pytorch_model-00005-of-00006.bin",
|
434 |
+
"model.layers.51.mlp.up_proj.weight": "pytorch_model-00005-of-00006.bin",
|
435 |
+
"model.layers.51.post_attention_layernorm.weight": "pytorch_model-00005-of-00006.bin",
|
436 |
+
"model.layers.51.self_attn.k_proj.weight": "pytorch_model-00005-of-00006.bin",
|
437 |
+
"model.layers.51.self_attn.o_proj.weight": "pytorch_model-00005-of-00006.bin",
|
438 |
+
"model.layers.51.self_attn.q_proj.weight": "pytorch_model-00005-of-00006.bin",
|
439 |
+
"model.layers.51.self_attn.v_proj.weight": "pytorch_model-00005-of-00006.bin",
|
440 |
+
"model.layers.52.input_layernorm.weight": "pytorch_model-00005-of-00006.bin",
|
441 |
+
"model.layers.52.mlp.down_proj.weight": "pytorch_model-00005-of-00006.bin",
|
442 |
+
"model.layers.52.mlp.gate_proj.weight": "pytorch_model-00005-of-00006.bin",
|
443 |
+
"model.layers.52.mlp.up_proj.weight": "pytorch_model-00005-of-00006.bin",
|
444 |
+
"model.layers.52.post_attention_layernorm.weight": "pytorch_model-00005-of-00006.bin",
|
445 |
+
"model.layers.52.self_attn.k_proj.weight": "pytorch_model-00005-of-00006.bin",
|
446 |
+
"model.layers.52.self_attn.o_proj.weight": "pytorch_model-00005-of-00006.bin",
|
447 |
+
"model.layers.52.self_attn.q_proj.weight": "pytorch_model-00005-of-00006.bin",
|
448 |
+
"model.layers.52.self_attn.v_proj.weight": "pytorch_model-00005-of-00006.bin",
|
449 |
+
"model.layers.53.input_layernorm.weight": "pytorch_model-00005-of-00006.bin",
|
450 |
+
"model.layers.53.mlp.down_proj.weight": "pytorch_model-00005-of-00006.bin",
|
451 |
+
"model.layers.53.mlp.gate_proj.weight": "pytorch_model-00005-of-00006.bin",
|
452 |
+
"model.layers.53.mlp.up_proj.weight": "pytorch_model-00005-of-00006.bin",
|
453 |
+
"model.layers.53.post_attention_layernorm.weight": "pytorch_model-00005-of-00006.bin",
|
454 |
+
"model.layers.53.self_attn.k_proj.weight": "pytorch_model-00005-of-00006.bin",
|
455 |
+
"model.layers.53.self_attn.o_proj.weight": "pytorch_model-00005-of-00006.bin",
|
456 |
+
"model.layers.53.self_attn.q_proj.weight": "pytorch_model-00005-of-00006.bin",
|
457 |
+
"model.layers.53.self_attn.v_proj.weight": "pytorch_model-00005-of-00006.bin",
|
458 |
+
"model.layers.54.input_layernorm.weight": "pytorch_model-00005-of-00006.bin",
|
459 |
+
"model.layers.54.mlp.down_proj.weight": "pytorch_model-00005-of-00006.bin",
|
460 |
+
"model.layers.54.mlp.gate_proj.weight": "pytorch_model-00005-of-00006.bin",
|
461 |
+
"model.layers.54.mlp.up_proj.weight": "pytorch_model-00005-of-00006.bin",
|
462 |
+
"model.layers.54.post_attention_layernorm.weight": "pytorch_model-00005-of-00006.bin",
|
463 |
+
"model.layers.54.self_attn.k_proj.weight": "pytorch_model-00005-of-00006.bin",
|
464 |
+
"model.layers.54.self_attn.o_proj.weight": "pytorch_model-00005-of-00006.bin",
|
465 |
+
"model.layers.54.self_attn.q_proj.weight": "pytorch_model-00005-of-00006.bin",
|
466 |
+
"model.layers.54.self_attn.v_proj.weight": "pytorch_model-00005-of-00006.bin",
|
467 |
+
"model.layers.55.input_layernorm.weight": "pytorch_model-00005-of-00006.bin",
|
468 |
+
"model.layers.55.mlp.down_proj.weight": "pytorch_model-00005-of-00006.bin",
|
469 |
+
"model.layers.55.mlp.gate_proj.weight": "pytorch_model-00005-of-00006.bin",
|
470 |
+
"model.layers.55.mlp.up_proj.weight": "pytorch_model-00005-of-00006.bin",
|
471 |
+
"model.layers.55.post_attention_layernorm.weight": "pytorch_model-00005-of-00006.bin",
