Text Generation
Transformers
Safetensors
English
mistral
text-generation-inference
Inference Endpoints
instruction-pretrain commited on
Commit
6f50084
1 Parent(s): 4eab7f5

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +27 -7
README.md CHANGED
@@ -2,26 +2,41 @@
2
  license: apache-2.0
3
  language:
4
  - en
 
 
5
  ---
6
  # Instruction Pre-Training: Language Models are Supervised Multitask Learners
7
  This repo contains the **context-based instruction synthesizer** used in our paper **Instruction Pre-Training: Language Models are Supervised Multitask Learners**.
8
 
9
- We explore supervised multitask pre-training by proposing ***Instruction Pre-Training***, a framework that scalably augments massive raw corpora with instruction-response pairs to pre-train language models. The instruction-response pairs are generated by an efficient instruction synthesizer built on open-source models. In our experiments, we synthesize 200M instruction-response pairs covering 40+ task categories to verify the effectiveness of *Instruction Pre-Training*. ***Instruction Pre-Training* outperforms *Vanilla Pre-training* in both general pre-training from scratch and domain-adaptive continued pre-training.** In pre-training from scratch, *Instruction Pre-Training* not only improves pre-trained base models but also benefits more from further instruction tuning. In continual pre-training, *Instruction Pre-Training* enables Llama3-8B to be comparable to or even outperform Llama3-70B.
10
 
11
  <p align='center'>
12
  <img src="https://cdn-uploads.huggingface.co/production/uploads/66711d2ee12fa6cc5f5dfc89/vRdsFIVQptbNaGiZ18Lih.png" width="400">
13
  </p>
14
 
15
- ## Synthesize Instruction-Response Pairs from Any Raw Corproa
16
- We conduct multitask fine-tuning on a language model to develop an instruction synthesizer capable of generating instruction-response pairs from any raw text.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
 
18
  <p align='center'>
19
- <img src="./https://cdn-uploads.huggingface.co/production/uploads/66711d2ee12fa6cc5f5dfc89/0889QyG59QM3rPeZlcTzZ.png" width="700">
20
  </p>
21
 
22
- The fine-tuning data are available at [ft-instruction-synthesizer-collection](https://huggingface.co/datasets/instruction-pretrain/ft-instruction-synthesizer-collection)
23
-
24
- To prompt the synthesizer to generate instruction-response pairs based on a given raw text:
25
  ```python
26
  from transformers import AutoModelForCausalLM, AutoTokenizer
27
 
@@ -75,8 +90,13 @@ for index, pair in enumerate(instruction_response_pairs):
75
  print(f'## Instruction {index + 1}:\n{pair["Q"]}\n## Response {index + 1}:\n{pair["A"]}\n')
76
  ```
77
 
 
 
 
78
  ## Citation
79
  If you find our work helpful, please cite us:
 
 
80
  ```bibtex
81
  @inproceedings{
82
  cheng2024adapting,
 
2
  license: apache-2.0
3
  language:
4
  - en
5
+ datasets:
6
+ - instruction-pretrain/ft-instruction-synthesizer-collection
7
  ---
8
  # Instruction Pre-Training: Language Models are Supervised Multitask Learners
9
  This repo contains the **context-based instruction synthesizer** used in our paper **Instruction Pre-Training: Language Models are Supervised Multitask Learners**.
10
 
11
+ We explore supervised multitask pre-training by proposing ***Instruction Pre-Training***, a framework that scalably augments massive raw corpora with instruction-response pairs to pre-train language models. The instruction-response pairs are generated by an efficient instruction synthesizer built on open-source models. In our experiments, we synthesize 200M instruction-response pairs covering 40+ task categories to verify the effectiveness of *Instruction Pre-Training*. ***Instruction Pre-Training* outperforms *Vanilla Pre-training* in both general pre-training from scratch and domain-adaptive continual pre-training.** In pre-training from scratch, *Instruction Pre-Training* not only improves pre-trained base models but also benefits more from further instruction tuning. In continual pre-training, *Instruction Pre-Training* enables Llama3-8B to be comparable to or even outperform Llama3-70B.
12
 
13
  <p align='center'>
14
  <img src="https://cdn-uploads.huggingface.co/production/uploads/66711d2ee12fa6cc5f5dfc89/vRdsFIVQptbNaGiZ18Lih.png" width="400">
15
  </p>
16
 
17
+
18
+ ## Resources
19
+ **🤗 We share our data and models with example usages, feel free to open any issues or discussions! 🤗**
20
+
21
+ - Context-Based Instruction Synthesizer: [instruction-synthesizer](https://huggingface.co/instruction-pretrain/instruction-synthesizer)
22
+ - Fine-Tuning Data for the Synthesizer: [ft-instruction-synthesizer-collection](https://huggingface.co/datasets/instruction-pretrain/ft-instruction-synthesizer-collection)
23
+ - General Models Pre-Trained from Scratch:
24
+ - [InstructLM-500M](https://huggingface.co/instruction-pretrain/InstructLM-500M)
25
+ - [InstructLLM-1.3B](https://huggingface.co/instruction-pretrain/InstructLLM-1.3B)
26
+ - Domain-Specific Models Pre-Trained from Llama3-8B:
27
+ - [Finance-Llama3-8B](https://huggingface.co/instruction-pretrain/finance-Llama3-8B)
28
+ - [Biomedicine-Llama3-8B](https://huggingface.co/instruction-pretrain/medicine-Llama3-8B)
29
+
30
+
31
+ ## Synthesize Instruction-Response Pairs based on Any Raw text
32
+ We conduct multitask fine-tuning on a language model to develop an instruction synthesizer capable of generating instruction-response pairs from any raw text. The fine-tuning data are available at [ft-instruction-synthesizer-collection](https://huggingface.co/datasets/instruction-pretrain/ft-instruction-synthesizer-collection)
33
+
34
 
35
  <p align='center'>
36
+ <img src="https://cdn-uploads.huggingface.co/production/uploads/66711d2ee12fa6cc5f5dfc89/0889QyG59QM3rPeZlcTzZ.png" width="700">
37
  </p>
38
 
39
+ For example, to prompt the synthesizer to generate instruction-response pairs based on a given raw text:
 
 
40
  ```python
41
  from transformers import AutoModelForCausalLM, AutoTokenizer
42
 
 
90
  print(f'## Instruction {index + 1}:\n{pair["Q"]}\n## Response {index + 1}:\n{pair["A"]}\n')
91
  ```
92
 
93
+ ### To-Do
94
+ - [ ] Add example usages for synthesizing few-shot examples
95
+
96
  ## Citation
97
  If you find our work helpful, please cite us:
98
+
99
+ [AdaptLLM](https://huggingface.co/papers/2309.09530)
100
  ```bibtex
101
  @inproceedings{
102
  cheng2024adapting,