|
# To fine-tuning Details |
|
"facebook/dino-vitb16" # pre-trained model from which to fine-tune |
|
|
|
"Graphcore/vit-base-ipu" # config specific to the IPU (Used POD4) |
|
|
|
How to use in IPU: [https://huggingface.co/internetoftim/dinov2-base/blob/main/image_classification-dinov2-base.ipynb](https://huggingface.co/internetoftim/dinov2-base/blob/main/image_classification-dinov2-base.ipynb) |
|
|
|
Run the notebooks in this repository: |
|
[![Run on Gradient](https://assets.paperspace.io/img/gradient-badge.svg)](https://ipu.dev/3YOs4Js) |
|
|
|
|
|
Poplar SDK: v3.2.1 |
|
|
|
Dataset: |
|
|
|
load a custom dataset from local/remote files or folders using the ImageFolder feature |
|
option 1: local/remote files (supporting the following formats: tar, gzip, zip, xz, rar, zstd) |
|
url = "https://madm.dfki.de/files/sentinel/EuroSAT.zip" |
|
files = list(Path(dataset_dir).rglob("EuroSAT.zip")) |
|
|
|
[![Ask for help in GC Slack ](https://img.shields.io/badge/Slack-Join%20Graphcore's%20Community-blue?style=flat-square&logo=slack)](https://www.graphcore.ai/join-community) |