Upload Precious3GPT_example.ipynb
Browse files- Precious3GPT_example.ipynb +407 -0
Precious3GPT_example.ipynb
ADDED
@@ -0,0 +1,407 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 70,
|
6 |
+
"id": "c7317218",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [],
|
9 |
+
"source": [
|
10 |
+
"import requests\n",
|
11 |
+
"from copy import copy as cp\n"
|
12 |
+
]
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"cell_type": "markdown",
|
16 |
+
"id": "c022e07b",
|
17 |
+
"metadata": {},
|
18 |
+
"source": [
|
19 |
+
"## Authorize with the endpoint"
|
20 |
+
]
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"cell_type": "code",
|
24 |
+
"execution_count": 2,
|
25 |
+
"id": "f1272e3f",
|
26 |
+
"metadata": {},
|
27 |
+
"outputs": [],
|
28 |
+
"source": [
|
29 |
+
"API_URL = \"https://YOUR.ENDPOINT.aws.endpoints.huggingface.cloud\"\n",
|
30 |
+
"headers = {\n",
|
31 |
+
" \"Accept\" : \"application/json\",\n",
|
32 |
+
" \"Authorization\": \"Bearer hf_YOUR_TOKEN\",\n",
|
33 |
+
" \"Content-Type\": \"application/json\"\n",
|
34 |
+
"}\n",
|
35 |
+
"\n",
|
36 |
+
"def query(payload):\n",
|
37 |
+
" response = requests.post(API_URL, headers=headers, json=payload)\n",
|
38 |
+
" return response.json()"
|
39 |
+
]
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"cell_type": "markdown",
|
43 |
+
"id": "082c3300",
|
44 |
+
"metadata": {},
|
45 |
+
"source": [
|
46 |
+
"## Construct the query\n",
|
47 |
+
"Instructions define what type of experiment you are trying to simulate with P3GPT.<br>\n",
|
48 |
+
"Key instructions enabled at this endpoint include:\n",
|
49 |
+
"- <font size=\"4\">**`disease2diff2disease`**</font>: For tasks that are equivalent to case-control cross-sectional settings. E.g. the generation of DEGs for a medical condition;\n",
|
50 |
+
"- <font size=\"4\">**`compound2diff2compound `**</font>: For compound screening tasks. E.g. propose a compound that can selectively methylate certain gene promoters;\n",
|
51 |
+
"- <font size=\"4\">**`age_group2diff2age_group`**</font>: For task on aging-related omics dynamics. E.g. identify genes that are up-/down-regulated in older vs younger adults. \n"
|
52 |
+
]
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"cell_type": "code",
|
56 |
+
"execution_count": 139,
|
57 |
+
"id": "fd84fc60",
|
58 |
+
"metadata": {},
|
59 |
+
"outputs": [],
|
60 |
+
"source": [
|
61 |
+
"prompt = {'instruction': ['age_group2diff2age_group','compound2diff2compound'], \n",
|
62 |
+
" # This is a chemical screening experiment in a particular age group, \n",
|
63 |
+
" # so you'll need to use 2 intructions\n",
|
64 |
+
" 'tissue': 'lung',\n",
|
65 |
+
" 'age': 70,\n",
|
66 |
+
" 'cell': '',\n",
|
67 |
+
" 'efo': 'EFO_0000768', #pulmonary fibrosis\n",
|
68 |
+
" 'datatype': 'expression', # we want to get DEGs\n",
|
69 |
+
" 'drug': 'curcumin',\n",
|
70 |
+
" 'dose': '',\n",
|
71 |
+
" 'time': '',\n",
|
72 |
+
" 'case': ['70.0-80.0', '80.0-90.0'], # define the age groups of interest\n",
|
73 |
+
" 'control': '', # left blank since no healthy controls participate in this experiment\n",
|
74 |
+
" 'dataset_type': '',\n",
|
75 |
+
" 'gender': 'm',\n",
|
76 |
+
" 'species': 'human',\n",
|
77 |
+
" 'up': [], # left blank to be filled in by P3GPT\n",
|
78 |
+
" 'down': []\n",
|
79 |
+
" }\n",
|
80 |
+
"\n"
|
81 |
+
]
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"cell_type": "markdown",
|
85 |
+
"id": "609bd3c0",
|
86 |
+
"metadata": {},
|
87 |
+
"source": [
|
88 |
+
"## Execution modes\n",
|
89 |
+
"- <font size=\"4\">**`meta2diff`**</font>: `compound2diff2compound` can be executed either way. This mode tells P3GPT to return differentially expressed genes and not compounds;\n",
|
90 |
+
"- <font size=\"4\">**`diff2compound`**</font>: The reverse of the `meta2diff` mode. Make sure to fill in 'up' and 'down' in the prompt first!\n",
|
91 |
+
"- <font size=\"4\">**`meta2diff2compound`**</font>: Runs `meta2diff` first and applies `diff2compound` to its output. This is mostly for utility reasons — you get to run P3GPT twice with one call.\n",
|
92 |
+
"\n",
|
93 |
+
"As an LLM, P3GPT is trained to fill in the blanks in its prompt pointed at by the instructions. Its native output has the same structure as the input prompt.<br>\n",
|
94 |
+
"Modes do not belong in the prompt and are used for parsing P3GPT's output so that only the expected part of the completed prompt is presented to the user."
