Text Generation
Transformers
Safetensors
English
llama
finance
text-generation-inference
Inference Endpoints
instruction-pretrain commited on
Commit
b573f2a
•
1 Parent(s): 98ef99a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +6 -4
README.md CHANGED
@@ -19,15 +19,17 @@ We explore supervised multitask pre-training by proposing ***Instruction Pre-Tra
19
  </p>
20
 
21
  **************************** **Updates** ****************************
 
22
  * 2024/7/15: We scaled up the pre-trained tokens from 100B to 250B, with the number of synthesized instruction-response pairs reaching 500M! Below, we show the performance trend on downstream tasks throughout the pre-training process:
23
- <p align='center'>
24
- <img src="https://cdn-uploads.huggingface.co/production/uploads/66711d2ee12fa6cc5f5dfc89/0okCfRkC6uALTfuNxt0Fa.png" width="700">
25
  </p>
26
  * 2024/6/21: Released the [paper](https://huggingface.co/papers/2406.14491), [code](https://github.com/microsoft/LMOps), and [resources](https://huggingface.co/instruction-pretrain)
27
 
28
  ## Resources
29
- **🤗 We share our data and models with example usages, feel free to open any issues or discussions! 🤗**
30
 
 
31
  - Context-Based Instruction Synthesizer: [instruction-synthesizer](https://huggingface.co/instruction-pretrain/instruction-synthesizer)
32
  - Fine-Tuning Data for the Synthesizer: [ft-instruction-synthesizer-collection](https://huggingface.co/datasets/instruction-pretrain/ft-instruction-synthesizer-collection)
33
  - General Models Pre-Trained from Scratch (on 100B tokes):
@@ -106,7 +108,7 @@ Instruction Pre-Training
106
  }
107
  ```
108
 
109
- [AdaptLLM](https://huggingface.co/papers/2309.09530)
110
  ```bibtex
111
  @inproceedings{
112
  cheng2024adapting,
 
19
  </p>
20
 
21
  **************************** **Updates** ****************************
22
+ * 2024/7/31: Updated pre-training suggestions in the `Advanced Usage` section of [instruction-synthesizer](https://huggingface.co/instruction-pretrain/instruction-synthesizer)
23
  * 2024/7/15: We scaled up the pre-trained tokens from 100B to 250B, with the number of synthesized instruction-response pairs reaching 500M! Below, we show the performance trend on downstream tasks throughout the pre-training process:
24
+ <p align='left'>
25
+ <img src="https://cdn-uploads.huggingface.co/production/uploads/66711d2ee12fa6cc5f5dfc89/0okCfRkC6uALTfuNxt0Fa.png" width="500">
26
  </p>
27
  * 2024/6/21: Released the [paper](https://huggingface.co/papers/2406.14491), [code](https://github.com/microsoft/LMOps), and [resources](https://huggingface.co/instruction-pretrain)
28
 
29
  ## Resources
30
+ **🤗 We share our data and models with example usages, feel free to open any discussions at [this page](https://huggingface.co/papers/2406.14491)! 🤗**
31
 
32
+ - Thanks to the demo [davanstrien/instruction-synthesizer](https://huggingface.co/spaces/davanstrien/instruction-synthesizer) for implementing our approach
33
  - Context-Based Instruction Synthesizer: [instruction-synthesizer](https://huggingface.co/instruction-pretrain/instruction-synthesizer)
34
  - Fine-Tuning Data for the Synthesizer: [ft-instruction-synthesizer-collection](https://huggingface.co/datasets/instruction-pretrain/ft-instruction-synthesizer-collection)
35
  - General Models Pre-Trained from Scratch (on 100B tokes):
 
108
  }
109
  ```
110
 
111
+ [Adapt LLM to Domains](https://huggingface.co/papers/2309.09530)
112
  ```bibtex
113
  @inproceedings{
114
  cheng2024adapting,