|
472 |
+
"model.layers.55.self_attn.k_proj.weight": "pytorch_model-00005-of-00006.bin",
|
473 |
+
"model.layers.55.self_attn.o_proj.weight": "pytorch_model-00005-of-00006.bin",
|
474 |
+
"model.layers.55.self_attn.q_proj.weight": "pytorch_model-00005-of-00006.bin",
|
475 |
+
"model.layers.55.self_attn.v_proj.weight": "pytorch_model-00005-of-00006.bin",
|
476 |
+
"model.layers.56.input_layernorm.weight": "pytorch_model-00005-of-00006.bin",
|
477 |
+
"model.layers.56.mlp.down_proj.weight": "pytorch_model-00005-of-00006.bin",
|
478 |
+
"model.layers.56.mlp.gate_proj.weight": "pytorch_model-00005-of-00006.bin",
|
479 |
+
"model.layers.56.mlp.up_proj.weight": "pytorch_model-00005-of-00006.bin",
|
480 |
+
"model.layers.56.post_attention_layernorm.weight": "pytorch_model-00005-of-00006.bin",
|
481 |
+
"model.layers.56.self_attn.k_proj.weight": "pytorch_model-00005-of-00006.bin",
|
482 |
+
"model.layers.56.self_attn.o_proj.weight": "pytorch_model-00005-of-00006.bin",
|
483 |
+
"model.layers.56.self_attn.q_proj.weight": "pytorch_model-00005-of-00006.bin",
|
484 |
+
"model.layers.56.self_attn.v_proj.weight": "pytorch_model-00005-of-00006.bin",
|
485 |
+
"model.layers.57.input_layernorm.weight": "pytorch_model-00005-of-00006.bin",
|
486 |
+
"model.layers.57.mlp.down_proj.weight": "pytorch_model-00005-of-00006.bin",
|
487 |
+
"model.layers.57.mlp.gate_proj.weight": "pytorch_model-00005-of-00006.bin",
|
488 |
+
"model.layers.57.mlp.up_proj.weight": "pytorch_model-00005-of-00006.bin",
|
489 |
+
"model.layers.57.post_attention_layernorm.weight": "pytorch_model-00005-of-00006.bin",
|
490 |
+
"model.layers.57.self_attn.k_proj.weight": "pytorch_model-00005-of-00006.bin",
|
491 |
+
"model.layers.57.self_attn.o_proj.weight": "pytorch_model-00005-of-00006.bin",
|
492 |
+
"model.layers.57.self_attn.q_proj.weight": "pytorch_model-00005-of-00006.bin",
|
493 |
+
"model.layers.57.self_attn.v_proj.weight": "pytorch_model-00005-of-00006.bin",
|
494 |
+
"model.layers.58.input_layernorm.weight": "pytorch_model-00005-of-00006.bin",
|
495 |
+
"model.layers.58.mlp.down_proj.weight": "pytorch_model-00005-of-00006.bin",
|
496 |
+
"model.layers.58.mlp.gate_proj.weight": "pytorch_model-00005-of-00006.bin",
|
497 |
+
"model.layers.58.mlp.up_proj.weight": "pytorch_model-00005-of-00006.bin",
|
498 |
+
"model.layers.58.post_attention_layernorm.weight": "pytorch_model-00005-of-00006.bin",
|
499 |
+
"model.layers.58.self_attn.k_proj.weight": "pytorch_model-00005-of-00006.bin",
|
500 |
+
"model.layers.58.self_attn.o_proj.weight": "pytorch_model-00005-of-00006.bin",
|
501 |
+
"model.layers.58.self_attn.q_proj.weight": "pytorch_model-00005-of-00006.bin",
|
502 |
+
"model.layers.58.self_attn.v_proj.weight": "pytorch_model-00005-of-00006.bin",
|
503 |
+
"model.layers.59.input_layernorm.weight": "pytorch_model-00005-of-00006.bin",
|
504 |
+
"model.layers.59.mlp.down_proj.weight": "pytorch_model-00005-of-00006.bin",
|
505 |
+
"model.layers.59.mlp.gate_proj.weight": "pytorch_model-00005-of-00006.bin",
|
506 |
+
"model.layers.59.mlp.up_proj.weight": "pytorch_model-00005-of-00006.bin",
|
507 |
+
"model.layers.59.post_attention_layernorm.weight": "pytorch_model-00005-of-00006.bin",
|
508 |
+
"model.layers.59.self_attn.k_proj.weight": "pytorch_model-00005-of-00006.bin",
|
509 |
+
"model.layers.59.self_attn.o_proj.weight": "pytorch_model-00005-of-00006.bin",
|
510 |
+