|
95 |
+
]
|
96 |
+
},
|
97 |
+
{
|
98 |
+
"cell_type": "code",
|
99 |
+
"execution_count": 140,
|
100 |
+
"id": "c6280337",
|
101 |
+
"metadata": {},
|
102 |
+
"outputs": [],
|
103 |
+
"source": [
|
104 |
+
"config_sample = {'inputs': prompt,\n",
|
105 |
+
" 'mode': 'meta2diff', # this is a chemical screening experiment \n",
|
106 |
+
" 'parameters': {'temperature': 0.4,\n",
|
107 |
+
" 'top_p': 0.8,\n",
|
108 |
+
" 'top_k': 3550,\n",
|
109 |
+
" 'n_next_tokens': 20}\n",
|
110 |
+
" }\n",
|
111 |
+
"output = query(config_sample) # send request to Hugging Face"
|
112 |
+
]
|
113 |
+
},
|
114 |
+
{
|
115 |
+
"cell_type": "code",
|
116 |
+
"execution_count": 141,
|
117 |
+
"id": "47a3f882",
|
118 |
+
"metadata": {},
|
119 |
+
"outputs": [
|
120 |
+
{
|
121 |
+
"name": "stdout",
|
122 |
+
"output_type": "stream",
|
123 |
+
"text": [
|
124 |
+
"dict_keys(['output', 'mode', 'message', 'input'])\n"
|
125 |
+
]
|
126 |
+
}
|
127 |
+
],
|
128 |
+
"source": [
|
129 |
+
"print(output.keys())"
|
130 |
+
]
|
131 |
+
},
|
132 |
+
{
|
133 |
+
"cell_type": "code",
|
134 |
+
"execution_count": 142,
|
135 |
+
"id": "5408079c",
|
136 |
+
"metadata": {},
|
137 |
+
"outputs": [
|
138 |
+
{
|
139 |
+
"data": {
|
140 |
+
"text/plain": [
|
141 |
+
"'Done!'"
|
142 |
+
]
|
143 |
+
},
|
144 |
+
"execution_count": 142,
|
145 |
+
"metadata": {},
|
146 |
+
"output_type": "execute_result"
|
147 |
+
}
|
148 |
+
],
|
149 |
+
"source": [
|
150 |
+
"# successful generation\n",
|
151 |
+
"output['message']"
|
152 |
+
]
|
153 |
+
},
|
154 |
+
{
|
155 |
+
"cell_type": "code",
|
156 |
+
"execution_count": 143,
|
157 |
+
"id": "f51d4314",
|
158 |
+
"metadata": {},
|
159 |
+
"outputs": [
|
160 |
+
{
|
161 |
+
"data": {
|
162 |
+
"text/plain": [
|
163 |
+
"'[BOS]<age_group2diff2age_group><compound2diff2compound><tissue>lung </tissue><age_individ>70 </age_individ><cell></cell><efo>EFO_0000768 </efo><datatype>expression </datatype><drug>curcumin </drug><dose></dose><time></time><case>70.0-80.0 80.0-90.0 </case><control></control><dataset_type></dataset_type><gender>m </gender><species>human </species>'"
|
164 |
+
]
|
165 |
+
},
|
166 |
+
"execution_count": 143,
|
167 |
+
"metadata": {},
|
168 |
+
"output_type": "execute_result"
|
169 |
+
}
|
170 |
+
],
|
171 |
+
"source": [
|
172 |
+
"# this is what actual P3GPT input looks like\n",
|
173 |
+
"# NB: there is no 'mode' in the prompt. \n",
|
174 |
+
"output['input']"
|
175 |
+
]
|
176 |
+
},
|
177 |
+
{
|
178 |
+
"cell_type": "code",
|
179 |
+
"execution_count": 144,
|
180 |
+
"id": "08c9f49a",
|
181 |
+
"metadata": {},
|
182 |
+
"outputs": [
|
183 |
+
{
|
184 |
+
"name": "stdout",
|
185 |
+
"output_type": "stream",
|
186 |
+
