Create handler.py
Browse files- handler.py +71 -0
handler.py
ADDED
|
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Dict, List, Any
|
| 2 |
+
from ultralytics import YOLO
|
| 3 |
+
import base64
|
| 4 |
+
from io import BytesIO
|
| 5 |
+
from PIL import Image
|
| 6 |
+
|
| 7 |
+
class EndpointHandler:
|
| 8 |
+
def __init__(self, path=""):
|
| 9 |
+
# Load the YOLO model
|
| 10 |
+
self.model = YOLO(f"{path}/FFDNet-L.pt")
|
| 11 |
+
self.id_to_cls = {0: "TextBox", 1: "ChoiceButton", 2: "Signature"}
|
| 12 |
+
|
| 13 |
+
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
| 14 |
+
"""
|
| 15 |
+
Args:
|
| 16 |
+
data: A dictionary containing:
|
| 17 |
+
- "inputs": base64 encoded image or image URL
|
| 18 |
+
- "parameters": optional dict with confidence, iou, imgsz
|
| 19 |
+
Returns:
|
| 20 |
+
List of predictions with bounding boxes and classes
|
| 21 |
+
"""
|
| 22 |
+
# Extract image from request
|
| 23 |
+
inputs = data.pop("inputs", data)
|
| 24 |
+
parameters = data.pop("parameters", {})
|
| 25 |
+
|
| 26 |
+
# Handle image input (base64 or URL)
|
| 27 |
+
if isinstance(inputs, str):
|
| 28 |
+
if inputs.startswith("http"):
|
| 29 |
+
image = inputs
|
| 30 |
+
else:
|
| 31 |
+
# Decode base64
|
| 32 |
+
image_data = base64.b64decode(inputs)
|
| 33 |
+
image = Image.open(BytesIO(image_data))
|
| 34 |
+
else:
|
| 35 |
+
image = inputs
|
| 36 |
+
|
| 37 |
+
# Get parameters with defaults
|
| 38 |
+
confidence = parameters.get("conf", 0.3)
|
| 39 |
+
iou = parameters.get("iou", 0.1)
|
| 40 |
+
imgsz = parameters.get("imgsz", 1600)
|
| 41 |
+
augment = parameters.get("augment", True)
|
| 42 |
+
|
| 43 |
+
# Run inference
|
| 44 |
+
results = self.model.predict(
|
| 45 |
+
image,
|
| 46 |
+
conf=confidence,
|
| 47 |
+
iou=iou,
|
| 48 |
+
imgsz=imgsz,
|
| 49 |
+
augment=augment
|
| 50 |
+
)
|
| 51 |
+
|
| 52 |
+
# Format results
|
| 53 |
+
predictions = []
|
| 54 |
+
for result in results:
|
| 55 |
+
if result.boxes is not None:
|
| 56 |
+
for box in result.boxes.cpu().numpy():
|
| 57 |
+
x, y, w, h = box.xywhn[0]
|
| 58 |
+
cls_id = int(box.cls.item())
|
| 59 |
+
|
| 60 |
+
predictions.append({
|
| 61 |
+
"widget_type": self.id_to_cls[cls_id],
|
| 62 |
+
"confidence": float(box.conf[0]),
|
| 63 |
+
"bounding_box": {
|
| 64 |
+
"cx": float(x),
|
| 65 |
+
"cy": float(y),
|
| 66 |
+
"w": float(w),
|
| 67 |
+
"h": float(h)
|
| 68 |
+
}
|
| 69 |
+
})
|
| 70 |
+
|
| 71 |
+
return predictions
|