"model.layers.59.self_attn.q_proj.weight": "pytorch_model-00005-of-00006.bin",
|
511 |
+
"model.layers.59.self_attn.v_proj.weight": "pytorch_model-00005-of-00006.bin",
|
512 |
+
"model.layers.6.input_layernorm.weight": "pytorch_model-00001-of-00006.bin",
|
513 |
+
"model.layers.6.mlp.down_proj.weight": "pytorch_model-00001-of-00006.bin",
|
514 |
+
"model.layers.6.mlp.gate_proj.weight": "pytorch_model-00001-of-00006.bin",
|
515 |
+
"model.layers.6.mlp.up_proj.weight": "pytorch_model-00001-of-00006.bin",
|
516 |
+
"model.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-00006.bin",
|
517 |
+
"model.layers.6.self_attn.k_proj.weight": "pytorch_model-00001-of-00006.bin",
|
518 |
+
"model.layers.6.self_attn.o_proj.weight": "pytorch_model-00001-of-00006.bin",
|
519 |
+
"model.layers.6.self_attn.q_proj.weight": "pytorch_model-00001-of-00006.bin",
|
520 |
+
"model.layers.6.self_attn.v_proj.weight": "pytorch_model-00001-of-00006.bin",
|
521 |
+
"model.layers.7.input_layernorm.weight": "pytorch_model-00001-of-00006.bin",
|
522 |
+
"model.layers.7.mlp.down_proj.weight": "pytorch_model-00001-of-00006.bin",
|
523 |
+
"model.layers.7.mlp.gate_proj.weight": "pytorch_model-00001-of-00006.bin",
|
524 |
+
"model.layers.7.mlp.up_proj.weight": "pytorch_model-00001-of-00006.bin",
|
525 |
+
"model.layers.7.post_attention_layernorm.weight": "pytorch_model-00001-of-00006.bin",
|
526 |
+
"model.layers.7.self_attn.k_proj.weight": "pytorch_model-00001-of-00006.bin",
|
527 |
+
"model.layers.7.self_attn.o_proj.weight": "pytorch_model-00001-of-00006.bin",
|
528 |
+
"model.layers.7.self_attn.q_proj.weight": "pytorch_model-00001-of-00006.bin",
|
529 |
+
"model.layers.7.self_attn.v_proj.weight": "pytorch_model-00001-of-00006.bin",
|
530 |
+
"model.layers.8.input_layernorm.weight": "pytorch_model-00001-of-00006.bin",
|
531 |
+
"model.layers.8.mlp.down_proj.weight": "pytorch_model-00001-of-00006.bin",
|
532 |
+
"model.layers.8.mlp.gate_proj.weight": "pytorch_model-00001-of-00006.bin",
|
533 |
+
"model.layers.8.mlp.up_proj.weight": "pytorch_model-00001-of-00006.bin",
|
534 |
+
"model.layers.8.post_attention_layernorm.weight": "pytorch_model-00001-of-00006.bin",
|
535 |
+
"model.layers.8.self_attn.k_proj.weight": "pytorch_model-00001-of-00006.bin",
|
536 |
+
"model.layers.8.self_attn.o_proj.weight": "pytorch_model-00001-of-00006.bin",
|
537 |
+
"model.layers.8.self_attn.q_proj.weight": "pytorch_model-00001-of-00006.bin",
|
538 |
+
"model.layers.8.self_attn.v_proj.weight": "pytorch_model-00001-of-00006.bin",
|
539 |
+
"model.layers.9.input_layernorm.weight": "pytorch_model-00001-of-00006.bin",
|
540 |
+
"model.layers.9.mlp.down_proj.weight": "pytorch_model-00001-of-00006.bin",
|
541 |
+
"model.layers.9.mlp.gate_proj.weight": "pytorch_model-00001-of-00006.bin",
|
542 |
+
"model.layers.9.mlp.up_proj.weight": "pytorch_model-00001-of-00006.bin",
|
543 |
+
"model.layers.9.post_attention_layernorm.weight": "pytorch_model-00001-of-00006.bin",
|
544 |
+
"model.layers.9.self_attn.k_proj.weight": "pytorch_model-00001-of-00006.bin",
|
545 |
+
"model.layers.9.self_attn.o_proj.weight": "pytorch_model-00001-of-00006.bin",
|
546 |
+
"model.layers.9.self_attn.q_proj.weight": "pytorch_model-00001-of-00006.bin",
|
547 |
+
"model.layers.9.self_attn.v_proj.weight": "pytorch_model-00001-of-00006.bin",
|
548 |
+
"model.norm.weight": "pytorch_model-00005-of-00006.bin"
|
549 |
}
|
550 |
}
|