"text": [
|
187 |
+
"Up-regulated genes:\n",
|
188 |
+
"MUC5B; AHSP; ALAS2; SLC4A1; CDHR5; NXF2B; CYP4F3; LGALS7B; FBN3; NTS; CYSTM1; ORM2; ASL; CD177; GLRX5; H4C3; NDUFA3; TUBA4B; EPB42; GCHFR\n",
|
189 |
+
"\n",
|
190 |
+
"Down-regulated genes:\n",
|
191 |
+
"KRT6A; KRT5; KRT15; KRT14; KRT6B; DSG3; CALML3; S100A7; SERPINB5; SPRR2A; SPRR3; LY6D; TMEM45A; KRT16; S100A9; GOLGA8A; SPINK6; CXCL10; CXCL9; CSTA\n",
|
192 |
+
"\n"
|
193 |
+
]
|
194 |
+
}
|
195 |
+
],
|
196 |
+
"source": [
|
197 |
+
"# output gene symbols\n",
|
198 |
+
"genes_up, genes_dn = output['output']['up'][0], output['output']['down'][0]\n",
|
199 |
+
"print(\"Up-regulated genes:\")\n",
|
200 |
+
"print(*genes_up[:20], sep = \"; \",end='\\n\\n')\n",
|
201 |
+
"print(\"Down-regulated genes:\")\n",
|
202 |
+
"print(*genes_dn[:20], sep = \"; \",end='\\n\\n')\n"
|
203 |
+
]
|
204 |
+
},
|
205 |
+
{
|
206 |
+
"cell_type": "code",
|
207 |
+
"execution_count": 145,
|
208 |
+
"id": "f6910a3d",
|
209 |
+
"metadata": {},
|
210 |
+
"outputs": [],
|
211 |
+
"source": [
|
212 |
+
"# now, let's do the opposite and get a compounds based on these DEG lists\n",
|
213 |
+
"# to do that, we only need a couple changes to the original prompt\n",
|
214 |
+
"prompt2 = cp(prompt)\n",
|
215 |
+
"prompt2.update({\n",
|
216 |
+
" 'drug':'',\n",
|
217 |
+
" 'up':genes_up,\n",
|
218 |
+
" 'down':genes_dn\n",
|
219 |
+
" })\n",
|
220 |
+
"# remember to reverse meta2diff!\n",
|
221 |
+
"config_sample.update({'mode':'diff2compound',\n",
|
222 |
+
" 'inputs':prompt2})"
|
223 |
+
]
|
224 |
+
},
|
225 |
+
{
|
226 |
+
"cell_type": "code",
|
227 |
+
"execution_count": 146,
|
228 |
+
"id": "e791e285",
|
229 |
+
"metadata": {},
|
230 |
+
"outputs": [],
|
231 |
+
"source": [
|
232 |
+
"output = query(config_sample) # send request to Hugging Face"
|
233 |
+
]
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"cell_type": "code",
|
237 |
+
"execution_count": 127,
|
238 |
+
"id": "8ae15313",
|
239 |
+
"metadata": {},
|
240 |
+
"outputs": [
|
241 |
+
{
|
242 |
+
"data": {
|
243 |
+
"text/plain": [
|
244 |
+
"dict_keys(['output', 'compounds', 'raw_output', 'mode', 'message', 'input'])"
|
245 |
+
]
|
246 |
+
},
|
247 |
+
"execution_count": 127,
|
248 |
+
"metadata": {},
|
249 |
+
"output_type": "execute_result"
|
250 |
+
}
|
251 |
+
],
|
252 |
+
"source": [
|
253 |
+
"output.keys()"
|
254 |
+
]
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"cell_type": "code",
|
258 |
+
"execution_count": 147,
|
259 |
+
"id": "5f35f00c",
|
260 |
+
"metadata": {},
|
261 |
+
"outputs": [
|
262 |
+
{
|
263 |
+
"name": "stdout",
|
264 |
+
"output_type": "stream",
|
265 |
+
"text": [
|
266 |
+
"artemisinin; todralazine; dyphylline; esmolol; formestane; z160; netupitant; brd-k89304341; isoprenaline\n"
|
267 |
+
]
|
268 |
+
}
|
269 |
+
],
|
270 |
+
"source": [
|
271 |
+
"print(*output['compounds'][0], sep='; ')"
|
272 |
+
]
|
273 |
+
},
|
274 |
+
{
|
275 |
+
"cell_type": "code",
|
276 |
+
"execution_count": 175,
|
277 |
+
"id": "5d883cf8",
|
278 |
+
"metadata": {},
|
279 |
+
"outputs": [],
|
280 |
+
"source": [
|
281 |
+
"# alternatively, use the meta2diff2compound to get straigth to compounds\n",
|
282 |
+
"prompt3 = cp(prompt)\n",
|
283 |
+
"prompt3.update({'instruction':['compound2diff2compound']})\n",
|
284 |
+
"config_sample.update({'mode':'meta2diff2compound',\n",
|
285 |
+
" 'inputs':prompt3})"
|
286 |
+
]
|
287 |
+
},
|
288 |
+
{
|
289 |
+
"cell_type": "code",
|
290 |
+
"execution_count": 176,
|
291 |
+
"id": "c2adb995",
|
292 |
+
"metadata": {},
|
293 |
+
"outputs": [],
|
294 |
+
"source": [
|
295 |
+
"output = query(config_sample)"
|
296 |
+
]
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"cell_type": "code",
|
300 |
+
"execution_count": 178,
|
301 |
+
"id": "99da6eb8",
|
302 |
+
"metadata": {},
|
303 |
+
"outputs": [
|
304 |
+
{
|
305 |
+
"data": {
|
306 |
+
"text/plain": [
|
307 |
+
"{'instruction': ['compound2diff2compound'],\n",
|
308 |
+
" 'tissue': 'lung',\n",
|
309 |
+
" 'age': 70,\n",
|
310 |
+
" 'cell': '',\n",
|
311 |
+
" 'efo': 'EFO_0000768',\n",
|
312 |
+
" 'datatype': 'expression',\n",
|
313 |
+
" 'drug': '',\n",
|
314 |
+
" 'dose': '',\n",
|
315 |
+
" 'time': '',\n",
|
316 |
+
" 'case': ['70.0-80.0', '80.0-90.0'],\n",
|
317 |
+
" 'control': '',\n",
|
318 |
+
" 'dataset_type': '',\n",
|
319 |
+
" 'gender': 'm',\n",
|
320 |
+
" 'species': 'human',\n",
|
321 |
+
" 'up': [],\n",
|
322 |
+
" 'down': []}"
|
323 |
+
]
|
324 |
+
},
|
325 |
+
"execution_count": 178,
|
326 |
+
"metadata": {},
|
327 |
+
"output_type": "execute_result"
|
328 |
+
}
|
329 |
+
],
|
330 |
+
"source": [
|
331 |
+
"prompt3"
|
332 |
+
]
|
333 |
+
},
|
334 |
+
{
|
335 |
+
"cell_type": "code",
|
336 |
+
"execution_count": 177,
|
337 |
+
"id": "ac9c4890",
|
338 |
+
"metadata": {},
|
339 |
+
"outputs": [
|
340 |
+
{
|
341 |
+
"data": {
|
342 |
+
"text/plain": [
|
343 |
+
"{'output': [None],\n",
|
344 |
+
" 'mode': 'meta2diff2compound',\n",
|
345 |
+
" 'message': '62149 is not in list',\n",
|
346 |
+
" 'input': '[BOS]<compound2diff2compound><tissue>lung </tissue><age_individ>70 </age_individ><cell></cell><efo>EFO_0000768 </efo><datatype>expression </datatype><drug></drug><dose></dose><time></time><case>70.0-80.0 80.0-90.0 </case><control></control><dataset_type></dataset_type><gender>m </gender><species>human </species>'}"
|
347 |
+
]
|
348 |
+
},
|
349 |
+
"execution_count": 177,
|
350 |
+
"metadata": {},
|
351 |
+
"output_type": "execute_result"
|
352 |
+
}
|
353 |
+
],
|
354 |
+
"source": [
|
355 |
+
"output"
|
356 |
+
]
|
357 |
+
},
|
358 |
+
{
|
359 |
+
"cell_type": "code",
|
360 |
+
"execution_count": 167,
|
361 |
+
"id": "09ec4fe2",
|
362 |
+
"metadata": {},
|
363 |
+
"outputs": [
|
364 |
+
{
|
365 |
+
"name": "stdout",
|
366 |
+
"output_type": "stream",
|
367 |
+
"text": [
|
368 |
+
"Up-regulated genes:\n",
|
369 |
+
"MUC5B; AHSP; ALAS2; SLC4A1; CDHR5; NXF2B; CYP4F3; LGALS7B; FBN3; NTS; CYSTM1; ORM2; ASL; CD177; GLRX5; H4C3; NDUFA3; TUBA4B; EPB42; GCHFR; KLF1; CFAP119; TRAPPC2L; DMTN; PDZK1IP1; SEM1; PCYT2; SERF2; CDC20; DAD1; MPC2; EMC3; BOLA1; CMTM5; PGD; EBP; GUK1; NDUFB7; UQCR11; LGALS9C; KEL; HBQ1; TUBB2A; RBX1; TMEM141; F8A1; COX7B; TMEM258; NDUFA7; MYL6; UQCRQ; MRPS24; HPGD; BOLA2B; KRTAP19-4; ATP5MF; RPL29; RPP25L; WDR83OS; FAU; UXT; ZNHIT1; SLC6A8\n",
|
370 |
+
"\n",
|
371 |
+
"Down-regulated genes:\n",
|
372 |
+
"KRT6A; KRT5; KRT15; KRT14; KRT6B; DSG3; CALML3; S100A7; SERPINB5; SPRR2A; SPRR3; LY6D; TMEM45A; KRT16; S100A9; GOLGA8A; SPINK6; CXCL10; CXCL9; CSTA; DSC3; APOL1; CXCL8; PKIA; MYBL1; CYP26B1; POSTN; THBS1; ARL14; UPK1B; CXCL13; CXCL6; C1R; COL14A1; TNFAIP2; TIMP1; VEGFC; C1QB; COL15A1; MGP; BICC1; S100A2; XIST; MARCKS; TLR2; TYMP; RPS4Y1; COL1A1; KLF6; KRT17; FBN1; STK32B; KDM5D; SPP1; APOD; THBS2; EIF1AY; CD163; CCL8; SYNM; CD44; HSPA9; CD14; SOCS3; HSPA6; MCL1; ALOX5AP; PBX3; DDX21; IRF8; HMGA1; MAFB; RGS1; SERPINE1; FKBP5; NOVA1; GFPT2; RRP12; AGTR1; C3AR1; GBP1; CCL18; TLR4; IGSF6; MSMB; SERPINA3; HLA-DQA1; HSPB8; SLC2A1; FOXD1; MS4A14; NAMPT; FYB1; TCAF1; NCF2; SERPINA1; F13A1; GBP3; FHL2; VSIG4; IFI16; MRC1\n",
|
373 |
+
"\n"
|
374 |
+
]
|
375 |
+
}
|
376 |
+
],
|
377 |
+
"source": [
|
378 |
+
"\n",
|
379 |
+
"print(\"Up-regulated genes:\")\n",
|
380 |
+
"print(*output['output']['up'][0], sep='; ', end=\"\\n\\n\")\n",
|
381 |
+
"print(\"Down-regulated genes:\")\n",
|
382 |
+
"print(*output['output']['down'][0], sep='; ', end=\"\\n\\n\")"
|
383 |
+
]
|
384 |
+
}
|
385 |
+
],
|
386 |
+
"metadata": {
|
387 |
+
"kernelspec": {
|
388 |
+
"display_name": "Python 3 (ipykernel)",
|
389 |
+
"language": "python",
|
390 |
+
"name": "python3"
|
391 |
+
},
|
392 |
+
"language_info": {
|
393 |
+
"codemirror_mode": {
|
394 |
+
"name": "ipython",
|
395 |
+
"version": 3
|
396 |
+
},
|
397 |
+
"file_extension": ".py",
|
398 |
+
"mimetype": "text/x-python",
|
399 |
+
"name": "python",
|
400 |
+
"nbconvert_exporter": "python",
|
401 |
+
"pygments_lexer": "ipython3",
|
402 |
+
"version": "3.9.5"
|
403 |
+
}
|
404 |
+
},
|
405 |
+
"nbformat": 4,
|
406 |
+
"nbformat_minor": 5
|
407 |
+
}
|